1
|
AlRuwaili R, Al-Kuraishy HM, Alruwaili M, Khalifa AK, Alexiou A, Papadakis M, Saad HM, Batiha GES. The potential therapeutic effect of phosphodiesterase 5 inhibitors in the acute ischemic stroke (AIS). Mol Cell Biochem 2024; 479:1267-1278. [PMID: 37395897 PMCID: PMC11116240 DOI: 10.1007/s11010-023-04793-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 06/16/2023] [Indexed: 07/04/2023]
Abstract
Acute ischemic stroke (AIS) is a focal neurological disorder that accounts for 85% of all stroke types, due to occlusion of cerebral arteries by thrombosis and emboli. AIS is also developed due to cerebral hemodynamic abnormality. AIS is associated with the development of neuroinflammation which increases the severity of AIS. Phosphodiesterase enzyme (PDEs) inhibitors have neuro-restorative and neuroprotective effects against the development of AIS through modulation of the cerebral cyclic adenosine monophosphate (cAMP)/cyclic guanosine monophosphate (cGMP)/nitric oxide (NO) pathway. PDE5 inhibitors through mitigation of neuroinflammation may decrease the risk of long-term AIS-induced complications. PDE5 inhibitors may affect the hemodynamic properties and coagulation pathway which are associated with thrombotic complications in AIS. PDE5 inhibitors reduce activation of the pro-coagulant pathway and improve the microcirculatory level in patients with hemodynamic disturbances in AIS. PDE5 inhibitors mainly tadalafil and sildenafil improve clinical outcomes in AIS patients through the regulation of cerebral perfusion and cerebral blood flow (CBF). PDE5 inhibitors reduced thrombomodulin, P-selectin, and tissue plasminogen activator. Herein, PDE5 inhibitors may reduce activation of the pro-coagulant pathway and improve the microcirculatory level in patients with hemodynamic disturbances in AIS. In conclusion, PDE5 inhibitors may have potential roles in the management of AIS through modulation of CBF, cAMP/cGMP/NO pathway, neuroinflammation, and inflammatory signaling pathways. Preclinical and clinical studies are recommended in this regard.
Collapse
Affiliation(s)
- Raed AlRuwaili
- Department of Internal Medicine, College of Medicine, Jouf University, Sakaka, Saudi Arabia
| | - Hayder M Al-Kuraishy
- Department of Clinical Pharmacology and Medicine, College of Medicine, ALmustansiriyia University, Baghdad, Iraq
| | - Mubarak Alruwaili
- Department of Internal Medicine, College of Medicine, Jouf University, Sakaka, Saudi Arabia
| | - Amira Karam Khalifa
- Department of Medical Pharmacology, Kasr El-Ainy School of Medicine, Cairo University, El Manial, Cairo, 11562, Egypt
- Lecturer of Medical Pharmacology, Nahda Faculty of Medicine, Beni Suef, Egypt
| | - Athanasios Alexiou
- Department of Science and Engineering, Novel Global Community Educational Foundation, Hebersham, NSW, 2770, Australia
- AFNP Med, 1030, Vienna, Austria
| | - Marios Papadakis
- Department of Surgery II, University Hospital Witten-Herdecke, University of Witten-Herdecke, Heusnerstrasse 40, 42283, Wuppertal, Germany.
