1
|
Côté JN, Germain M, Levac E, Lavigne E. Vulnerability assessment of heat waves within a risk framework using artificial intelligence. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:169355. [PMID: 38123103 DOI: 10.1016/j.scitotenv.2023.169355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 12/06/2023] [Accepted: 12/11/2023] [Indexed: 12/23/2023]
Abstract
Current efforts to adapt to climate change are not sufficient to reduce projected impacts. Vulnerability assessments are essential to allocate resources where they are needed most. However, current assessments that use principal component analysis suffer from multiple shortcomings and are hard to translate into concrete actions. To address these issues, this article proposes a novel data-driven vulnerability assessment within a risk framework. The framework is based on the definitions from the Sixth Assessment Report of the Intergovernmental Panel on Climate Change, but some definitions, such as sensitivity and adaptive capacity, are clarified. Heat waves that occurred between 2001 and 2018 in Quebec (Canada) are used to validate the framework. The studied impact is the daily mortality rates per cooling degree-days (CDD) region. A vulnerability map is produced to identify the distributions of summer mortality rates in aggregate dissemination areas within each CDD region. Socioeconomic and environmental variables are used to calculate impact and vulnerability. We compared abilities of AutoGluon (an AutoML framework), Gaussian process, and deep Gaussian process to model the impact and vulnerability. We offer advice on how to avoid common pitfalls with artificial intelligence and machine-learning algorithms. Gaussian process is a promising approach for supporting the proposed framework. SHAP values provide an explanation for the model results and are consistent with current knowledge of vulnerability. Recommendations are made to implement the proposed framework quantitatively or qualitatively.
Collapse
Affiliation(s)
- Jean-Nicolas Côté
- Department of Applied Geomatics, Université de Sherbrooke, 2500, boulevard de l'Université, Sherbrooke J1K 2R1, Quebec, Canada.
| | - Mickaël Germain
- Department of Applied Geomatics, Université de Sherbrooke, 2500, boulevard de l'Université, Sherbrooke J1K 2R1, Quebec, Canada
| | - Elisabeth Levac
- Department of Environment, Agriculture and Geography, Bishop's University, 2600 College St., Sherbrooke J1M 1Z7, Quebec, Canada
| | - Eric Lavigne
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, Ontario, Canada; School of Epidemiology & Public Health, University of Ottawa, Ottawa, Ontario, Canada
| |
Collapse
|
2
|
Wang J, Zhang H, Chen N, Zeng T, Ai X, Wu K. PorcineAI-Enhancer: Prediction of Pig Enhancer Sequences Using Convolutional Neural Networks. Animals (Basel) 2023; 13:2935. [PMID: 37760334 PMCID: PMC10526013 DOI: 10.3390/ani13182935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 08/21/2023] [Accepted: 09/05/2023] [Indexed: 09/29/2023] Open
Abstract
Understanding the mechanisms of gene expression regulation is crucial in animal breeding. Cis-regulatory DNA sequences, such as enhancers, play a key role in regulating gene expression. Identifying enhancers is challenging, despite the use of experimental techniques and computational methods. Enhancer prediction in the pig genome is particularly significant due to the costliness of high-throughput experimental techniques. The study constructed a high-quality database of pig enhancers by integrating information from multiple sources. A deep learning prediction framework called PorcineAI-enhancer was developed for the prediction of pig enhancers. This framework employs convolutional neural networks for feature extraction and classification. PorcineAI-enhancer showed excellent performance in predicting pig enhancers, validated on an independent test dataset. The model demonstrated reliable prediction capability for unknown enhancer sequences and performed remarkably well on tissue-specific enhancer sequences.The study developed a deep learning prediction framework, PorcineAI-enhancer, for predicting pig enhancers. The model demonstrated significant predictive performance and potential for tissue-specific enhancers. This research provides valuable resources for future studies on gene expression regulation in pigs.
