1
|
Luo S, Liang S, Cui J, Guo Y, Yuan B, Xu L, Zheng R, Li J, Yang W, Luo Y. Manganese Intercalation Enabling High-Performance Aqueous Fe-VO 2 Batteries. ACS APPLIED MATERIALS & INTERFACES 2025; 17:6238-6248. [PMID: 39824750 DOI: 10.1021/acsami.4c17042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/20/2025]
Abstract
The aqueous iron ion batteries (AIIBs) are an attractive option for large-scale energy storage applications. However, the inadequate plating and stripping of Fe2+ ions underscore the need to explore more suitable cathode materials. Herein, we optimize the structure of tunnel-like VO2 nanosheets by introducing Mn2+ ion intercalation as a cathode material to enhance their performance in AIIBs. Mn2+ serves as a stabilizing pillar for VO2, which brings some oxygen vacancies to provide extra electrochemically active sites, and accelerates the reversible (de)insertion of Fe2+ ions. In addition, the density functional theory (DFT) calculations show that the introduction of Mn2+ reduces the band gap of VO2 and also decreases the electrostatic interaction between Fe2+ and VO2. Consequently, the VO2 with interlayer Mn2+ pillars (5% MVO) electrodes exhibit a remarkable capacity of 284.32 mAh g-1 at a current density of 0.1 A g-1 and demonstrate excellent cycle life, maintaining 81.7% of their capacity at 1.0 A g-1 after 600 cycles. Therefore, these results offer a promising choice for the cathode material to achieve outstanding electrochemical performance in AIIBs.
Collapse
Affiliation(s)
- Shijun Luo
- School of Electronic Engineering, North China University of Water Resources and Electric Power, Zhengzhou 450046, China
| | - Shaojia Liang
- School of Electronic Engineering, North China University of Water Resources and Electric Power, Zhengzhou 450046, China
| | - Jianyang Cui
- School of Electronic Engineering, North China University of Water Resources and Electric Power, Zhengzhou 450046, China
| | - Yan Guo
- School of Electronic Engineering, North China University of Water Resources and Electric Power, Zhengzhou 450046, China
| | - Baohe Yuan
- School of Electronic Engineering, North China University of Water Resources and Electric Power, Zhengzhou 450046, China
| | - Lei Xu
- School of Electronic Engineering, North China University of Water Resources and Electric Power, Zhengzhou 450046, China
| | - Rui Zheng
- School of Electronic Engineering, North China University of Water Resources and Electric Power, Zhengzhou 450046, China
| | - Junming Li
- School of Electronic Engineering, North China University of Water Resources and Electric Power, Zhengzhou 450046, China
| | - Wenpeng Yang
- School of Electronic Engineering, North China University of Water Resources and Electric Power, Zhengzhou 450046, China
| | - Yongsong Luo
- College of Physics and Electronic Engineering, Nanyang Normal University, Nanyang 473061, China
| |
Collapse
|
2
|
Ayub H, Jabeen U, Ahmad I, Aamir M, Ullah A, Mushtaq A, Behlil F, Javaid B, Syed A, Elgorban AM, Bahkali AH, Zairov R, Ali A. Enhanced anticancer and biological activities of environmentally friendly Ni/Cu-ZnO solid solution nanoparticles. Heliyon 2024; 10:e39912. [PMID: 39687105 PMCID: PMC11647829 DOI: 10.1016/j.heliyon.2024.e39912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Accepted: 10/27/2024] [Indexed: 12/18/2024] Open
Abstract
The study investigates the impact of incorporating Ni and Cu into the lattice of ZnO nanoparticles (NPs) to enhance their anticancer and antioxidant properties. Characterization techniques including pXRD, FTIR, UV-visible absorption spectroscopy, FESEM, and EDAX confirm the successful synthesis and structural modifications of Ni/Cu-ZnO NPs. Anticancer activity against breast cancer (MDA) and normal skin (BHK-21) cells reveals dose-dependent cytotoxicity, with Ni/Cu-ZnO NPs exhibiting higher efficacy against MDA cells while being less harmful to BHK-21 cells. Morphological studies corroborate these findings. Additionally, antioxidant assays using TAC, FRAP, and DPPH assay demonstrate the superior antioxidant activity of Ni/Cu-ZnO NPs matched to pure ZnO. Overall, the synergistic effect of Ni and Cu incorporation leads to improved therapeutic potential, making Ni/Cu-ZnO NPs promising candidates for cancer therapy and antioxidant applications. Molecular docking recreations were performed using Auto Dock Vina software to gain more insights and validate the observed biological activities of un-doped ZnO and bi-metal doped ZnO NPs, we investigated the interaction and binding affinities of pure ZnO and bimetallic metal co-doped ZnO for their antioxidant and anticancer studies. Ni/Cu-ZnO have shown good antioxidants and exhibited remarkable anticancer activities.