| | - Hebatallah M Saad
- Department of Pathology, Faculty of Veterinary Medicine, Matrouh University, Marsa Matrouh, 51744, Egypt
| | - Gaber El-Saber Batiha
- Department of Pharmacology and Therapeutics, Faculty of Veterinary Medicine, Damanhour University, Damanhour, 22511, AlBeheira, Egypt
| |
Collapse
|
2
|
Yang F, Xie T, Hu Z, Chu Z, Lu H, Wu Q, Qin D, Sun S, Luo Z, Luo F. Exploration on anti-hypoxia properties of peptides: a review. Crit Rev Food Sci Nutr 2023; 65:1290-1305. [PMID: 38116946 DOI: 10.1080/10408398.2023.2291824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2023]
Abstract
Peptides are important components of human nutrition and health, and considered as safe, nontoxic, and easily absorbed potential drugs. Anti-hypoxia peptides are a kind of peptides that can prevent hypoxia or hypoxia damage. In this paper, the sources, preparations, and molecular mechanisms of anti-hypoxia peptides were systemically reviewed. The combination of bioinformatics, chemical synthesis, enzymatic hydrolysis, and microbial fermentation are recommended for efficient productions of anti-hypoxic peptides. The mechanisms of anti-hypoxic peptides include interference with glycolytic process and HIF-1α pathway, mitochondrial apoptosis, and inflammatory response. In addition, bioinformatics analysis, including virtual screening and molecular docking, provides an alternative or auxiliary method for exploring the potential anti-hypoxic activities and mechanisms of peptides. The potential challenges and prospects of anti-hypoxic peptides are also discussed. This paper can provide references for researchers in this field and promote further research and clinical applications of anti-hypoxic peptides in the future.
Collapse
Affiliation(s)
- Feiyan Yang
- College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan, China
| | - Tiantian Xie
- College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan, China
| | - Zuomin Hu
- College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan, China
| | - Zhongxing Chu
- College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan, China
| | - Han Lu
- College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan, China
| | - Qi Wu
- College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan, China
| | - Dandan Qin
- College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan, China
| | - Shuguo Sun
- College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan, China
| | - Zhang Luo
- College of Food Science, Tibet Agriculture & Animal Husbandry University, Nyingchi, Tibet, China
| | - Feijun Luo
- College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan, China
| |
Collapse
|
3
|
Pedroza-García KA, Calderón-Vallejo D, Quintanar JL. Neonatal Hypoxic-Ischemic Encephalopathy: Perspectives of Neuroprotective and Neuroregenerative Treatments. Neuropediatrics 2022; 53:402-417. [PMID: 36030792 DOI: 10.1055/s-0042-1755235] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
Abstract
Hypoxic-ischemic encephalopathy (HIE) is a serious condition that could have deleterious neurological outcomes, such as cerebral palsy, neuromotor disability, developmental disability, epilepsy, and sensitive or cognitive problems, and increase the risk of death in severe cases. Once HIE occurs, molecular cascades are triggered favoring the oxidative stress, excitotoxicity, and inflammation damage that promote cell death via apoptosis or necrosis. Currently, the therapeutic hypothermia is the standard of care in HIE; however, it has a small window of action and only can be used in children of more than 36 gestational weeks; for this reason, it is very important to develop new therapies to prevent the progression of the hypoxic-ischemic injury or to develop neuroregenerative therapies in severe HIE cases. The objective of this revision is to describe the emerging treatments for HIE, either preventing cell death for oxidative stress, excitotoxicity, or exacerbated inflammation, as well as describing a new therapeutic approach for neuroregeneration, such as mesenchymal stem cells, brain-derived neurotrophic factor, and gonadotropin realizing hormone agonists.