Collapse
Affiliation(s)
- Ji Wang
- College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (J.W.); (H.Z.); (T.Z.); (X.A.)
| | - Han Zhang
- College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (J.W.); (H.Z.); (T.Z.); (X.A.)
| | - Nanzhu Chen
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China;
| | - Tong Zeng
- College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (J.W.); (H.Z.); (T.Z.); (X.A.)
| | - Xiaohua Ai
- College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (J.W.); (H.Z.); (T.Z.); (X.A.)
| | - Keliang Wu
- College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (J.W.); (H.Z.); (T.Z.); (X.A.)
| |
Collapse
|
3
|
Hussein HI, Mohammed AO, Hassan MM, Mstafa RJ. Lightweight deep CNN-based models for early detection of COVID-19 patients from chest X-ray images. EXPERT SYSTEMS WITH APPLICATIONS 2023; 223:119900. [PMID: 36969370 PMCID: PMC10023206 DOI: 10.1016/j.eswa.2023.119900] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 03/05/2023] [Accepted: 03/15/2023] [Indexed: 06/18/2023]
Abstract
Hundreds of millions of people worldwide have recently been infected by the novel Coronavirus disease (COVID-19), causing significant damage to the health, economy, and welfare of the world's population. Moreover, the unprecedented number of patients with COVID-19 has placed a massive burden on healthcare centers, making timely and rapid diagnosis challenging. A crucial step in minimizing the impact of such problems is to automatically detect infected patients and place them under special care as quickly as possible. Deep learning algorithms, such as Convolutional Neural Networks (CNN), can be used to meet this need. Despite the desired results, most of the existing deep learning-based models were built on millions of parameters (weights), which are not applicable to devices with limited resources. Inspired by such fact, in this research, we developed two new lightweight CNN-based diagnostic models for the automatic and early detection of COVID-19 subjects from chest X-ray images. The first model was built for binary classification (COVID-19 and Normal), whereas the second one was built for multiclass classification (COVID-19, viral pneumonia, or normal). The proposed models were tested on a relatively large dataset of chest X-ray images, and the results showed that the accuracy rates of the 2- and 3-class-based classification models are 98.55% and 96.83%, respectively. The results also revealed that our models achieved competitive performance compared with the existing heavyweight models while significantly reducing cost and memory requirements for computing resources. With these findings, we can indicate that our models are helpful to clinicians in making insightful diagnoses of COVID-19 and are potentially easily deployable on devices with limited computational power and resources.
Collapse
Affiliation(s)
- Haval I Hussein
- Department of Computer Science, Faculty of Science, University of Zakho. Zakho, Kurdistan Region, Iraq
| | - Abdulhakeem O Mohammed
- Department of Information Technology Management, Technical College of Administration, Duhok Polytechnic University, Duhok, Iraq
| | - Masoud M Hassan
- Department of Computer Science, Faculty of Science, University of Zakho. Zakho, Kurdistan Region, Iraq
| | - Ramadhan J Mstafa
- Department of Computer Science, Faculty of Science, University of Zakho. Zakho, Kurdistan Region, Iraq
- Department of Computer Science, College of Science, Nawroz University, Duhok, Kurdistan Region, Iraq
| |
Collapse
|
4
|
Chetoui M, Akhloufi MA, Bouattane EM, Abdulnour J, Roux S, Bernard CD. Explainable COVID-19 Detection Based on Chest X-rays Using an End-to-End RegNet Architecture. Viruses 2023; 15:1327. [PMID: 37376626 DOI: 10.3390/v15061327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 06/01/2023] [Indexed: 06/29/2023] Open
Abstract
COVID-19,which is caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), is one of the worst pandemics in recent history. The identification of patients suspected to be infected with COVID-19 is becoming crucial to reduce its spread. We aimed to validate and test a deep learning model to detect COVID-19 based on chest X-rays. The recent deep convolutional neural network (CNN) RegNetX032 was adapted for detecting COVID-19 from chest X-ray (CXR) images using polymerase chain reaction (RT-PCR) as a reference. The model was customized and trained on five datasets containing more than 15,000 CXR images (including 4148COVID-19-positive cases) and then tested on 321 images (150 COVID-19-positive) from