Li Y, Zhang M, Wang Y, Guan L, Zhao D, Hao X, Guo Y. A Zn(II) Coordination Polymer for Fluorescent Turn-Off Selective Sensing of Heavy Metal Cation and Toxic Inorganic Anions.
Molecules 2024;
29:2943. [PMID:
38931007 PMCID:
PMC11206703 DOI:
10.3390/molecules29122943]
[Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 06/15/2024] [Accepted: 06/18/2024] [Indexed: 06/28/2024] Open
Abstract
A novel coordination polymer [Zn(atyha)2]n (1) (Hatyha = 2-(2-aminothiazole-4-yl)-2- hydroxyiminoacetic acid) was constructed by hydrothermal reaction of Zn2+ with Hatyha ligand. CP 1 exhibits a 2D (4,4)-connected topological framework with Schläfli symbol of {44·62}, where atyha- anions serve as tridentate ligands, bridging with Zn2+ through carboxylate, thiazole and oxime groups. CP 1 displays a strong ligand-based photoluminescence at 390 nm in the solid state, and remains significantly structurally stable in water. Interestingly, it can be utilized as a fluorescent probe for selective and sensitive sensing of Fe3+, Cr2O72- and MnO4- through the fluorescent turn-off effect with limit of detection (LOD) of 3.66 × 10-6, 2.38 × 10-5 and 2.94 × 10-6 M, respectively. Moreover, the efficient recyclability for detection of Fe3+ and Cr2O72- is better than that for MnO4-. The mechanisms of fluorescent quenching involve reversible overlap of UV-Vis absorption bands of the analytes (Fe3+, Cr2O72- and MnO4-) with fluorescence excitation and emission bands for CP 1, respectively.
Collapse