1
|
Wang Y, Zhao L, Cai X, Chen Y, Xu J, Zhang L, Lin L, Dai X, Jiang Y, Liao J, Zhang Y. Construction of site-specific magnetic Z-scheme CdS/Fe 3O 4@N-doped graphene aerogel microtube/N-doped TiO 2 with porous structure: enhanced catalytic performance in photo-Fenton reaction. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:15091-15104. [PMID: 38286930 DOI: 10.1007/s11356-024-32190-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 01/21/2024] [Indexed: 01/31/2024]
Abstract
The development of composite photocatalysts with high charge transfer efficiency, great visible light absorption, and quick recovery has aroused the interest of many researchers. Herein, based on the hydrothermal assisted vacuum freeze drying method, CdS, Fe3O4, and N-TiO2 were, respectively, fixed in the inner, middle, and outer layers of nitrogen-doped graphene aerogel for preparation of the site-specific magnetic porous Z-scheme CdS/Fe3O4@N-doped graphene aerogel microtube/N-doped TiO2 (CdS/Fe3O4@NGAM/N-TiO2) photocatalyst. For the composite, Fe3O4@NGAM carrier with porous and tubular structure not only helps the recycle and reactants/productions mass transport in the photocatalytic process but also ensures the well-steered transfer of electrons and holes from CdS and N-TiO2 in the Z-type heterojunction system, greatly improving the separation of photogenerated carriers. Besides, Fe3O4 can also work as a Fenton catalyst to activate hydrogen peroxide which is generated in situ by CdS. Thus, the CdS/Fe3O4@NGAM/N-TiO2 composite presents excellent degradation efficiencies towards methyl orange ((MO) 98% removal rate within 50 min), bisphenol A ((BPA) 96% removal rate within 50 min), tetracycline hydrochloride ((TCH) 96% removal rate within 120 min) and strong stabilities after 6 cycles. The free radical removal experiments show that ·O2- and ·OH are the main active substances of catalysis, which further confirms the synergistic effect of photocatalysis and Fenton catalysis.
Collapse
Affiliation(s)
- Ying Wang
- College of Water Conservancy and Hydropower Engineering, Sichuan Agricultural University, Yaan, 625014, China
| | - Lirong Zhao
- College of Science, Sichuan Agricultural University, Yaan, 625014, China
| | - Xingyu Cai
- College of Science, Sichuan Agricultural University, Yaan, 625014, China
| | - Yuexing Chen
- Schulich Faculty of Chemistry, Technion-Israel Institute of Technology, 32000, Haifa, Israel
| | - Jingyin Xu
- College of Science, Sichuan Agricultural University, Yaan, 625014, China
| | - Li Zhang
- College of Science, Sichuan Agricultural University, Yaan, 625014, China
| | - Li Lin
- College of Science, Sichuan Agricultural University, Yaan, 625014, China
| | - Xianxiang Dai
- College of Science, Sichuan Agricultural University, Yaan, 625014, China
| | - Yuanyuan Jiang
- College of Science, Sichuan Agricultural University, Yaan, 625014, China
| | - Jinqiu Liao
- College of Life Science, Sichuan Agricultural University, Yaan, 625014, China
| | - Yunsong Zhang
- College of Science, Sichuan Agricultural University, Yaan, 625014, China.