Montfort Hospital. Twenty percent of the data from the five datasets were used as validation data for hyperparameter optimization. Each CXR image was processed by the model to detect COVID-19. Multi-binary classifications were proposed, such as: COVID-19 vs. normal, COVID-19 + pneumonia vs. normal, and pneumonia vs. normal. The performance results were based on the area under the curve (AUC), sensitivity, and specificity. In addition, an explainability model was developed that demonstrated the high performance and high generalization degree of the proposed model in detecting and highlighting the signs of the disease. The fine-tuned RegNetX032 model achieved an overall accuracy score of 96.0%, with an AUC score of 99.1%. The model showed a superior sensitivity of 98.0% in detecting signs from CXR images of COVID-19 patients, and a specificity of 93.0% in detecting healthy CXR images. A second scenario compared COVID-19 + pneumonia vs. normal (healthy X-ray) patients. The model achieved an overall score of 99.1% (AUC) with a sensitivity of 96.0% and specificity of 93.0% on the Montfort dataset. For the validation set, the model achieved an average accuracy of 98.6%, an AUC score of 98.0%, a sensitivity of 98.0%, and a specificity of 96.0% for detection (COVID-19 patients vs. healthy patients). The second scenario compared COVID-19 + pneumonia vs. normal patients. The model achieved an overall score of 98.8% (AUC) with a sensitivity of 97.0% and a specificity of 96.0%. This robust deep learning model demonstrated excellent performance in detecting COVID-19 from chest X-rays. This model could be used to automate the detection of COVID-19 and improve decision making for patient triage and isolation in hospital settings. This could also be used as a complementary aid for radiologists or clinicians when differentiating to make smart decisions.
Collapse
Affiliation(s)
- Mohamed Chetoui
- Perception, Robotics, and Intelligent Machines (PRIME), Department of Computer Science, Université de Moncton, Moncton, NB E1A 3E9, Canada
| | - Moulay A Akhloufi
- Perception, Robotics, and Intelligent Machines (PRIME), Department of Computer Science, Université de Moncton, Moncton, NB E1A 3E9, Canada
| | - El Mostafa Bouattane
- Montfort Academic Hospital, Institut du Savoir Montfort, Ottawa, ON 61350, Canada
| | - Joseph Abdulnour
- Montfort Academic Hospital, Institut du Savoir Montfort, Ottawa, ON 61350, Canada
| | - Stephane Roux
- Montfort Academic Hospital, Institut du Savoir Montfort, Ottawa, ON 61350, Canada
| | | |
Collapse
|
5
|
Hasan MK, Ahamad MA, Yap CH, Yang G. A survey, review, and future trends of skin lesion segmentation and classification. Comput Biol Med 2023; 155:106624. [PMID: 36774890 DOI: 10.1016/j.compbiomed.2023.106624] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 01/04/2023] [Accepted: 01/28/2023] [Indexed: 02/03/2023]
Abstract
The Computer-aided Diagnosis or Detection (CAD) approach for skin lesion analysis is an emerging field of research that has the potential to alleviate the burden and cost of skin cancer screening. Researchers have recently indicated increasing interest in developing such CAD systems, with the intention of providing a user-friendly tool to dermatologists to reduce the challenges encountered or associated with manual inspection. This article aims to provide a comprehensive literature survey and review of a total of 594 publications (356 for skin lesion segmentation and 238 for skin lesion classification) published between 2011 and 2022. These articles are analyzed and summarized in a number of different ways to contribute vital information regarding the methods for the development of CAD systems. These ways include: relevant and essential definitions and theories, input data (dataset utilization, preprocessing, augmentations, and fixing imbalance problems), method configuration (techniques, architectures, module frameworks, and losses), training tactics (hyperparameter settings), and evaluation criteria. We intend to investigate a variety of performance-enhancing approaches, including ensemble and post-processing. We also discuss these dimensions to reveal their current trends based on utilization frequencies. In addition, we highlight the primary difficulties associated with evaluating skin lesion segmentation and classification systems using minimal datasets, as well as the potential solutions to these difficulties. Findings, recommendations, and trends are disclosed to inform future research on developing an automated and robust CAD system for skin lesion analysis.
