1
|
Chen Y, Zhang N, Yang J. A survey of recent advances on stability analysis, state estimation and synchronization control for neural networks. Neurocomputing 2023. [DOI: 10.1016/j.neucom.2022.10.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
2
|
Stability of Stochastic Hopfield Neural Networks Driven by G-Brownian Motion with Time-varying and Distributed Delays. Neurocomputing 2022. [DOI: 10.1016/j.neucom.2022.10.065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
3
|
Alsaadi FE, Wang Z, Luo Y, Alharbi NS, Alsaade FW. H ∞ State Estimation for BAM Neural Networks With Binary Mode Switching and Distributed Leakage Delays Under Periodic Scheduling Protocol. IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 2022; 33:4160-4172. [PMID: 33587713 DOI: 10.1109/tnnls.2021.3055942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
This article is concerned with the H∞ state estimation problem for a class of bidirectional associative memory (BAM) neural networks with binary mode switching, where the distributed delays are included in the leakage terms. A couple of stochastic variables taking values of 1 or 0 are introduced to characterize the switching behavior between the redundant models of the BAM neural network, and a general type of neuron activation function (i.e., the sector-bounded nonlinearity) is considered. In order to prevent the data transmissions from collisions, a periodic scheduling protocol (i.e., round-robin protocol) is adopted to orchestrate the transmission order of sensors. The purpose of this work is to develop a full-order estimator such that the error dynamics of the state estimation is exponentially mean-square stable and the H∞ performance requirement of the output estimation error is also achieved. Sufficient conditions are established to ensure the existence of the required estimator by constructing a mode-dependent Lyapunov-Krasovskii functional. Then, the desired estimator parameters are obtained by solving a set of matrix inequalities. Finally, a numerical example is provided to show the effectiveness of the proposed estimator design method.
Collapse
|
4
|
Improved Stability Criteria for Delayed Neural Networks via a Relaxed Delay-Product-Type Lapunov–Krasovskii Functional. MATHEMATICS 2022. [DOI: 10.3390/math10152768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
In this paper, the asymptotic stability problem of neural networks with time-varying delays is investigated. First, a new sufficient and necessary condition on a general polynomial inequality was developed. Then, a novel augmented Lyapunov–Krasovskii functional (LKF) was constructed, which efficiently introduces some new terms related to the previous information of neuron activation function. Furthermore, based on the suitable LKF and the stated negative condition of the general polynomial, two criteria with less conservatism were derived in the form of linear matrix inequalities. Finally, two numerical examples were carried out to confirm the superiority of the proposed criteria, and a larger allowable upper bound of delays was achieved.
Collapse
|
5
|
Chen G, Xia J, Park JH, Shen H, Zhuang G. Sampled-Data Synchronization of Stochastic Markovian Jump Neural Networks With Time-Varying Delay. IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 2022; 33:3829-3841. [PMID: 33544679 DOI: 10.1109/tnnls.2021.3054615] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
In this article, sampled-data synchronization problem for stochastic Markovian jump neural networks (SMJNNs) with time-varying delay under aperiodic sampled-data control is considered. By constructing mode-dependent one-sided loop-based Lyapunov functional and mode-dependent two-sided loop-based Lyapunov functional and using the Itô formula, two different stochastic stability criteria are proposed for error SMJNNs with aperiodic sampled data. The slave system can be guaranteed to synchronize with the master system based on the proposed stochastic stability conditions. Furthermore, two corresponding mode-dependent aperiodic sampled-data controllers design methods are presented for error SMJNNs based on these two different stochastic stability criteria, respectively. Finally, two numerical simulation examples are provided to illustrate that the design method of aperiodic sampled-data controller given in this article can effectively stabilize unstable SMJNNs. It is also shown that the mode-dependent two-sided looped-functional method gives less conservative results than the mode-dependent one-sided looped-functional method.
