1
|
Hajizade MS, Raee MJ, Faraji SN, Farvadi F, Kabiri M, Eskandari S, Tamaddon AM. Targeted drug delivery to the thrombus by fusing streptokinase with a fibrin-binding peptide (CREKA): an in silico study. Ther Deliv 2024; 15:399-411. [PMID: 38686829 PMCID: PMC11285244 DOI: 10.4155/tde-2023-0107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 03/18/2024] [Indexed: 05/02/2024] Open
Abstract
Aim: Streptokinase has poor selectivity and provokes the immune response. In this study, we used in silico studies to design a fusion protein to achieve targeted delivery to the thrombus. Materials & methods: Streptokinase was analyzed computationally for mapping. The fusion protein modeling and quality assessment were carried out on several servers. The enzymatic activity and the stability of the fusion protein and its complex with plasminogen were assessed through molecular docking analysis and molecular dynamics simulation respectively. Results: Physicochemical properties analysis, protein quality assessments, protein-protein docking and molecular dynamics simulations predicted that the designed fusion protein is functionally active. Conclusion: Our results showed that this fusion protein might be a prospective candidate as a novel thrombolytic agent with better selectivity.
Collapse
Affiliation(s)
- Mohammad Soroosh Hajizade
- Center for Nanotechnology in Drug Delivery, Shiraz University of Medical Sciences, Shiraz, Fars, Iran, PO:7146864685
| | - Mohammad Javad Raee
- Center for Nanotechnology in Drug Delivery, Shiraz University of Medical Sciences, Shiraz, Fars, Iran, PO:7146864685
| | - Seyed Nooreddin Faraji
- School of Advanced Medical Sciences & Technologies, Shiraz University of Medical Sciences, Shiraz, Fars, Iran
- Shiraz Institute for Cancer Research, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Fars, Iran
| | - Fakhrossadat Farvadi
- Center for Nanotechnology in Drug Delivery, Shiraz University of Medical Sciences, Shiraz, Fars, Iran, PO:7146864685
| | - Maryam Kabiri
- Arnold & Marie Schwartz College of Pharmacy & Health Sciences, Long Island University, Brooklyn, NY 11201, USA
| | - Sedigheh Eskandari
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Fars, Iran
| | - Ali Mohammad Tamaddon
- Center for Nanotechnology in Drug Delivery, Shiraz University of Medical Sciences, Shiraz, Fars, Iran, PO:7146864685
- Department of Pharmaceutical Nanotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Fars, Iran
| |
Collapse
|
2
|
Paranthaman P, Veerappapillai S. Tackling suppressive cancer microenvironment by NARF-derived immune modulatory vaccine and its validation using simulation strategies. FRONTIERS IN PHYSICS 2024; 12. [DOI: 10.3389/fphy.2024.1342115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
Abstract
Introduction: Targeting tumor microenvironment is beneficial and present an ideal setting for the development of futuristic immunotherapy. Here, we make use of Nuclear prelamin A recognition factor (NARF), a protein linked to the coactivation of transcriptional regulators in human breast cancer stem cells (CSC) in our investigation.Methods: In this study, we initially computed the epitope regions possessing the ability to stimulate both T and B cells within the NARF protein. These identified epitope areas were fused with an adjuvant such as RpfB and RpfE as well as linkers like AAY, GPGPG, KK, and EAAAK. The constructed vaccine was further characterized by assessing its physicochemical properties and population coverage. The potential interactions of the designed vaccine with different toll-like receptors were examined by a sequence of computational studies. Of note, docking study were employed to understand its mechanism of action. Molecular dynamics and immune simulation studies were conducted to comprehend more into their structural stability and immune responses. The resultant vaccine was back-translated, codon-optimised and introduced into pET-28 (+) vector.Results and discussion: We hypothesize from the results that the designed NARF protein-based vaccine in our analysis could effectively provoke the immune responses in the target organism through TLR-7 binding and promotes MHC class-II mediated antigen presentation. Indeed, comprehensive evaluations conducted in both in vitro and in vivo settings are imperative to substantiate the safety and efficacy of the developed vaccine.