Collapse
Affiliation(s)
- Huma Ayub
- Department of Chemistry, Sardar Bahadur Khan Women University, Quetta, Pakistan
| | - Uzma Jabeen
- Department of Chemistry, Sardar Bahadur Khan Women University, Quetta, Pakistan
| | - Iqbal Ahmad
- Department of Chemistry, Allama Iqbal Open University, Islamabad, 44000, Pakistan
| | - Muhammad Aamir
- Materials Laboratory, Department of Chemistry, Mirpur University of Science and Technology (MUST), Mirpur, 10250, Mirpur, (AJK), Pakistan
| | - Asad Ullah
- Center for Advanced Studies in Vaccinology & Biotechnology (CASVAB), Quetta, Pakistan
| | - Ayesha Mushtaq
- Department of Biochemistry, Sardar Bahadur Khan Women University, Quetta, Pakistan
| | - Farida Behlil
- Department of Chemistry, Sardar Bahadur Khan Women University, Quetta, Pakistan
| | - Binish Javaid
- Department of Biotechnology, Mirpur University of Science and Technology (MUST), Mirpur, 10250, Mirpur, (AJK), Pakistan
| | - Asad Syed
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia
| | - Abdallah M. Elgorban
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia
| | - Ali H. Bahkali
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia
| | - Rustem Zairov
- Aleksander Butlerov Institute of Chemistry, Kazan Federal University, Kazan, 420008, 1/29 Lobachevskogo str., Russian Federation
- Arbuzov Institute of Organic and Physical Chemistry, Kazan Scientific Center, Russian Academy of Sciences, 8 Arbuzov str., 420088 Kazan, Russian Federation
| | - Asad Ali
- Energy Engineering, Division of Energy Science, Luleå University of Technology, 97187, Luleå, Sweden
| |
Collapse
|
3
|
Pereira D, Alves N, Sousa Â, Valente JFA. Metal-based approaches to fight cervical cancer. Drug Discov Today 2024; 29:104073. [PMID: 38944184 DOI: 10.1016/j.drudis.2024.104073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Revised: 06/11/2024] [Accepted: 06/25/2024] [Indexed: 07/01/2024]
Abstract
Cervical cancer (CC) is one of the leading causes of death among women worldwide. The current treatments for this cancer consist of invasive methods such as chemotherapeutic drugs, radiation, immunotherapy and surgery, which could lead to severe side effects and hinder the patient's life quality. Although metal-based therapies, including cisplatin and ruthenium-based compounds, offer promising alternatives, they lack specificity and harm healthy cells. Combining metal nanoparticles with standard approaches has demonstrated remarkable efficacy and safety in the fight against CC. Overall, this review is intended to show the latest advancements and insights into metal-based strategies, creating a promising path for more effective and safer treatments in the battle against CC.
Collapse
Affiliation(s)
- Diana Pereira
- CICS-UBI-Health Sciences Research Centre, Universidade da Beira Interior, Avenida Infante D. Henrique, 6200-506 Covilhã, Portugal; CDRSP-IPL-Centre for Rapid and Sustainable Product Development, Polytechnic Institute of Leiria, Marinha Grande, 2430-028 Leiria, Portugal
| | - Nuno Alves
- CDRSP-IPL-Centre for Rapid and Sustainable Product Development, Polytechnic Institute of Leiria, Marinha Grande, 2430-028 Leiria, Portugal
| | - Ângela Sousa
- CICS-UBI-Health Sciences Research Centre, Universidade da Beira Interior, Avenida Infante D. Henrique, 6200-506 Covilhã, Portugal.
| | - Joana F A Valente
- CDRSP-IPL-Centre for Rapid and Sustainable Product Development, Polytechnic Institute of Leiria, Marinha Grande, 2430-028 Leiria, Portugal.