| |
Collapse
|
2
|
Mousa HM, Sayed MM, Mohamed IMA, El-sadek MSA, Nasr EA, Mohamed MA, Taha M. Engineering of Multifunctional Nanocomposite Membranes for Wastewater Treatment: Oil/Water Separation and Dye Degradation. MEMBRANES 2023; 13:810. [PMID: 37887982 PMCID: PMC10608485 DOI: 10.3390/membranes13100810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 09/22/2023] [Accepted: 09/23/2023] [Indexed: 10/28/2023]
Abstract
Multifunctional membrane technology has gained tremendous attention in wastewater treatment, including oil/water separation and photocatalytic activity. In the present study, a multifunctional composite nanofiber membrane is capable of removing dyes and separating oil from wastewater, as well as having antibacterial activity. The composite nanofiber membrane is composed of cellulose acetate (CA) filled with zinc oxide nanoparticles (ZnO NPs) in a polymer matrix and dipped into a solution of titanium dioxide nanoparticles (TiO2 NPs). Membrane characterization was performed using transmission electron microscopy (TEM), field emission scanning electron microscopy (FESEM), and Fourier transform infrared (FTIR), and water contact angle (WCA) studies were utilized to evaluate the introduced membranes. Results showed that membranes have adequate wettability for the separation process and antibacterial activity, which is beneficial for water disinfection from living organisms. A remarkable result of the membranes' analysis was that methylene blue (MB) dye removal occurred through the photocatalysis process with an efficiency of ~20%. Additionally, it exhibits a high separation efficiency of 45% for removing oil from a mixture of oil-water and water flux of 20.7 L.m-2 h-1 after 1 h. The developed membranes have multifunctional properties and are expected to provide numerous merits for treating complex wastewater.
Collapse
Affiliation(s)
- Hamouda M Mousa
- Mechanical Engineering Department, Faculty of Engineering, South Valley University, Qena 83523, Egypt
- Faculty of Technological Industry and Energy, Thebes Technological University, Thebes, Luxor 85863, Egypt
| | - Mostafa M. Sayed
- Department of Mechanical Design and Materials, Faculty of Energy Engineering, Aswan University, Aswan 81542, Egypt
| | | | - M. S. Abd El-sadek
- Nanomaterials Lab., Physics Department, Faculty of Science, South Valley University, Qena 83523, Egypt;
- Physics Department, Faculty of Science, Galala University, Galala, Suez 43511, Egypt
| | - Emad Abouel Nasr
- Department of Industrial Engineering, College of Engineering, King Saud University, P.O. Box 800, Riyadh 11421, Saudi Arabia;
| | - Mohamed A. Mohamed
- School of Engineering, University of South Wales, Pontypridd CF37 1DL, UK;
| | - Mohamed Taha
- Mechanical Engineering Department, College of Engineering and Technology, Arab Academy for Science, Technology and Maritime Transport, Sadat Road, Aswan 81511, Egypt;
| |
Collapse
|
3
|
Nadikatla SK, Chintada VB, Gurugubelli TR, Koutavarapu R. Review of Recent Developments in the Fabrication of ZnO/CdS Heterostructure Photocatalysts for Degradation of Organic Pollutants and Hydrogen Production. Molecules 2023; 28:molecules28114277. [PMID: 37298752 DOI: 10.3390/molecules28114277] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 05/17/2023] [Accepted: 05/22/2023] [Indexed: 06/12/2023] Open
Abstract
Researchers have recently paid a lot of attention to semiconductor photocatalysts, especially ZnO-based heterostructures. Due to its availability, robustness, and biocompatibility, ZnO is a widely researched material in the fields of photocatalysis and energy storage. It is also environmentally beneficial. However, the wide bandgap energy and quick recombination of the photoinduced electron-hole pairs of ZnO limit its practical utility. To address these issues, many techniques have been used, such as the doping of metal ions and the creation of binary or ternary composites. Recent studies showed that ZnO/CdS heterostructures outperformed bare ZnO and CdS nanostructures in terms of photocatalytic performance when exposed to visible light. This review largely concentrated on the ZnO/CdS heterostructure production process and its possible applications including the degradation of organic pollutants and hydrogen evaluation. The importance of synthesis techniques such as bandgap engineering and controlled morphology was highlighted. In addition, the prospective uses of ZnO/CdS heterostructures in the realm of photocatalysis and the conceivable photodegradation mechanism were examined. Lastly, ZnO/CdS heterostructures' challenges and prospects for the future have been discussed.