Collapse
Affiliation(s)
- Karina A Pedroza-García
- Departamento de Fisiología y Farmacología, Laboratorio de Neurofisiología, Centro de Ciencias Básicas, Universidad Autónoma de Aguascalientes, Aguascalientes, México
| | - Denisse Calderón-Vallejo
- Departamento de Fisiología y Farmacología, Laboratorio de Neurofisiología, Centro de Ciencias Básicas, Universidad Autónoma de Aguascalientes, Aguascalientes, México.,Departamento de Morfología, Centro de Ciencias Básicas, Universidad Autónoma de Aguascalientes, Aguascalientes, México
| | - J Luis Quintanar
- Departamento de Fisiología y Farmacología, Laboratorio de Neurofisiología, Centro de Ciencias Básicas, Universidad Autónoma de Aguascalientes, Aguascalientes, México
| |
Collapse
|
4
|
Jung P, Ha E, Zhang M, Fall C, Hwang M, Taylor E, Stetkevich S, Bhanot A, Wilson CG, Figueroa JD, Obenaus A, Bragg S, Tone B, Eliamani S, Holshouser B, Blood AB, Liu T. Neuroprotective role of nitric oxide inhalation and nitrite in a Neonatal Rat Model of Hypoxic-Ischemic Injury. PLoS One 2022; 17:e0268282. [PMID: 35544542 PMCID: PMC9094545 DOI: 10.1371/journal.pone.0268282] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Accepted: 04/26/2022] [Indexed: 12/01/2022] Open
Abstract
BACKGROUND There is evidence from various models of hypoxic-ischemic injury (HII) that nitric oxide (NO) is protective. We hypothesized that either inhaled NO (iNO) or nitrite would alleviate brain injury in neonatal HII via modulation of mitochondrial function. METHODS We tested the effects of iNO and nitrite on the Rice-Vannucci model of HII in 7-day-old rats. Brain mitochondria were isolated for flow cytometry, aconitase activity, electron paramagnetic resonance, and Seahorse assays. RESULTS Pretreatment of pups with iNO decreased survival in the Rice-Vannucci model of HII, while iNO administered post-insult did not. MRI analysis demonstrated that pre-HII iNO at 40 ppm and post-HII iNO at 20 ppm decreased the brain lesion sizes from 6.3±1.3% to 1.0±0.4% and 1.8±0.8%, respectively. Intraperitoneal nitrite at 0.165 μg/g improved neurobehavioral performance but was harmful at higher doses and had no effect on brain infarct size. NO reacted with complex IV at the heme a3 site, decreased the oxidative stress of mitochondria challenged with anoxia and reoxygenation, and suppressed mitochondrial oxygen respiration. CONCLUSIONS This study suggests that iNO administered following neonatal HII may be neuroprotective, possibly via its modulation of mitochondrial function.
Collapse
Affiliation(s)
- Peter Jung
- Division of Neonatology, Department of Pediatrics, Loma Linda University School of Medicine, Loma Linda, CA, United States of America
| | - Euntaik Ha
- Division of Neonatology, Department of Pediatrics, Loma Linda University School of Medicine, Loma Linda, CA, United States of America
| | - Meijuan Zhang
- Division of Neonatology, Department of Pediatrics, Loma Linda University School of Medicine, Loma Linda, CA, United States of America
| | - Carolyn Fall
- Division of Neonatology, Department of Pediatrics, Loma Linda University School of Medicine, Loma Linda, CA, United States of America
| | - Mindy Hwang
- Division of Neonatology, Department of Pediatrics, Loma Linda University School of Medicine, Loma Linda, CA, United States of America
| | - Emily Taylor
- Division of Neonatology, Department of Pediatrics, Loma Linda University School of Medicine, Loma Linda, CA, United States of America
| | - Samuel Stetkevich
- Division of Neonatology, Department of Pediatrics, Loma Linda University School of Medicine, Loma Linda, CA, United States of America
| | - Aditi Bhanot
- Division of Neonatology, Department of Pediatrics, Loma Linda University School of Medicine, Loma Linda, CA, United States of America
| | - Christopher G. Wilson
- Division of Neonatology, Department of Pediatrics, Loma Linda University School of Medicine, Loma Linda, CA, United States of America
- Center for Perinatal Biology, Loma Linda University School of Medicine, Loma Linda, CA, United States of America
| | - Johnny D. Figueroa
- Center for Health Disparities and Molecular Medicine, Loma Linda University School of Medicine, Loma Linda, CA, United States of America
| | - Andre Obenaus
- Department of Pediatrics, School of Medicine, University of California, Irvine, CA, United States of America
| | - Shannon Bragg
- Division of Neonatology, Department of Pediatrics, Loma Linda University School of Medicine, Loma Linda, CA, United States of America
| | - Beatriz Tone
