1
|
Ebrahimi-Koodehi S, Ghodsi FE, Mazloom J. Ni/Mn metal-organic framework decorated bacterial cellulose (Ni/Mn-MOF@BC) and nickel foam (Ni/Mn-MOF@NF) as a visible-light photocatalyst and supercapacitive electrode. Sci Rep 2023; 13:19260. [PMID: 37935728 PMCID: PMC10630428 DOI: 10.1038/s41598-023-46188-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Accepted: 10/29/2023] [Indexed: 11/09/2023] Open
Abstract
Recently, metal-organic frameworks (MOFs) and hybrids with biomaterial are broadly investigated for a variety of applications. In this work, a novel dual-phase MOF has been grown on bacterial cellulose (BC) as a biopolymer nano-fibrous film (Ni/Mn-MOF@BC), and nickel foam (Ni/Mn-MOF@NF) using a simple reflux method to explore their potential for photocatalyst and energy storage applications. The studies showed that the prepared Mn and Ni/Mn-MOFs display different structures. Besides, the growth of MOFs on BC substantially changed the morphology of the samples by reducing their micro sized scales to nanoparticles. The nanosized MOF particles grown on BC served as a visible-light photocatalytic material. Regarding the high surface area of BC and the synergistic effect of two metal ions, Ni/Mn-MOF@BC with a lower band gap demonstrates remarkable photocatalytic degradation efficiency (ca. 84% within 3 h) against methylene blue (MB) dye under visible light, and the catalyst retained 65% of its initial pollutant removal properties after four cycles of irradiation. Besides, MOF powders deposited on nickel foam have been utilized as highly capacitive electrochemical electrodes. There, Ni/Mn-MOF@NF electrode also possesses outstanding electrochemical properties, showing a specific capacitance of 2769 Fg-1 at 0.5 Ag-1, and capacity retention of 94% after 1000 cycles at 10 Ag-1.
Collapse
Affiliation(s)
- Soheila Ebrahimi-Koodehi
- Department of Physics, Faculty of Science, University of Guilan, Namjoo Avenue, Rasht, P.O. Box 413351914, Iran
| | - Farhad Esmaeili Ghodsi
- Department of Physics, Faculty of Science, University of Guilan, Namjoo Avenue, Rasht, P.O. Box 413351914, Iran.
| | - Jamal Mazloom
- Department of Physics, Faculty of Science, University of Guilan, Namjoo Avenue, Rasht, P.O. Box 413351914, Iran
| |
Collapse
|
2
|
Sun Q, Qin L, Lai C, Liu S, Chen W, Xu F, Ma D, Li Y, Qian S, Chen Z, Chen W, Ye H. Constructing functional metal-organic frameworks by ligand design for environmental applications. JOURNAL OF HAZARDOUS MATERIALS 2023; 447:130848. [PMID: 36696779 DOI: 10.1016/j.jhazmat.2023.130848] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 01/11/2023] [Accepted: 01/20/2023] [Indexed: 06/17/2023]
Abstract
Metal-organic frameworks (MOFs) with unique physical and chemical properties are composed of metal ions/clusters and organic ligands, including high porosity, large specific surface area, tunable structure and functionality, which have been widely used in chemical sensing, environmental remediation, and other fields. Organic ligands have a significant impact on the performance of MOFs. Selecting appropriate types, quantities and properties of ligands can well improve the overall performance of MOFs, which is one of the critical issues in the synthesis of MOFs. This article provides a comprehensive review of ligand design strategies for functional MOFs from the number of different types of organic ligands. Single-, dual- and multi-ligand design strategies are systematically presented. The latest advances of these functional MOFs in environmental applications, including pollutant sensing, pollutant separation, and pollutant degradation are further expounded. Furthermore, an outlook section of providing some insights on the future research problems and prospects of functional MOFs is highlighted with the purpose of conquering current restrictions by exploring more innovative approaches.
Collapse
Affiliation(s)
- Qian Sun
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, PR China
| | - Lei Qin
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, PR China.
| | - Cui Lai
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, PR China.
| | - Shiyu Liu
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, PR China
| | - Wenjing Chen
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, PR China
| | - Fuhang Xu
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, PR China
| | - Dengsheng Ma
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, PR China
| | - Yixia Li
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, PR China
| | - Shixian Qian
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, PR China
| | - Zhexin Chen
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, PR China
| | - Wenfang Chen
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, PR China
| | - Haoyang Ye
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, PR China
| |
Collapse
|
6
|
Rojas S, Horcajada P. Metal–Organic Frameworks for the Removal of Emerging Organic Contaminants in Water. Chem Rev 2020; 120:8378-8415. [DOI: 10.1021/acs.chemrev.9b00797] [Citation(s) in RCA: 392] [Impact Index Per Article: 78.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Sara Rojas
- Advanced Porous Materials Unit, IMDEA Energy Institute, Av. Ramón de la Sagra 3, 28935 Móstoles, Madrid, Spain
| | - Patricia Horcajada
- Advanced Porous Materials Unit, IMDEA Energy Institute, Av. Ramón de la Sagra 3, 28935 Móstoles, Madrid, Spain
| |
Collapse
|
8
|
Yao J, Liu YE, Yang LB, Dou AN, Hou CF, Xu QQ, Huang B, Zhu AX. Novel alkaline earth metal–organic frameworks with thiophene groups for selective detection of Fe 3+. CrystEngComm 2020. [DOI: 10.1039/d0ce00990c] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
This work demonstrates that the alkaline earth ion radii play an important role in coordination numbers and topologies for constructing MOFs, and these MOFs can be used as fast-response fluorescence sensors for the detection of Fe3+.