Collapse
|
3
|
Ishwarlall TZ, Adeleke VT, Maharaj L, Okpeku M, Adeniyi AA, Adeleke MA. Multi-epitope vaccine candidates based on mycobacterial membrane protein large (MmpL) proteins against Mycobacterium ulcerans. Open Biol 2023; 13:230330. [PMID: 37935359 PMCID: PMC10645115 DOI: 10.1098/rsob.230330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 09/26/2023] [Indexed: 11/09/2023] Open
Abstract
Buruli ulcer (BU) is a neglected tropical disease. It is caused by the bacterium Mycobacterium ulcerans and is characterized by skin lesions. Several studies were performed testing the Bacillus Calmette-Guérin (BCG) vaccine in human and animal models and M. ulcerans-specific vaccines in animal models. However, there are currently no clinically accepted vaccines to prevent M. ulcerans infection. The aim of this study was to identify T-cell and B-cell epitopes from the mycobacterial membrane protein large (MmpL) proteins of M. ulcerans. These epitopes were analysed for properties including antigenicity, immunogenicity, non-allergenicity, non-toxicity, population coverage and the potential to induce cytokines. The final 8 CD8+, 12 CD4+ T-cell and 5 B-cell epitopes were antigenic, non-allergenic and non-toxic. The estimated global population coverage of the CD8+ and CD4+ epitopes was 97.71%. These epitopes were used to construct five multi-epitope vaccine constructs with different adjuvants and linker combinations. The constructs underwent further structural analyses and refinement. The constructs were then docked with Toll-like receptors. Three of the successfully docked complexes were structurally analysed. Two of the docked complexes successfully underwent molecular dynamics simulations (MDS) and post-MDS analysis. The complexes generated were found to be stable. However, experimental validation of the complexes is required.
Collapse
Affiliation(s)
- Tamara Z. Ishwarlall
- Discipline of Genetics, School of Life Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Victoria T. Adeleke
- Department of Chemical Engineering, Mangosuthu University of Technology, Umlazi, Durban, South Africa
| | - Leah Maharaj
- Discipline of Genetics, School of Life Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Moses Okpeku
- Discipline of Genetics, School of Life Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Adebayo A. Adeniyi
- Department of Chemistry, Faculty of Natural and Agricultural Sciences, University of the Free State, Bloemfontein, South Africa
- Department of Industrial Chemistry, Federal University Oye Ekiti, Ekiti State, Nigeria
| | - Matthew A. Adeleke
- Discipline of Genetics, School of Life Sciences, University of KwaZulu-Natal, Durban, South Africa
| |
Collapse
|
4
|
SARS-CoV-2 Vaccines, Vaccine Development Technologies, and Significant Efforts in Vaccine Development during the Pandemic: The Lessons Learned Might Help to Fight against the Next Pandemic. Vaccines (Basel) 2023; 11:vaccines11030682. [PMID: 36992266 DOI: 10.3390/vaccines11030682] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 03/10/2023] [Accepted: 03/15/2023] [Indexed: 03/19/2023] Open
Abstract
We are currently approaching three years since the beginning of the coronavirus disease 2019 (COVID-19) pandemic. SARS-CoV-2 has caused extensive disruptions in everyday life, public health, and the global economy. Thus far, the vaccine has worked better than expected against the virus. During the pandemic, we experienced several things, such as the virus and its pathogenesis, clinical manifestations, and treatments; emerging variants; different vaccines; and the vaccine development processes. This review describes how each vaccine has been developed and approved with the help of modern technology. We also discuss critical milestones during the vaccine development process. Several lessons were learned from different countries during the two years of vaccine research, development, clinical trials, and vaccination. The lessons learned during the vaccine development process will help to fight the next pandemic.
Collapse
|
5
|
Kuja JO, Kanoi BN, Balboa RF, Shiluli C, Maina M, Waweru H, Gathii K, Mungai M, Masika M, Anzala O, Mwau M, Clark TG, Waitumbi J, Gitaka J. Genomic surveillance of SARS-COV-2 reveals diverse circulating variant lineages in Nairobi and Kiambu Counties, Kenya. BMC Genomics 2022; 23:627. [PMID: 36050650 PMCID: PMC9434529 DOI: 10.1186/s12864-022-08853-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Accepted: 08/19/2022] [Indexed: 11/10/2022] Open
Abstract
Genomic surveillance and identification of COVID-19 outbreaks are important in understanding the genetic diversity, phylogeny, and lineages of SARS-CoV-2. Genomic surveillance provides insights into circulating infections, and the robustness and design of vaccines and other infection control approaches. We sequenced 57 SARS-CoV-2 isolates from a Kenyan clinical population, of which 55 passed quality checks using the Ultrafast Sample placement on the Existing tRee (UShER) workflow. Phylo-genome-temporal analyses across two regions in Kenya (Nairobi and Kiambu County) revealed that B.1.1.7 (Alpha; n = 32, 56.1%) and B.1 (n = 9, 15.8%) were the predominant lineages, exhibiting low Ct values (5-31) suggesting high infectivity, and variant mutations across the two regions. Lineages B.1.617.2, B.1.1, A.23.1, A.2.5.1, B.1.596, A, and B.1.405 were also detected across sampling sites within target populations. The lineages and genetic isolates were traced back to China (A), Costa Rica (A.2.5.1), Europe (B.1, B.1.1, A.23.1), the USA (B.1.405, B.1.596), South Africa (B.1.617.2), and the United Kingdom (B.1.1.7), indicating multiple introduction events. This study represents one of the genomic SARS-CoV-2 epidemiology studies in the Nairobi metropolitan area, and describes the importance of continued surveillance for pandemic control.