- Division of Neonatology, Department of Pediatrics, Loma Linda University School of Medicine, Loma Linda, CA, United States of America
| | - Saburi Eliamani
- Center for Imaging Research, Department of Radiology, Loma Linda University School of Medicine, Loma Linda, CA, United States of America
| | - Barbara Holshouser
- Center for Imaging Research, Department of Radiology, Loma Linda University School of Medicine, Loma Linda, CA, United States of America
| | - Arlin B. Blood
- Division of Neonatology, Department of Pediatrics, Loma Linda University School of Medicine, Loma Linda, CA, United States of America
- Center for Perinatal Biology, Loma Linda University School of Medicine, Loma Linda, CA, United States of America
| | - Taiming Liu
- Division of Neonatology, Department of Pediatrics, Loma Linda University School of Medicine, Loma Linda, CA, United States of America
| |
Collapse
|
5
|
Kaloss AM, Theus MH. Leptomeningeal anastomoses: Mechanisms of pial collateral remodeling in ischemic stroke. WIREs Mech Dis 2022; 14:e1553. [PMID: 35118835 PMCID: PMC9283306 DOI: 10.1002/wsbm.1553] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 01/09/2022] [Accepted: 01/11/2022] [Indexed: 12/13/2022]
Abstract
Arterial collateralization, as determined by leptomeningeal anastomoses or pial collateral vessels, is a well‐established vital player in cerebral blood flow restoration and neurological recovery from ischemic stroke. A secondary network of cerebral collateral circulation apart from the Circle of Willis, exist as remnants of arteriole development that connect the distal arteries in the pia mater. Recent interest lies in understanding the cellular and molecular adaptations that control the growth and remodeling, or arteriogenesis, of these pre‐existing collateral vessels. New findings from both animal models and human studies of ischemic stroke suggest a multi‐factorial and complex, temporospatial interplay of endothelium, immune and vessel‐associated cell interactions may work in concert to facilitate or thwart arteriogenesis. These valuable reports may provide critical insight into potential predictors of the pial collateral response in patients with large vessel occlusion and may aid in therapeutics to enhance collateral function and improve recovery from stroke. This article is categorized under:Neurological Diseases > Molecular and Cellular Physiology
Collapse
Affiliation(s)
- Alexandra M Kaloss
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland Regional College of Veterinary Medicine, Virginia Tech, Blacksburg, Virginia, USA
| | - Michelle H Theus
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland Regional College of Veterinary Medicine, Virginia Tech, Blacksburg, Virginia, USA.,School of Neuroscience, Virginia Tech, Blacksburg, Virginia, USA.,Center for Regenerative Medicine, Virginia-Maryland Regional College of Veterinary Medicine, Virginia Tech, Blacksburg, Virginia, USA
| |
Collapse
|
6
|
Nitric oxide and the brain. Part 1: Mechanisms of regulation, transport and effects on the developing brain. Pediatr Res 2021; 89:738-745. [PMID: 32563183 DOI: 10.1038/s41390-020-1017-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 04/30/2020] [Accepted: 06/02/2020] [Indexed: 11/08/2022]
Abstract
Apart from its known actions as a pulmonary vasodilator, nitric oxide (NO) is a key signal mediator in the neonatal brain. Despite the extensive use of NO for pulmonary artery hypertension (PAH), its actions in the setting of brain hypoxia and ischemia, which co-exists with PAH in 20-30% of affected infants, are not well established. This review focuses on the mechanisms of actions of NO covering the basic, translational, and clinical evidence of its neuroprotective and neurotoxic properties. In this first part, we present the physiology of transport and delivery of NO to the brain and the regulation of cerebrovascular and systemic circulation by NO, as well the role of NO in the development of the immature brain. IMPACT: NO can be transferred from the site of production to the site of action rapidly and affects the central nervous system. Inhaled NO (iNO), a commonly used medication, can have significant effects on the neonatal brain. NO regulates the cerebrovascular and systemic circulation and plays a role in the development of the immature brain. This review describes the properties of NO under physiologic conditions and under stress. The impact of this review is that it describes the effects of NO, especially regarding the vulnerable neonatal brain, and helps understand the conditions that could contribute to neurotoxicity or neuroprotection.