Collapse
Affiliation(s)
- Jun Yao
- Faculty of Chemistry and Chemical Engineering
- Yunnan Normal University
- Kunming 650500
- China
| | - Yan-E Liu
- Faculty of Chemistry and Chemical Engineering
- Yunnan Normal University
- Kunming 650500
- China
| | - Li-Bo Yang
- Faculty of Chemistry and Chemical Engineering
- Yunnan Normal University
- Kunming 650500
- China
| | - Ai-Na Dou
- Faculty of Chemistry and Chemical Engineering
- Yunnan Normal University
- Kunming 650500
- China
| | - Cheng-Fu Hou
- Faculty of Chemistry and Chemical Engineering
- Yunnan Normal University
- Kunming 650500
- China
| | - Quan-Qing Xu
- Faculty of Chemistry and Chemical Engineering
- Yunnan Normal University
- Kunming 650500
- China
| | - Bo Huang
- Faculty of Chemistry and Chemical Engineering
- Yunnan Normal University
- Kunming 650500
- China
| | - Ai-Xin Zhu
- Faculty of Chemistry and Chemical Engineering
- Yunnan Normal University
- Kunming 650500
- China
| |
Collapse
|
9
|
Lin CL, Chen YF, Qiu LJ, Zhu B, Wang X, Luo SP, Shi W, Yang TH, Lei W. Synthesis, structure and photocatalytic properties of coordination polymers based on pyrazole carboxylic acid ligands. CrystEngComm 2020. [DOI: 10.1039/d0ce01054e] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The photocatalytic activities of two novel different 2-D coordination polymers constructed from 5-hydroxy-1H-pyrazole-3-carboxylic acid ligand have been explored.
Collapse
Affiliation(s)
- Chen-Lan Lin
- School of Chemistry & Environmental Engineering
- Jiangsu University of Technology
- Changzhou 23001
- P. R. China
| | - Yan-Fei Chen
- School of Chemistry & Environmental Engineering
- Jiangsu University of Technology
- Changzhou 23001
- P. R. China
| | - Li-Juan Qiu
- School of Chemistry & Environmental Engineering
- Jiangsu University of Technology
- Changzhou 23001
- P. R. China
| | - Binglong Zhu
- School of Chemistry & Environmental Engineering
- Jiangsu University of Technology
- Changzhou 23001
- P. R. China
| | - Xin Wang
- School of Chemistry & Environmental Engineering
- Jiangsu University of Technology
- Changzhou 23001
- P. R. China
| | - Shi-Peng Luo
- School of Chemistry & Environmental Engineering
- Jiangsu University of Technology
- Changzhou 23001
- P. R. China
| | - Wenyan Shi
- School of Chemistry & Chemical Engineering
- Yancheng Insititute of Technology
- Yancheng 224051
- P. R. China
- School of Chemical Engineering
| | - Ting-Hai Yang
- School of Chemistry & Environmental Engineering
- Jiangsu University of Technology
- Changzhou 23001
- P. R. China
| | - Wu Lei
- School of Chemical Engineering
- Nanjing University of Science and Technology
- Nanjing 210094
- P. R. China
| |
Collapse
|
11
|
Yuan F, Yuan CM, Zhou CS, Qiao CF, Lu L, Ma AQ, Singh A, Kumar A. Syntheses and photocatalytic properties of three new d10-based coordination polymers: effects of metal centres and ancillary ligands. CrystEngComm 2019. [DOI: 10.1039/c9ce01325c] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Three d10-based coordination polymers with three different nitrogen-based ancillary ligands have been synthesized and their photocatalytic properties were explored in the decomposition of methyl violet.
Collapse
Affiliation(s)
- Fei Yuan
- Shaanxi Key Laboratory of Comprehensive Utilization of Tailings Resources
- College of Chemical Engineering and Modern Materials
- Shangluo University
- Shangluo 726000
- China
| | - Chun-Mei Yuan
- Shaanxi Key Laboratory of Comprehensive Utilization of Tailings Resources
- College of Chemical Engineering and Modern Materials
- Shangluo University
- Shangluo 726000
- China
| | - Chun-Sheng Zhou
- Shaanxi Key Laboratory of Comprehensive Utilization of Tailings Resources
- College of Chemical Engineering and Modern Materials
- Shangluo University
- Shangluo 726000
- China
| | - Cheng-Fang Qiao
- Shaanxi Key Laboratory of Comprehensive Utilization of Tailings Resources
- College of Chemical Engineering and Modern Materials
- Shangluo University
- Shangluo 726000
- China
| | - Lu Lu
- School of Chemistry and Environmental Engineering
- Sichuan University of Science & Engineering
- Zigong
- PR China
| | - Ai-Qing Ma
- Dongguan Key Laboratory of Drug Design and Formulation Technology
- Key Laboratory of Research and Development of New Medical Materials of Guangdong Medical University
- School of Pharmacy
- Guangdong Medical University
- Dongguan 523808
| | - Ayushi Singh
- Department of Chemistry
- Faculty of Science
- University of Lucknow
- Lucknow 226 007
- India
| | - Abhinav Kumar
- Department of Chemistry
- Faculty of Science
- University of Lucknow
- Lucknow 226 007
- India
| |
Collapse
|