| |
Collapse
|
4
|
Malode SJ, Pandiaraj S, Alodhayb A, Shetti NP. Carbon Nanomaterials for Biomedical Applications: Progress and Outlook. ACS APPLIED BIO MATERIALS 2024; 7:752-777. [PMID: 38271214 DOI: 10.1021/acsabm.3c00983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2024]
Abstract
Recent developments in nanoscale materials have found extensive use in various fields, especially in the biomedical industry. Several substantial obstacles must be overcome, particularly those related to nanostructured materials in biomedicine, before they can be used in therapeutic applications. Significant concerns in biomedicine include biological processes, adaptability, toxic effects, and nano-biointerfacial properties. Biomedical researchers have difficulty choosing suitable materials for drug carriers, cancer treatment, and antiviral uses. Carbon nanomaterials are among the various nanoparticle forms that are continually receiving interest for biomedical applications. They are suitable materials owing to their distinctive physical and chemical properties, such as electrical, high-temperature, mechanical, and optical diversification. An individualized, controlled, dependable, low-carcinogenic, target-specific drug delivery system can diagnose and treat infections in biomedical applications. The variety of carbon materials at the nanoscale is remarkable. Allotropes and other forms of the same element, carbon, are represented in nanoscale dimensions. These show promise for a wide range of applications. Carbon nanostructured materials with exceptional mechanical, electrical, and thermal properties include graphene and carbon nanotubes. They can potentially revolutionize industries, including electronics, energy, and medicine. Ongoing investigation and expansion efforts continue to unlock possibilities for these materials, making them a key player in shaping the future of advanced technology. Carbon nanostructured materials explore the potential positive effects of reducing the greenhouse effect. The current state of nanostructured materials in the biomedical sector is covered in this review, along with their synthesis techniques and potential uses.
Collapse
Affiliation(s)
- Shweta J Malode
- Center for Energy and Environment, School of Advanced Sciences, KLE Technological University, Vidyanagar, Hubballi 580031, Karnataka, India
| | - Saravanan Pandiaraj
- Department of Self-Development Skills, King Saud University, Riyadh 11451, Saudi Arabia
| | - Abdullah Alodhayb
- Department of Physics and Astronomy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Nagaraj P Shetti
- Center for Energy and Environment, School of Advanced Sciences, KLE Technological University, Vidyanagar, Hubballi 580031, Karnataka, India
- University Center for Research & Development (UCRD), Chandigarh University, Gharuan, Mohali 140413, Panjab, India
| |
Collapse
|
5
|
Long X, Zhang R, Rong R, Wu P, Chen S, Ao J, An L, Fu Y, Xie H. Adsorption Characteristics of Heavy Metals Pb 2+ and Zn 2+ by Magnetic Biochar Obtained from Modified AMD Sludge. TOXICS 2023; 11:590. [PMID: 37505556 PMCID: PMC10384315 DOI: 10.3390/toxics11070590] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Revised: 07/01/2023] [Accepted: 07/04/2023] [Indexed: 07/29/2023]
Abstract
Acid mine drainage (AMD) sludge can be used to prepare adsorbent materials for the removal of heavy metals in water, which is an effective means for its resource utilization. Magnetic modified biochar (MMB), which can be recovered by magnetic separation, was prepared from sludge generated from the carbonate rock neutralization treatment of AMD and rice straw agricultural waste. Unmodified biochar (UMB) was obtained from rice straw and chemically modified and treated by ultraviolet radiation to produce MMB. The Pb2+ and Zn2+ adsorption capacities of UMB and MMB were investigated. Simultaneously, the materials were characterized by SEM, FTIR, BET, and ZETA. The results showed that the specific surface area (130.89 m2·g-1) and pore volume (0.22 m2·g-1) of MMB were significantly increased compared to those of UMB (9.10 m2·g-1 and 0.05 m2·g-1, respectively). FTIR images showed that MMB was successfully loaded with Fe3O4. The adsorption process of Pb2+ and Zn2+ onto MMB was consistent with the Langmuir adsorption isotherm and second-order kinetic models, with maximum adsorption capacities of 329.65 mg·g-1 and 103.67 mg·g-1, respectively. In a binary system of Pb2+ and Zn2+, MMB preferentially binds Pb2+. The adsorption efficiencies of MMB reached >80% for Pb2+ and Zn2+.