Collapse
|
6
|
Fan G, Ma Y. Non-fragile delay-dependent pinning H∞ synchronization of T-S fuzzy complex networks with hybrid coupling delays. Inf Sci (N Y) 2022. [DOI: 10.1016/j.ins.2022.07.045] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
7
|
Zhang K, Zhou B, Zheng WX, Duan GR. Finite-time stabilization of linear systems by bounded event-triggered and self-triggered control. Inf Sci (N Y) 2022. [DOI: 10.1016/j.ins.2022.03.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
8
|
Li H, Li C, Ouyang D, Nguang SK, He Z. Observer-Based Dissipativity Control for T-S Fuzzy Neural Networks With Distributed Time-Varying Delays. IEEE TRANSACTIONS ON CYBERNETICS 2021; 51:5248-5258. [PMID: 32191908 DOI: 10.1109/tcyb.2020.2977682] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
An observer-based dissipativity control for Takagi-Sugeno (T-S) fuzzy neural networks with distributed time-varying delays is studied in this article. First, the network channel delays are modeled as a distributed delay with its kernel. To make full use of kernels of the distributed delay, a Lyapunov-Krasovskii functional (LKF) is established with the kernel of the distributed delay. It is noted that the novel LKF and delay-dependent reciprocally convex inequality plays an important role in dealing with global asymptotical stability and strict (Q, S,R) - α -dissipativity of the T-S fuzzy delayed model. Through the constructed LKF, a new set of less conservative linear matrix inequality (LMI) conditions is presented to obtain an observer-based controller for the T-S fuzzy delayed model. This proposed observer-based controller ensures that the state of the closed-loop system is globally asymptotically stable and strictly (Q, S,R) - α -dissipative. Finally, the effectiveness of the proposed results is shown in numerical simulations.
Collapse
|
9
|
Stability analysis for delayed neural networks via an improved negative-definiteness lemma. Inf Sci (N Y) 2021. [DOI: 10.1016/j.ins.2021.08.055] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
10
|
Dai J, Li Y, Xiao L, Jia L, Liao Q, Li J. Comprehensive study on complex-valued ZNN models activated by novel nonlinear functions for dynamic complex linear equations. Inf Sci (N Y) 2021. [DOI: 10.1016/j.ins.2020.12.078] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
11
|
Tian Y, Wang Z. Extended dissipative state estimation for static neural networks via delay-product-type functional. Neurocomputing 2021. [DOI: 10.1016/j.neucom.2020.12.107] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
12
|
Li J, Wang Z, Dong H, Ghinea G. Outlier-Resistant Remote State Estimation for Recurrent Neural Networks With Mixed Time-Delays. IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 2021; 32:2266-2273. [PMID: 32452774 DOI: 10.1109/tnnls.2020.2991151] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
In this brief, a new outlier-resistant state estimation (SE) problem is addressed for a class of recurrent neural networks (RNNs) with mixed time-delays. The mixed time delays comprise both discrete and distributed delays that occur frequently in signal transmissions among artificial neurons. Measurement outputs are sometimes subject to abnormal disturbances (resulting probably from sensor aging/outages/faults/failures and unpredictable environmental changes) leading to measurement outliers that would deteriorate the estimation performance if directly taken into the innovation in the estimator design. We propose to use a certain confidence-dependent saturation function to mitigate the side effects from the measurement outliers on the estimation error dynamics (EEDs). Through using a combination of Lyapunov-Krasovskii functional and inequality manipulations, a delay-dependent criterion is established for the existence of the outlier-resistant state estimator ensuring that the corresponding EED achieves the asymptotic stability with a prescribed H∞ performance index. Then, the explicit characterization of the estimator gain is obtained by solving a convex optimization problem. Finally, numerical simulation is carried out to demonstrate the usefulness of the derived theoretical results.
Collapse
|
13
|
On finite-horizon H∞ state estimation for discrete-time delayed memristive neural networks under stochastic communication protocol. Inf Sci (N Y) 2021. [DOI: 10.1016/j.ins.2020.11.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
14
|
Zhang L, Nguang SK, Ouyang D, Yan S. Synchronization of Delayed Neural Networks via Integral-Based Event-Triggered Scheme. IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 2020; 31:5092-5102. [PMID: 31976914 DOI: 10.1109/tnnls.2019.2963146] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
This article investigates the event-triggered synchronization of delayed neural networks (NNs). A novel integral-based event-triggered scheme (IETS) is proposed where the integral of the system states, and past triggered data over a period of time are used. With the proposed IETS, the integral event-triggered synchronization problem becomes a distributed delay problem. Using the Bessel-Legendre inequalities, sufficient conditions for the existence of a controller that ensures asymptotic synchronization are provided in the form of linear matrix inequalities (LMIs). Illustrative examples are used to demonstrate the advantages of the proposed IETS method over other event-triggered scheme (ETS) methods. Moreover, this IETS method is applied to the image encryption and decryption. A novel encryption algorithm is proposed to enhance the quality of the encryption process.