Collapse
Affiliation(s)
- Santhosh Kumar Nadikatla
- Chemistry Division, Department of Basic Sciences and Humanities, GMR Institute of Technology, Rajam 532127, Andhra Pradesh, India
| | - Vinod Babu Chintada
- Department of Mechanical Engineering, GMR Institute of Technology, Rajam 532127, Andhra Pradesh, India
| | - Thirumala Rao Gurugubelli
- Physics Division, Department of Basic Sciences and Humanities, GMR Institute of Technology, Rajam 532127, Andhra Pradesh, India
| | - Ravindranadh Koutavarapu
- Department of Robotics Engineering, College of Mechanical and IT Engineering, Yeungnam University, Gyeongsan 38541, Republic of Korea
| |
Collapse
|
4
|
Qi C, Guo X, Lu B, Ruan B, Li P. Enhanced Photocatalytic Performance of a ZnO/CdS Heterostructure for Hydrogen Production and Mixed Dye Degradation. ChemistrySelect 2023. [DOI: 10.1002/slct.202203227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Caili Qi
- Hebei Key Laboratory of Inorganic Nanomaterials College of Chemistry and Material Science Hebei Normal University 050024 Shijiazhuang China
| | - Xiaojing Guo
- Hebei Key Laboratory of Inorganic Nanomaterials College of Chemistry and Material Science Hebei Normal University 050024 Shijiazhuang China
| | - Bin Lu
- Hebei Key Laboratory of Inorganic Nanomaterials College of Chemistry and Material Science Hebei Normal University 050024 Shijiazhuang China
| | - Bei Ruan
- Hebei Key Laboratory of Inorganic Nanomaterials College of Chemistry and Material Science Hebei Normal University 050024 Shijiazhuang China
| | - Ping Li
- Hebei Key Laboratory of Inorganic Nanomaterials College of Chemistry and Material Science Hebei Normal University 050024 Shijiazhuang China
| |
Collapse
|
5
|
Guo X, Liu X, Yan J, Liu SF. Heterointerface Engineering of ZnO/CdS Heterostructures through ZnS Layers for Photocatalytic Water Splitting. Chemistry 2022; 28:e202202662. [PMID: 36323635 DOI: 10.1002/chem.202202662] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Indexed: 11/06/2022]
Abstract
Solar-driven water splitting to produce clean and renewable hydrogen offers a green strategy to address the energy crisis and environmental pollution. Heterostructure catalysts are receiving increasing attention for photocatalytic hydrogen generation. ZnO/ZnS/CdS and ZnO/CdS heterostructures have been successfully designed and prepared according to two different strategies. By introducing a heterointerface layer of ZnS between ZnO and CdS, a Z scheme charge-transfer channel was promoted and achieved superior photocatalytic performance. A highest hydrogen generation rate of 156.7 μmol g-1 h-1 was achieved by precise control of the thickness of the heterointerface layer and of the CdS shell. These findings demonstrated that heterostructures are promising catalysts for solar-driven water splitting, and that heterointerface engineering is an effective way to improve the photocatalytic properties of heterostructures.
Collapse
Affiliation(s)
- Xu Guo
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, Shaanxi Key Laboratory for Advanced Energy Devices, Shaanxi Engineering Lab for Advanced Energy Technology, School of Materials Science and Engineering, Shaanxi Normal University, Xi'an, 710119, P. R. China
| | - Xing Liu
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, Shaanxi Key Laboratory for Advanced Energy Devices, Shaanxi Engineering Lab for Advanced Energy Technology, School of Materials Science and Engineering, Shaanxi Normal University, Xi'an, 710119, P. R. China
| | - Junqing Yan
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, Shaanxi Key Laboratory for Advanced Energy Devices, Shaanxi Engineering Lab for Advanced Energy Technology, School of Materials Science and Engineering, Shaanxi Normal University, Xi'an, 710119, P. R. China
| | - Shengzhong Frank Liu
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, Shaanxi Key Laboratory for Advanced Energy Devices, Shaanxi Engineering Lab for Advanced Energy Technology, School of Materials Science and Engineering, Shaanxi Normal University, Xi'an, 710119, P. R. China.,iChem, Dalian National Laboratory for Clean Energy, Chinese Academy of Sciences, Dalian, 116023, P. R. China
| |
Collapse
|