Collapse
Affiliation(s)
- Xiaoting Long
- College of Resources and Environmental Engineering, Guizhou University, Guiyang 550025, China
| | - Ruixue Zhang
- College of Resources and Environmental Engineering, Guizhou University, Guiyang 550025, China
- Key Laboratory of Karst Georesources and Environment, Guizhou University, Ministry of Education, Guiyang 550025, China
- Guizhou Karst Environmental Ecosystems Observation and Research Station, Ministry of Education, Guiyang 550025, China
| | - Rong Rong
- College of Resources and Environmental Engineering, Guizhou University, Guiyang 550025, China
| | - Pan Wu
- College of Resources and Environmental Engineering, Guizhou University, Guiyang 550025, China
- Key Laboratory of Karst Georesources and Environment, Guizhou University, Ministry of Education, Guiyang 550025, China
- Guizhou Karst Environmental Ecosystems Observation and Research Station, Ministry of Education, Guiyang 550025, China
| | - Shiwan Chen
- College of Resources and Environmental Engineering, Guizhou University, Guiyang 550025, China
- Key Laboratory of Karst Georesources and Environment, Guizhou University, Ministry of Education, Guiyang 550025, China
| | - Jipei Ao
- College of Resources and Environmental Engineering, Guizhou University, Guiyang 550025, China
| | - Li An
- College of Resources and Environmental Engineering, Guizhou University, Guiyang 550025, China
| | - Yuran Fu
- College of Resources and Environmental Engineering, Guizhou University, Guiyang 550025, China
| | - Huanhuan Xie
- Guizhou Geological and Mineral Foundation Engineering Co., Ltd., Guiyang 550081, China
| |
Collapse
|
6
|
Zhang X, Sathiyaseelan A, Naveen KV, Lu Y, Wang MH. Research progress in green synthesis of manganese and manganese oxide nanoparticles in biomedical and environmental applications - A review. CHEMOSPHERE 2023:139312. [PMID: 37354955 DOI: 10.1016/j.chemosphere.2023.139312] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 06/19/2023] [Accepted: 06/21/2023] [Indexed: 06/26/2023]
Abstract
Nanomaterials and nanotechnology have this unassailable position for environmental remediation and medicine. Currently, global environmental pollution and public health problems are increasing and need to be urgently addressed. Manganese (Mn) is one of the essential metal elements for plants and animals, it is necessary to integrate with nanotechnology. Mn and Mn oxide (MnO) nanoparticles (NPs) have applications in dye degradation, biomedicine, electrochemical sensors, plant and animal growth, and catalysis. However, the current research is limited, especially in terms of optimal synthesis of Mn and MnO NPs, separation, purification conditions, and the development of potential application areas is too basic and do not support by in-depth studies. Hence, this review comprehensively discusses the classification, green synthesis methods, and applications of Mn and MnO NPs in biomedical, environmental, and other fields and gives a perspective for the future.
Collapse
Affiliation(s)
- Xin Zhang
- Department of Bio-Health Convergence, Kangwon National University, Chuncheon, 24341, Republic of Korea.
| | - Anbazhagan Sathiyaseelan
- Department of Bio-Health Convergence, Kangwon National University, Chuncheon, 24341, Republic of Korea.
| | - Kumar Vishven Naveen
- Department of Bio-Health Convergence, Kangwon National University, Chuncheon, 24341, Republic of Korea.
| | - Yuting Lu
- Department of Bio-Health Convergence, Kangwon National University, Chuncheon, 24341, Republic of Korea.
| | - Myeong-Hyeon Wang
- Department of Bio-Health Convergence, Kangwon National University, Chuncheon, 24341, Republic of Korea.