Collapse
Affiliation(s)
- Md Kamrul Hasan
- Department of Bioengineering, Imperial College London, UK; Department of Electrical and Electronic Engineering (EEE), Khulna University of Engineering & Technology (KUET), Khulna 9203, Bangladesh.
| | - Md Asif Ahamad
- Department of Electrical and Electronic Engineering (EEE), Khulna University of Engineering & Technology (KUET), Khulna 9203, Bangladesh.
| | - Choon Hwai Yap
- Department of Bioengineering, Imperial College London, UK.
| | - Guang Yang
- National Heart and Lung Institute, Imperial College London, UK; Cardiovascular Research Centre, Royal Brompton Hospital, UK.
| |
Collapse
|
6
|
Ukwuoma CC, Qin Z, Agbesi VK, Ejiyi CJ, Bamisile O, Chikwendu IA, Tienin BW, Hossin MA. LCSB-inception: Reliable and effective light-chroma separated branches for Covid-19 detection from chest X-ray images. Comput Biol Med 2022; 150:106195. [PMID: 37859288 PMCID: PMC9561436 DOI: 10.1016/j.compbiomed.2022.106195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 09/03/2022] [Accepted: 10/09/2022] [Indexed: 11/24/2022]
Abstract
According to the World Health Organization, an estimate of more than five million infections and 355,000 deaths have been recorded worldwide since the emergence of the coronavirus disease (COVID-19). Various researchers have developed interesting and effective deep learning frameworks to tackle this disease. However, poor feature extraction from the Chest X-ray images and the high computational cost of the available models impose difficulties to an accurate and fast Covid-19 detection framework. Thus, the major purpose of this study is to offer an accurate and efficient approach for extracting COVID-19 features from chest X-rays that is also less computationally expensive than earlier research. To achieve the specified goal, we explored the Inception V3 deep artificial neural network. This study proposed LCSB-Inception; a two-path (L and AB channel) Inception V3 network along the first three convolutional layers. The RGB input image is first transformed to CIE LAB coordinates (L channel which is aimed at learning the textural and edge features of the Chest X-Ray and AB channel which is aimed at learning the color variations of the Chest X-ray images). The L achromatic channel and the AB channels filters are set to 50%L-50%AB. This method saves between one-third and one-half of the parameters in the divided branches. We further introduced a global second-order pooling at the last two convolutional blocks for more robust image feature extraction against the conventional max-pooling. The detection accuracy of the LCSB-Inception is further improved by employing the Contrast Limited Adaptive Histogram Equalization (CLAHE) image enhancement technique on the input image before feeding them to the network. The proposed LCSB-Inception network is experimented on using two loss functions (Categorically smooth loss and categorically Cross-entropy) and two learning rates whereas Accuracy, Precision, Sensitivity, Specificity F1-Score, and AUC Score were used for evaluation via the chestX-ray-15k (Data_1) and COVID-19 Radiography dataset (Data_2). The proposed models produced an acceptable outcome with an accuracy of 0.97867 (Data_1) and 0.98199 (Data_2) according to the experimental findings. In terms of COVID-19 identification, the suggested models outperform conventional deep learning models and other state-of-the-art techniques presented in the literature based on the results.
Collapse
Affiliation(s)
- Chiagoziem C Ukwuoma
- School of Information and Software Engineering, University of Electronic Science and Technology of China, Sichuan, PR China.
| | - Zhiguang Qin
- School of Information and Software Engineering, University of Electronic Science and Technology of China, Sichuan, PR China.
