1
|
Makarios Paul SP, Abisha NS, Duraisamy P, Selvarengan P, Abiram A. Electric field-induced modulation of VX nerve agent binding on h-BN nanotubes: a computational perspective. J Mol Model 2025; 31:138. [PMID: 40227317 DOI: 10.1007/s00894-025-06367-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2025] [Accepted: 04/06/2025] [Indexed: 04/15/2025]
Abstract
CONTEXT The interaction of toxic nerve agent VX with BN nanotube and nanocage is investigated in the presence of static electric field along perpendicular direction utilizing density functional theory (DFT). Accordingly, a static electric field (SEF) of strength 0.010 a.u and 0.020 a.u is passed along + Y and - Y axis and the effect on adsorption is analyzed. Upon interaction with VX, it was observed that the application of SEF in the + Y direction led to an increase interaction distance, whereas -Y SEF resulted in a decreased interaction distance between the nanotube and target gas. Among the observed complexations + Y SEF enhanced the sensing property of the nanotube by decreasing its Eads and increasing its electronic responses. Moreover, the study also confirms that BN nanotube in + Y SEF has a short recovery time of 0.37 s in average and hence can perform as an effective sensor for the detection of VX. METHODS The optimizations of the structures are performed out using B3LYP-D3 functional in conjunction with 6-31 + + G(d,p) standard basis set. With the help of QTAIM analysis, parameters namely Laplacian (∇ 2 ρ ( r ) ), energy density value (H(r)), bond energy (EBE), and electron density ρ(r) are obtained. All the optimizations are carried out using the Gaussian 09 and visualized using gauss view and multiwfn software packages.
Collapse
Affiliation(s)
- S Prince Makarios Paul
- Center for Materials Science, Department of Physics, Karpagam Academy of Higher Education, Coimbatore, Tamil Nadu, India
| | - Nancy S Abisha
- Department of Physics, Karunya Institute of Technology and Sciences, Coimbatore, Tamil Nadu, India
| | - Parimaladevi Duraisamy
- Department of Chemistry, Indian Institute of Technology Hyderabad, Sangareddy, 502284, Telangana, India
| | - P Selvarengan
- Department of Physics, Kalasalingam Academy of Research and Education, Srivilliputhur, Krishnankoil, Tamil Nadu, India
| | - A Abiram
- Department of Physics, PSG College of Arts & Science, Coimbatore, Tamil Nadu, India.
| |
Collapse
|
2
|
Arshad M, Arshad S, Majeed MK, Frueh J, Chang C, Bilal I, Niaz SI, Khan MS, Tariq MA, Yasir Mehboob M. Transition Metal-Decorated Mg 12O 12 Nanoclusters as Biosensors and Efficient Drug Carriers for the Metformin Anticancer Drug. ACS OMEGA 2023; 8:11318-11325. [PMID: 37008110 PMCID: PMC10061506 DOI: 10.1021/acsomega.3c00058] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 03/03/2023] [Indexed: 05/11/2023]
Abstract
Drug carriers have been designed and investigated remarkably due to their effective use in the modern medication process. In this study, the decoration of the Mg12O12 nanocluster has been done with transition metals (Ni and Zn) for effective adsorption of metformin (anticancer drug). Decoration of Ni and Zn on a nanocluster allows two geometries, and similarly, the adsorption of metformin also provides two geometries. Density functional theory and time-dependent density functional theory have been employed at the B3LYP with 6-311G(d,p) level. The decoration of Ni and Zn offers good attachment and detachment of the drug, which is observed from their good adsorption energy values. Further, the reduction in the energy band gap is noted in the metformin-adsorbed nanocluster, which allows high charge transfer from a lower energy level to a high energy level. The drug carrier systems show an efficient working mechanism in a water solvent with the visible-light absorption range. Natural bonding orbital and dipole moment values suggested that the adsorption of the metformin causes charge separation in these systems. Moreover, low values of chemical softness with a high electrophilic index recommended that these systems are naturally stable with the least reactivity. Thus, we offer novel kinds of Ni- and Zn-decorated Mg12O12 nanoclusters as efficient carriers for metformin and also recommend them to experimentalists for the future development of drug carriers.
Collapse
Affiliation(s)
- Muhammad Arshad
- Institute
of Chemical Sciences, Gomal University, 29050 Dera Ismail Khan, KPK, Pakistan
| | - Shafia Arshad
- University
College of Conventional Medicine, Faculty of Medicine and Allied Health
Sciences, The Islamia University Bahawalpur, Bahawalpur, Punjab 63100, Pakistan
| | - Muhammad K. Majeed
- Department
of Materials Science and Engineering, The
University of Texas at Arlington, Arlington 76019, Texas, United States
| | - Johannes Frueh
- Tomsk
Polytechnic University, 30 Lenin Avenue, 634050 Tomsk, Russian Federation
- Institute
of Medicine and Health, Harbin Institute of Technology, 150080 Harbin, P. R. China
| | - Chun Chang
- College of
Environment and Chemical Engineering, Dalian
University, Dalian, Liaoning 116622, China
| | - Ibtsam Bilal
- Faculty
of Life Sciences, Department of Biochemistry, University of Okara, Okara, Punjab 56300, Pakistan
| | - Shah Iram Niaz
- Institute
of Chemical Sciences, Gomal University, 29050 Dera Ismail Khan, KPK, Pakistan
| | - Muhammad Shahzeb Khan
- Sulaiman
Bin Abdullah Aba Al-Khail Centre for Interdisciplinary Research in
Basic Sciences (SA-CIRBS), Faculty of Basic and Applied Sciences, International Islamic University Islamabad, Islamabad 44000, Pakistan
| | | | - Muhammad Yasir Mehboob
- Department
of Chemistry, University of Okara, Okara, Punjab 56300, Pakistan
- . Tel.: +92-303-8670504
| |
Collapse
|
3
|
Kaviani S, Tayurskii DA, Nedopekin OV, Piyanzina I. DFT insight into Cd2+, Hg2+, Pb2+, Sn2+, As3+, Sb3+, and Cr3+ heavy metal ions adsorption onto surface of bowl-like B30 nanosheet. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.120131] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|