| |
Collapse
|
7
|
Rabiee N, Ahmadi S, Iravani S, Varma RS. Natural resources for sustainable synthesis of nanomaterials with anticancer applications: A move toward green nanomedicine. ENVIRONMENTAL RESEARCH 2023; 216:114803. [PMID: 36379236 DOI: 10.1016/j.envres.2022.114803] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 11/09/2022] [Accepted: 11/11/2022] [Indexed: 06/16/2023]
Abstract
Today, researchers have focused on the application of environmentally-benign and sustainable micro- and nanosystems for drug delivery and cancer therapy. Compared to conventional chemotherapeutics, advanced micro- and nanosystems designed by applying abundant, natural, and renewable feedstocks have shown biodegradability, biocompatibility, and low toxicity advantages. However, important aspects of toxicological assessments, clinical translational studies, and suitable functionalization/modification still need to be addressed. Herein, the benefits and challenges of green nanomedicine in cancer nanotherapy and targeted drug delivery are cogitated using nanomaterials designed by exploiting natural and renewable resources. The application of nanomaterials accessed from renewable natural resources, comprising metallic nanomaterials, carbon-based nanomaterials, metal-organic frameworks, natural-derived nanomaterials, etc. for targeted anticancer drug delivery and cancer nanotherapy are deliberated, with emphasis on important limitations/challenges and future perspectives.
Collapse
Affiliation(s)
- Navid Rabiee
- School of Engineering, Macquarie University, Sydney, New South Wales, 2109, Australia; Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-ro, Nam-gu, Pohang, Gyeongbuk, 37673, South Korea.
| | - Sepideh Ahmadi
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, 19857-17443, Iran; Cellular and Molecular Biology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, 19857-17443, Iran
| | - Siavash Iravani
- Faculty of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, 81746-73461, Isfahan, Iran.
| | - Rajender S Varma
- Regional Centre of Advanced Technologies and Materials, Czech Advanced Technology and Research Institute, Palacký University in Olomouc, Šlechtitelů 27, 783 71, Olomouc, Czech Republic.
| |
Collapse
|
8
|
Cation Incorporation and Synergistic Effects on the Characteristics of Sulfur-Doped Manganese Ferrites S@Mn(Fe 2O 4) Nanoparticles for Boosted Sunlight-Driven Photocatalysis. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27227677. [PMID: 36431778 PMCID: PMC9693046 DOI: 10.3390/molecules27227677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 10/21/2022] [Accepted: 11/02/2022] [Indexed: 11/09/2022]
Abstract
In the present work, sulfur-doped manganese ferrites S@Mn(Fe2O4) nanoparticles were prepared by using the sol-gel and citrate method. The concentration of sulfur varied from 1 to 7% by adding Na2S. The samples were characterized by performing Fourier Transformed Infrared Spectroscopy (FTIR), Energy Dispersive X-ray (EDX), X-ray diffraction (XRD), Scanning Electron Microscopy (SEM) and Ultraviolet-Visible spectroscopy (UV-Visible). The synthesized sulfur-doped manganese ferrites were applied to evaluate the photocatalytic degradation of the dyes. Further, the degradation studies revealed that the nanoparticles successfully degraded the methylene blue dye by adding a 0.006 g dose under the sunlight. The sulfur-doped manganese ferrite nanoparticles containing 3% sulfur completely degraded the dye in 2 h and 15 min in aqueous medium. Thus, the ferrite nanoparticles were found to be promising photocatalyst materials and could be employed for the degradation of other dyes in the future.
Collapse
|
9
|
Enhanced sunlight-absorption of Fe2O3 covered by PANI for the photodegradation of organic pollutants and antimicrobial inactivation. ADV POWDER TECHNOL 2022. [DOI: 10.1016/j.apt.2022.103708] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
10
|
Kowalczyk T, Merecz-Sadowska A, Rijo P, Mori M, Hatziantoniou S, Górski K, Szemraj J, Piekarski J, Śliwiński T, Bijak M, Sitarek P. Hidden in Plants-A Review of the Anticancer Potential of the Solanaceae Family in In Vitro and In Vivo Studies. Cancers (Basel) 2022; 14:1455. [PMID: 35326606 PMCID: PMC8946528 DOI: 10.3390/cancers14061455] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 03/01/2022] [Accepted: 03/09/2022] [Indexed: 02/04/2023] Open
Abstract
Many of the anticancer agents that are currently in use demonstrate severe side effects and encounter increasing resistance from the target cancer cells. Thus, despite significant advances in cancer therapy in recent decades, there is still a need to discover and develop new, alternative anticancer agents. The plant kingdom contains a range of phytochemicals that play important roles in the prevention and treatment of many diseases. The Solanaceae family is widely used in the treatment of various diseases, including cancer, due to its bioactive ingredient content. The purpose of this literature review is to highlight the antitumour activity of Solanaceae extracts-single isolated compounds and nanoparticles with extracts-and their synergistic effect with chemotherapeutic agents in various in vitro and in vivo cancer models. In addition, the biological properties of many plants of the Solanaceae family have not yet been investigated, which represents a challenge and an opportunity for future anticancer therapy.