| | - Victor Kwaku Agbesi
- School of Computer Science and Engineering, University of Electronic Science and Technology of China, Sichuan, PR China
| | - Chukwuebuka J Ejiyi
- School of Information and Software Engineering, University of Electronic Science and Technology of China, Sichuan, PR China
| | - Olusola Bamisile
- Sichuan Industrial Internet Intelligent Monitoring and Application Engineering Technology Research Center, Chengdu University of Technology, Chenghua District, Chengdu, Sichuan, PR China
| | - Ijeoma A Chikwendu
- School of Information and Communication Engineering, University of Electronic Science and Technology of China, Sichuan, PR China
| | - Bole W Tienin
- School of Information and Communication Engineering, University of Electronic Science and Technology of China, Sichuan, PR China
| | - Md Altab Hossin
- School of Innovation and Entrepreneurship, Chengdu University, No. 2025, Chengluo Avenue, 610106, Chengdu, Sichuan, PR China
| |
Collapse
|
7
|
Alsaaidah B, Al-Hadidi MR, Al-Nsour H, Masadeh R, AlZubi N. Comprehensive Survey of Machine Learning Systems for COVID-19 Detection. J Imaging 2022; 8:267. [PMID: 36286361 PMCID: PMC9604704 DOI: 10.3390/jimaging8100267] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 09/11/2022] [Accepted: 09/20/2022] [Indexed: 01/14/2023] Open
Abstract
The last two years are considered the most crucial and critical period of the COVID-19 pandemic affecting most life aspects worldwide. This virus spreads quickly within a short period, increasing the fatality rate associated with the virus. From a clinical perspective, several diagnosis methods are carried out for early detection to avoid virus propagation. However, the capabilities of these methods are limited and have various associated challenges. Consequently, many studies have been performed for COVID-19 automated detection without involving manual intervention and allowing an accurate and fast decision. As is the case with other diseases and medical issues, Artificial Intelligence (AI) provides the medical community with potential technical solutions that help doctors and radiologists diagnose based on chest images. In this paper, a comprehensive review of the mentioned AI-based detection solution proposals is conducted. More than 200 papers are reviewed and analyzed, and 145 articles have been extensively examined to specify the proposed AI mechanisms with chest medical images. A comprehensive examination of the associated advantages and shortcomings is illustrated and summarized. Several findings are concluded as a result of a deep analysis of all the previous works using machine learning for COVID-19 detection, segmentation, and classification.
Collapse
Affiliation(s)
- Bayan Alsaaidah
- Department of Computer Science, Prince Abdullah bin Ghazi Faculty of Information Technology and Communications, Al-Balqa Applied University, Salt 19117, Jordan
| | - Moh’d Rasoul Al-Hadidi
- Department of Electrical Engineering, Electrical Power Engineering and Computer Engineering, Faculty of Engineering, Al-Balqa Applied University, Salt 19117, Jordan
| | - Heba Al-Nsour
- Department of Computer Science, Prince Abdullah bin Ghazi Faculty of Information Technology and Communications, Al-Balqa Applied University, Salt 19117, Jordan
| | - Raja Masadeh
- Computer Science Department, The World Islamic Sciences and Education University, Amman 11947, Jordan
| | - Nael AlZubi
- Department of Electrical Engineering, Electrical Power Engineering and Computer Engineering, Faculty of Engineering, Al-Balqa Applied University, Salt 19117, Jordan
| |
Collapse
|
8
|
Smadi AA, Abugabah A, Al-Smadi AM, Almotairi S. SEL-COVIDNET: An intelligent application for the diagnosis of COVID-19 from chest X-rays and CT-scans. INFORMATICS IN MEDICINE UNLOCKED 2022; 32:101059. [PMID: 36033909 PMCID: PMC9398554 DOI: 10.1016/j.imu.2022.101059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Revised: 08/17/2022] [Accepted: 08/17/2022] [Indexed: 11/06/2022] Open
Abstract
COVID-19 detection from medical imaging is a difficult challenge that has piqued the interest of experts worldwide. Chest X-rays and computed tomography (CT) scanning are the essential imaging modalities for diagnosing COVID-19. All researchers focus their efforts on developing viable methods and rapid treatment procedures for this pandemic. Fast and accurate automated detection approaches have been devised to alleviate the need for medical professionals. Deep Learning (DL) technologies have successfully recognized COVID-19 situations. This paper proposes a developed set of nine deep learning models for diagnosing COVID-19 based on transfer learning and implementation in a novel architecture (SEL-COVIDNET). We include a global average pooling layer, flattening, and two dense layers that are fully connected. The model’s effectiveness is evaluated using balanced and unbalanced COVID-19 radiography datasets. After that, our model’s performance is analyzed using six evaluation measures: accuracy, sensitivity, specificity, precision, F1-score, and Matthew’s correlation coefficient (MCC). Experiments demonstrated that the proposed SEL-COVIDNET with tuned DenseNet121, InceptionResNetV2, and MobileNetV3Large models outperformed the results of comparative SOTA for multi-class classification (COVID-19 vs. No-finding vs. Pneumonia) in terms of accuracy (98.52%), specificity (98.5%), sensitivity (98.5%), precision (98.7%), F1-score (98.7%), and MCC (97.5%). For the COVID-19 vs. No-finding classification, our method had an accuracy of 99.77%, a specificity of 99.85%, a sensitivity of 99.85%, a precision of 99.55%, an F1-score of 99.7%, and an MCC of 99.4%. The proposed model offers an accurate approach for detecting COVID-19 patients, which aids in the containment of the COVID-19 pandemic.