Collapse
|
7
|
Charriaut-Marlangue C, Nguyen T, Bonnin P, Duy AP, Leger PL, Csaba Z, Pansiot J, Bourgeois T, Renolleau S, Baud O. Sildenafil mediates blood-flow redistribution and neuroprotection after neonatal hypoxia-ischemia. Stroke 2014; 45:850-6. [PMID: 24473179 DOI: 10.1161/strokeaha.113.003606] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND AND PURPOSE The best conceivable treatment for hypoxia-ischemia (HI) is the restoration of blood flow to the hypoxic-ischemic region(s). Our objective was to examine whether boosting NO-cGMP signaling using sildenafil citrate, a phosphodiesterase-type 5 inhibitor, could modify cerebral blood flow and reduce lesions in the developing brain. METHODS HI was induced in P7 Sprague-Dawley rats by unilateral carotid artery occlusion and hypoxia, and followed by either PBS or sildenafil. Blood-flow velocities were measured by ultrasound imaging with sequential Doppler recordings to evaluate collateral recruitment. Cell death, blood-brain barrier integrity, and glial activation were analyzed by immunohistochemistry. Motor behavior was evaluated using an open-field device adapted to neonatal animals. RESULTS Sildenafil citrate (10 mg/kg) induced collateral patency, reduced terminal dUTP nick-end labeling-positive cells, reactive astrogliosis, and macrophage/microglial activation at 72 hours and 7 days post-HI. Sildenafil also reduced the number of terminal dUTP nick-end labeling-positive endothelial cells within lesion site. Seven days after HI and sildenafil treatment, tissue loss was significantly reduced, and animals recovered motor coordination. CONCLUSIONS Our findings strongly indicate that sildenafil citrate treatment, associated with a significant increase in cerebral blood flow, reduces HI damage and improves motor locomotion in neonatal rats. Sildenafil may represent an interesting therapeutic strategy for neonatal neuroprotection.
Collapse
Affiliation(s)
- Christiane Charriaut-Marlangue
- From the Univ Paris Diderot, Sorbonne Paris Cité, INSERM U1141, Paris, France (C.C.-M., T.N., A.P.D., P.-L.L., Z.C., J.P., T.B., O.B.); PremUP Foundation, Paris, France (C.C.-M., P.-L.L., J.P., O.B.); Univ Paris Diderot, Sorbonne Paris Cité, AP-HP, Hôpital Lariboisière, Physiologie clinique - Explorations Fonctionnelles, Paris, France (P.B.); Univ Paris Diderot, Sorbonne Paris Cité, INSERM, U965, Paris, France (P.B.); UPMC, Paris Universitas, AP-HP, Hôpital Armand Trousseau, Service de Réanimation, pédiatrique, Paris, France (S.R.); and Univ Paris Diderot, Sorbonne Paris Cité, AP-HP Service de Réanimation et Pédiatrie Néonatales, Hôpital Robert Debré, Paris, France (O.B.)
| | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Charriaut-Marlangue C, Bonnin P, Gharib A, Leger PL, Villapol S, Pocard M, Gressens P, Renolleau S, Baud O. Inhaled Nitric Oxide Reduces Brain Damage by Collateral Recruitment in a Neonatal Stroke Model. Stroke 2012; 43:3078-84. [DOI: 10.1161/strokeaha.112.664243] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Background and Purpose—
We recently demonstrated that endogenous nitric oxide (NO) modulates collateral blood flow in a neonatal stroke model in rats. The inhalation of NO (iNO) has been found to be neuroprotective after ischemic brain damage in adults. Our objective was to examine whether iNO could modify cerebral blood flow during ischemia–reperfusion and reduce lesions in the developing brain.