Collapse
Affiliation(s)
- Josiah O Kuja
- Mount Kenya University, Thika, Kenya.
- University of Copenhagen, Copenhagen, Denmark.
| | | | | | | | | | | | - Kimita Gathii
- United States Army Medical Research Directorate, Kisumu, Kenya
| | - Mary Mungai
- Kenya Medical Research Institute, Nairobi, Kenya
| | | | - Omu Anzala
- Kenya Medical Research Institute, Nairobi, Kenya
| | - Matilu Mwau
- Kenya Medical Research Institute, Nairobi, Kenya
| | - Taane G Clark
- London School of Hygiene & Tropical Medicine, London, UK
| | - John Waitumbi
- United States Army Medical Research Directorate, Kisumu, Kenya
| | | |
Collapse
|
6
|
Naveed M, Jabeen K, Naz R, Mughal MS, Rabaan AA, Bakhrebah MA, Alhoshani FM, Aljeldah M, Shammari BRA, Alissa M, Sabour AA, Alaeq RA, Alshiekheid MA, Garout M, Almogbel MS, Halwani MA, Turkistani SA, Ahmed N. Regulation of Host Immune Response against Enterobacter cloacae Proteins via Computational mRNA Vaccine Design through Transcriptional Modification. Microorganisms 2022; 10:1621. [PMID: 36014038 PMCID: PMC9415879 DOI: 10.3390/microorganisms10081621] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 08/02/2022] [Accepted: 08/05/2022] [Indexed: 12/13/2022] Open
Abstract
Enterobacter cloacae is mainly responsible for sepsis, urethritis, and respiratory tract infections. These bacteria may affect the transcription of the host and particularly their immune system by producing changes in their epigenetics. In the present study, four proteins of Enterobacter cloacae were used to predict the epitopes for the construction of an mRNA vaccine against Enterobacter cloacae infections. In order to generate cellular and humoral responses, various immunoinformatic-based approaches were used for developing the vaccine. The molecular docking analysis was performed for predicting the interaction among the chosen epitopes and corresponding MHC alleles. The vaccine was developed by combining epitopes (thirty-three total), which include the adjuvant Toll-like receptor-4 (TLR4). The constructed vaccine was analyzed and predicted to cover 99.2% of the global population. Additionally, in silico immunological modeling of the vaccination was also carried out. When it enters the cytoplasm of the human (host), the codon is optimized to generate the translated mRNA efficiently. Moreover, the peptide structures were analyzed and docked with TLR-3 and TLR-4. A dynamic simulation predicted the stability of the binding complex. The assumed construct was considered to be a potential candidate for a vaccine against Enterobacter cloacae infections. Hence, the proposed construct is suitable for in vitro analyses to validate its effectiveness.