Collapse
Affiliation(s)
- Ahmad Al Smadi
- School of Artificial Intelligence, Xidian University, No. 2 South Taibai Road, Xian, 710071, China.,College of Technological Innovation, Zayed University, Abu Dhabi Campus, UAE
| | - Ahed Abugabah
- College of Technological Innovation, Zayed University, Abu Dhabi Campus, UAE
| | - Ahmad Mohammad Al-Smadi
- Department of Computer Science, Al-Balqa Applied University, Ajloun University College, Jordan
| | - Sultan Almotairi
- Faculty of Community College, Majmaah University, Al Majma'ah, Saudi Arabia
| |
Collapse
|
9
|
Raihan M, Hassan MM, Hasan T, Bulbul AAM, Hasan MK, Hossain MS, Roy DS, Awal MA. Development of a Smartphone-Based Expert System for COVID-19 Risk Prediction at Early Stage. Bioengineering (Basel) 2022; 9:bioengineering9070281. [PMID: 35877332 PMCID: PMC9311761 DOI: 10.3390/bioengineering9070281] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 06/15/2022] [Accepted: 06/23/2022] [Indexed: 01/03/2023] Open
Abstract
COVID-19 has imposed many challenges and barriers on traditional healthcare systems due to the high risk of being infected by the coronavirus. Modern electronic devices like smartphones with information technology can play an essential role in handling the current pandemic by contributing to different telemedical services. This study has focused on determining the presence of this virus by employing smartphone technology, as it is available to a large number of people. A publicly available COVID-19 dataset consisting of 33 features has been utilized to develop the aimed model, which can be collected from an in-house facility. The chosen dataset has 2.82% positive and 97.18% negative samples, demonstrating a high imbalance of class populations. The Adaptive Synthetic (ADASYN) has been applied to overcome the class imbalance problem with imbalanced data. Ten optimal features are chosen from the given 33 features, employing two different feature selection algorithms, such as K Best and recursive feature elimination methods. Mainly, three classification schemes, Random Forest (RF), eXtreme Gradient Boosting (XGB), and Support Vector Machine (SVM), have been applied for the ablation studies, where the accuracy from the XGB, RF, and SVM classifiers achieved 97.91%, 97.81%, and 73.37%, respectively. As the XGB algorithm confers the best results, it has been implemented in designing the Android operating system base and web applications. By analyzing 10 users’ questionnaires, the developed expert system can predict the presence of COVID-19 in the human body of the primary suspect. The preprocessed data and codes are available on the GitHub repository.
Collapse
Affiliation(s)
- M. Raihan
- Department of Computer Science and Engineering, North Western University, Khulna 9100, Bangladesh; (M.R.); (M.M.H.); (T.H.)
| | - Md. Mehedi Hassan
- Department of Computer Science and Engineering, North Western University, Khulna 9100, Bangladesh; (M.R.); (M.M.H.); (T.H.)
| | - Towhid Hasan
- Department of Computer Science and Engineering, North Western University, Khulna 9100, Bangladesh; (M.R.); (M.M.H.); (T.H.)
| | - Abdullah Al-Mamun Bulbul
- Electronics and Communication Engineering Discipline, Khulna University, Khulna 9208, Bangladesh;
| | - Md. Kamrul Hasan
- Department of Electrical & Electronic Engineering, Khulna University of Engineering & Technology, Khulna 9203, Bangladesh;
| | - Md. Shahadat Hossain
- Department of Quantitative Sciences, International University of Business Agriculture and Technology, Dhaka 1230, Bangladesh;
| | - Dipa Shuvo Roy
- Department of Information Science & Engineering, Visvesvaraya Technological University, Jnana Sangama, VTU Main Rd., Machhe, Belagavi 590018, India;
| | - Md. Abdul Awal
- Electronics and Communication Engineering Discipline, Khulna University, Khulna 9208, Bangladesh;
- Correspondence: ; Tel.: +880-178-619-6913
| |
Collapse
|