Methods—
In vivo variations in cortical NO concentrations occurring after 20-ppm iNO exposure were analyzed using the voltammetric method in P7 rat pups. Inhaled NO-mediated blood flow velocities were measured by ultrasound imaging with sequential Doppler recordings in both internal carotid arteries and the basilar trunk under basal conditions and in a neonatal model of ischemia–reperfusion. The hemodynamic effects of iNO (5 to 80 ppm) were correlated with brain injury 48 hours after reperfusion.
Results—
Inhaled NO (20 ppm) significantly increased NO concentrations in the P7 rat cortex and compensated for the blockade of endogenous NO synthesis under normal conditions. Inhaled NO (20 ppm) during ischemia increased blood flow velocities and significantly reduced lesion volumes by 43% and cellular damage. In contrast, both 80 ppm iNO given during ischemia and 5 or 20 ppm iNO given 30 minutes after reperfusion were detrimental.
Conclusions—
Our findings strongly indicate that, with the appropriate timing, 20 ppm iNO can be transported into the P7 rat brain and mediated blood flow redistribution during ischemia leading to reduced infarct volume and cell injury.
Collapse
Affiliation(s)
- Christiane Charriaut-Marlangue
- From the University Paris Diderot, Sorbonne Paris Cité, INSERM U676, Paris, France (C.C.-M., P.-L.L., S.V., P.G., O.B.); PremUP Foundation, Paris, France (C.C.-M., P.-L.L., P.G., O.B.); University Paris Diderot, Sorbonne Paris Cité, AP-HP, Hôpital Lariboisière, Physiologie clinique–Explorations-Fonctionnelles, Paris, France (P.B.); University Paris Diderot, Sorbonne Paris Cité, INSERM, U965, Paris, France (P.B., M.P.); Faculté de Médecine Lyon Est, CarMeN Lyon-1, INSERM U1060, Lyon, France (A.G.)
| | - Philippe Bonnin
- From the University Paris Diderot, Sorbonne Paris Cité, INSERM U676, Paris, France (C.C.-M., P.-L.L., S.V., P.G., O.B.); PremUP Foundation, Paris, France (C.C.-M., P.-L.L., P.G., O.B.); University Paris Diderot, Sorbonne Paris Cité, AP-HP, Hôpital Lariboisière, Physiologie clinique–Explorations-Fonctionnelles, Paris, France (P.B.); University Paris Diderot, Sorbonne Paris Cité, INSERM, U965, Paris, France (P.B., M.P.); Faculté de Médecine Lyon Est, CarMeN Lyon-1, INSERM U1060, Lyon, France (A.G.)
| | - Abdallah Gharib
- From the University Paris Diderot, Sorbonne Paris Cité, INSERM U676, Paris, France (C.C.-M., P.-L.L., S.V., P.G., O.B.); PremUP Foundation, Paris, France (C.C.-M., P.-L.L., P.G., O.B.); University Paris Diderot, Sorbonne Paris Cité, AP-HP, Hôpital Lariboisière, Physiologie clinique–Explorations-Fonctionnelles, Paris, France (P.B.); University Paris Diderot, Sorbonne Paris Cité, INSERM, U965, Paris, France (P.B., M.P.); Faculté de Médecine Lyon Est, CarMeN Lyon-1, INSERM U1060, Lyon, France (A.G.)
| | - Pierre-Louis Leger
- From the University Paris Diderot, Sorbonne Paris Cité, INSERM U676, Paris, France (C.C.-M., P.-L.L., S.V., P.G., O.B.); PremUP Foundation, Paris, France (C.C.-M., P.-L.L., P.G., O.B.); University Paris Diderot, Sorbonne Paris Cité, AP-HP, Hôpital Lariboisière, Physiologie clinique–Explorations-Fonctionnelles, Paris, France (P.B.); University Paris Diderot, Sorbonne Paris Cité, INSERM, U965, Paris, France (P.B., M.P.); Faculté de Médecine Lyon Est, CarMeN Lyon-1, INSERM U1060, Lyon, France (A.G.)