Collapse
Affiliation(s)
- Muhammad Naveed
- Department of Biotechnology, Faculty of Sciences and Technology, University of Central Punjab, Lahore 54590, Pakistan
| | - Khizra Jabeen
- Department of Biotechnology, Faculty of Sciences and Technology, University of Central Punjab, Lahore 54590, Pakistan
| | - Rubina Naz
- Corona Intensive Care Units, District Headquarter Teaching Hospital, Dera Ghazi Khan 33000, Punjab, Pakistan
| | - Muhammad Saad Mughal
- Department of Biotechnology, Faculty of Sciences and Technology, University of Central Punjab, Lahore 54590, Pakistan
| | - Ali A. Rabaan
- Molecular Diagnostic Laboratory, Johns Hopkins Aramco Healthcare, Dhahran 31311, Saudi Arabia
- College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia
- Department of Public Health and Nutrition, The University of Haripur, Haripur 22610, Pakistan
| | - Muhammed A. Bakhrebah
- Life Science and Environment Research Institute, King Abdulaziz City for Science and Technology (KACST), Riyadh 11442, Saudi Arabia
| | - Fahad M. Alhoshani
- Life Science and Environment Research Institute, King Abdulaziz City for Science and Technology (KACST), Riyadh 11442, Saudi Arabia
| | - Mohammed Aljeldah
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, University of Hafr Al Batin, Hafr Al Batin 39831, Saudi Arabia
| | - Basim R. Al Shammari
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, University of Hafr Al Batin, Hafr Al Batin 39831, Saudi Arabia
| | - Mohammed Alissa
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Prince Sattam bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| | - Amal A. Sabour
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Rana A. Alaeq
- Department of Medical Laboratories Technology, Faculty of Applied Medical Science, Taibah University, Al Madinah Al Munawarh 344, Saudi Arabia
| | - Maha A. Alshiekheid
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Mohammed Garout
- Department of Community Medicine and Health Care for Pilgrims, Faculty of Medicine, Umm Al-Qura University, Makkah 21955, Saudi Arabia
| | - Mohammed S. Almogbel
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, University of Hail, Hail 4030, Saudi Arabia
| | - Muhammad A. Halwani
- Department of Medical Microbiology, Faculty of Medicine, Al Baha University, Al Baha 4781, Saudi Arabia
| | - Safaa A. Turkistani
- Department of Medical Laboratory, Fakeeh College for Medical Science, Jeddah 21134, Saudi Arabia
| | - Naveed Ahmed
- Department of Biotechnology, Faculty of Sciences and Technology, University of Central Punjab, Lahore 54590, Pakistan
- Department of Medical Microbiology and Parasitology, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian 16150, Kelantan, Malaysia
| |
Collapse
|
7
|
Bioinformatics, Computational Informatics, and Modeling Approaches to the Design of mRNA COVID-19 Vaccine Candidates. COMPUTATION 2022. [DOI: 10.3390/computation10070117] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
This article is devoted to applying bioinformatics and immunoinformatics approaches for the development of a multi-epitope mRNA vaccine against the spike glycoproteins of circulating SARS-CoV-2 variants in selected African countries. The study’s relevance is dictated by the fact that severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) began its global threat at the end of 2019 and since then has had a devastating impact on the whole world. Measures to reduce threats from the pandemic include social restrictions, restrictions on international travel, and vaccine development. In most cases, vaccine development depends on the spike glycoprotein, which serves as a medium for its entry into host cells. Although several variants of SARS-CoV-2 have emerged from mutations crossing continental boundaries, about 6000 delta variants have been reported along the coast of more than 20 countries in Africa, with South Africa accounting for the highest percentage. This also applies to the omicron variant of the SARS-CoV-2 virus in South Africa. The authors suggest that bioinformatics and immunoinformatics approaches be used to develop a multi-epitope mRNA vaccine against the spike glycoproteins of circulating SARS-CoV-2 variants in selected African countries. Various immunoinformatics tools have been used to predict T- and B-lymphocyte epitopes. The epitopes were further subjected to multiple evaluations to select epitopes that could elicit a sustained immunological response. The candidate vaccine consisted of seven epitopes, a highly immunogenic adjuvant, an MHC I-targeting domain (MITD), a signal peptide, and linkers. The molecular weight (MW) was predicted to be 223.1 kDa, well above the acceptable threshold of 110 kDa on an excellent vaccine candidate. In addition, the results showed that the candidate vaccine was antigenic, non-allergenic, non-toxic, thermostable, and hydrophilic. The vaccine candidate has good population coverage, with the highest range in East Africa (80.44%) followed by South Africa (77.23%). West Africa and North Africa have 76.65% and 76.13%, respectively, while Central Africa (75.64%) has minimal coverage. Among seven epitopes, no mutations were observed in 100 randomly selected SARS-CoV-2 spike glycoproteins in the study area. Evaluation of the secondary structure of the vaccine constructs revealed a stabilized structure showing 36.44% alpha-helices, 20.45% drawn filaments, and 33.38% random helices. Molecular docking of the TLR4 vaccine showed that the simulated vaccine has a high binding affinity for TLR-4, reflecting its ability to stimulate the innate and adaptive immune response.
Collapse
|