Collapse
Affiliation(s)
- Tomasz Kowalczyk
- Department of Molecular Biotechnology and Genetics, University of Lodz, 90-237 Lodz, Poland;
| | - Anna Merecz-Sadowska
- Department of Computer Science in Economics, University of Lodz, 90-214 Lodz, Poland;
| | - Patricia Rijo
- CBIOS—Research Center for Biosciences & Health Technologies, Universidade Lusófona de Humanidades e Tecnologias, 1749-024 Lisbon, Portugal;
- iMed.ULisboa—Research Institute for Medicines, Faculdade de Farmácia da Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisbon, Portugal
| | - Mattia Mori
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, 53100 Siena, Italy;
| | - Sophia Hatziantoniou
- Laboratory of Pharmaceutical Technology, Department of Pharmacy, School of Health Sciences, University of Patras, 26504 Patras, Greece;
| | - Karol Górski
- Department of Clinical Pharmacology, Medical University of Lodz, 90-151 Lodz, Poland;
| | - Janusz Szemraj
- Department of Medical Biochemistry, Medical University of Lodz, 92-215 Lodz, Poland;
| | - Janusz Piekarski
- Department of Surgical Oncology, Chair of Oncology, Medical University in Lodz, Nicolaus Copernicus Multidisciplinary Centre for Oncology and Traumatology, 93-513 Lodz, Poland;
| | - Tomasz Śliwiński
- Laboratory of Medical Genetics, Faculty of Biology and Environmental Protection, University of Lodz, 90-236 Lodz, Poland;
| | - Michał Bijak
- Biohazard Prevention Centre, Faculty of Biology and Environmental Protection, University of Lodz, 90-236 Lodz, Poland;
| | - Przemysław Sitarek
- Department of Biology and Pharmaceutical Botany, Medical University of Lodz, 90-151 Lodz, Poland
| |
Collapse
|
11
|
Campos EVR, Pereira AES, de Oliveira JL, Carvalho LB, Guilger-Casagrande M, de Lima R, Fraceto LF. How can nanotechnology help to combat COVID-19? Opportunities and urgent need. J Nanobiotechnology 2020; 18:125. [PMID: 32891146 PMCID: PMC7474329 DOI: 10.1186/s12951-020-00685-4] [Citation(s) in RCA: 116] [Impact Index Per Article: 23.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Accepted: 08/28/2020] [Indexed: 12/11/2022] Open
Abstract
Incidents of viral outbreaks have increased at an alarming rate over the past decades. The most recent human coronavirus known as COVID-19 (SARS-CoV-2) has already spread around the world and shown R0 values from 2.2 to 2.68. However, the ratio between mortality and number of infections seems to be lower in this case in comparison to other human coronaviruses (such as severe acute respiratory syndrome coronavirus (SARS-CoV) and Middle East respiratory syndrome coronavirus (MERS-CoV)). These outbreaks have tested the limits of healthcare systems and have posed serious questions about management using conventional therapies and diagnostic tools. In this regard, the use of nanotechnology offers new opportunities for the development of novel strategies in terms of prevention, diagnosis and treatment of COVID-19 and other viral infections. In this review, we discuss the use of nanotechnology for COVID-19 virus management by the development of nano-based materials, such as disinfectants, personal protective equipment, diagnostic systems and nanocarrier systems, for treatments and vaccine development, as well as the challenges and drawbacks that need addressing.
Collapse
Affiliation(s)
- Estefânia V R Campos
- Human and Natural Sciences Center, Federal University of ABC. Av. dos Estados, 5001. Bl. A, T3 Lab. 503-3. Bangú, Santo André, SP, Brazil
| | - Anderson E S Pereira
- São Paulo State University-UNESP, Institute of Science and Technology, Sorocaba, SP, Brazil
| | | | | | | | - Renata de Lima
- Universidade de Sorocaba, Rodovia Raposo Tavares km 92,5, Sorocaba, São Paulo, Brazil.
| | | |
Collapse
|