| | - Sonia Villapol
- From the University Paris Diderot, Sorbonne Paris Cité, INSERM U676, Paris, France (C.C.-M., P.-L.L., S.V., P.G., O.B.); PremUP Foundation, Paris, France (C.C.-M., P.-L.L., P.G., O.B.); University Paris Diderot, Sorbonne Paris Cité, AP-HP, Hôpital Lariboisière, Physiologie clinique–Explorations-Fonctionnelles, Paris, France (P.B.); University Paris Diderot, Sorbonne Paris Cité, INSERM, U965, Paris, France (P.B., M.P.); Faculté de Médecine Lyon Est, CarMeN Lyon-1, INSERM U1060, Lyon, France (A.G.)
| | - Marc Pocard
- From the University Paris Diderot, Sorbonne Paris Cité, INSERM U676, Paris, France (C.C.-M., P.-L.L., S.V., P.G., O.B.); PremUP Foundation, Paris, France (C.C.-M., P.-L.L., P.G., O.B.); University Paris Diderot, Sorbonne Paris Cité, AP-HP, Hôpital Lariboisière, Physiologie clinique–Explorations-Fonctionnelles, Paris, France (P.B.); University Paris Diderot, Sorbonne Paris Cité, INSERM, U965, Paris, France (P.B., M.P.); Faculté de Médecine Lyon Est, CarMeN Lyon-1, INSERM U1060, Lyon, France (A.G.)
| | - Pierre Gressens
- From the University Paris Diderot, Sorbonne Paris Cité, INSERM U676, Paris, France (C.C.-M., P.-L.L., S.V., P.G., O.B.); PremUP Foundation, Paris, France (C.C.-M., P.-L.L., P.G., O.B.); University Paris Diderot, Sorbonne Paris Cité, AP-HP, Hôpital Lariboisière, Physiologie clinique–Explorations-Fonctionnelles, Paris, France (P.B.); University Paris Diderot, Sorbonne Paris Cité, INSERM, U965, Paris, France (P.B., M.P.); Faculté de Médecine Lyon Est, CarMeN Lyon-1, INSERM U1060, Lyon, France (A.G.)
| | - Sylvain Renolleau
- From the University Paris Diderot, Sorbonne Paris Cité, INSERM U676, Paris, France (C.C.-M., P.-L.L., S.V., P.G., O.B.); PremUP Foundation, Paris, France (C.C.-M., P.-L.L., P.G., O.B.); University Paris Diderot, Sorbonne Paris Cité, AP-HP, Hôpital Lariboisière, Physiologie clinique–Explorations-Fonctionnelles, Paris, France (P.B.); University Paris Diderot, Sorbonne Paris Cité, INSERM, U965, Paris, France (P.B., M.P.); Faculté de Médecine Lyon Est, CarMeN Lyon-1, INSERM U1060, Lyon, France (A.G.)
| | - Olivier Baud
- From the University Paris Diderot, Sorbonne Paris Cité, INSERM U676, Paris, France (C.C.-M., P.-L.L., S.V., P.G., O.B.); PremUP Foundation, Paris, France (C.C.-M., P.-L.L., P.G., O.B.); University Paris Diderot, Sorbonne Paris Cité, AP-HP, Hôpital Lariboisière, Physiologie clinique–Explorations-Fonctionnelles, Paris, France (P.B.); University Paris Diderot, Sorbonne Paris Cité, INSERM, U965, Paris, France (P.B., M.P.); Faculté de Médecine Lyon Est, CarMeN Lyon-1, INSERM U1060, Lyon, France (A.G.)
| |
Collapse
|