Collapse
|
15
|
Delay-distribution-dependent state estimation for neural networks under stochastic communication protocol with uncertain transition probabilities. Neural Netw 2020; 130:143-151. [DOI: 10.1016/j.neunet.2020.06.023] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 05/04/2020] [Accepted: 06/29/2020] [Indexed: 11/20/2022]
|
16
|
H∞state estimation for multi-rate artificial neural networks with integral measurements: A switched system approach. Inf Sci (N Y) 2020. [DOI: 10.1016/j.ins.2020.06.021] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
17
|
Dong Z, Zhang X, Wang X. State estimation for discrete-time high-order neural networks with time-varying delays. Neurocomputing 2020. [DOI: 10.1016/j.neucom.2020.06.047] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
18
|
Liu S, Wang Z, Chen Y, Wei G. Dynamic event-based state estimation for delayed artificial neural networks with multiplicative noises: A gain-scheduled approach. Neural Netw 2020; 132:211-219. [PMID: 32916602 DOI: 10.1016/j.neunet.2020.08.023] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 08/12/2020] [Accepted: 08/24/2020] [Indexed: 11/24/2022]
Abstract
This study is concerned with the state estimation issue for a kind of delayed artificial neural networks with multiplicative noises. The occurrence of the time delay is in a random way that is modeled by a Bernoulli distributed stochastic variable whose occurrence probability is time-varying and confined within a given interval. A gain-scheduled approach is proposed for the estimator design to accommodate the time-varying nature of the occurrence probability. For the sake of utilizing the communication resource as efficiently as possible, a dynamic event triggering mechanism is put forward to orchestrate the data delivery from the sensor to the estimator. Sufficient conditions are established to ensure that, in the simultaneous presence of the external noises, the randomly occurring time delays with time-varying occurrence probability as well as the dynamic event triggering communication protocol, the estimation error is exponentially ultimately bounded in the mean square. Moreover, the estimator gain matrices are explicitly calculated in terms of the solution to certain easy-to-solve matrix inequalities. Simulation examples are provided to show the validity of the proposed state estimation method.
Collapse
Affiliation(s)
- Shuai Liu
- College of Science, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Zidong Wang
- Department of Computer Science, Brunel University London, Uxbridge, Middlesex, UB8 3PH, United Kingdom.
| | - Yun Chen
- Institute of Information and Control, Hangzhou Dianzi University, Hangzhou 310018, China
| | - Guoliang Wei
- College of Science, University of Shanghai for Science and Technology, Shanghai 200093, China.
| |
Collapse
|
19
|
Peng X, He Y, Long F, Wu M. Global exponential stability analysis of neural networks with a time-varying delay via some state-dependent zero equations. Neurocomputing 2020. [DOI: 10.1016/j.neucom.2020.02.064] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
20
|
Shen Y, Wang Z, Shen B, Alsaadi FE, Dobaie AM. l 2-l ∞ state estimation for delayed artificial neural networks under high-rate communication channels with Round-Robin protocol. Neural Netw 2020; 124:170-179. [PMID: 32007717 DOI: 10.1016/j.neunet.2020.01.013] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 12/27/2019] [Accepted: 01/14/2020] [Indexed: 11/16/2022]
Abstract
In this paper, the l2-l∞ state estimation problem is addressed for a class of delayed artificial neural networks under high-rate communication channels with Round-Robin (RR) protocol. To estimate the state of the artificial neural networks, numerous sensors are deployed to measure the artificial neural networks. The sensors communicate with the remote state estimator through a shared high-rate communication channel. In the high-rate communication channel, the RR protocol is utilized to schedule the transmission sequence of the numerous sensors. The aim of this paper is to design an estimator such that, under the high-rate communication channel and the RR protocol, the exponential stability of the estimation error dynamics as well as the l2-l∞ performance constraint are ensured. First, sufficient conditions are given which guarantee the existence of the desired l2-l∞ state estimator. Then, the estimator gains are obtained by solving two sets of matrix inequalities. Finally, numerical examples are provided to verify the effectiveness of the developed l2-l∞ state estimation scheme.
Collapse
Affiliation(s)
- Yuxuan Shen
- College of Information Science and Technology, Donghua University, Shanghai 200051, China; Engineering Research Center of Digitalized Textile and Fashion Technology, Ministry of Education, Shanghai 201620, China.
| | - Zidong Wang
- Department of Computer Science, Brunel University London, Uxbridge, Middlesex, UB8 3PH, United Kingdom.
| | - Bo Shen
- College of Information Science and Technology, Donghua University, Shanghai 200051, China; Engineering Research Center of Digitalized Textile and Fashion Technology, Ministry of Education, Shanghai 201620, China.
| | - Fuad E Alsaadi
- Department of Electrical and Computer Engineering, Faculty of Engineering, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Abdullah M Dobaie
- Department of Electrical and Computer Engineering, Faculty of Engineering, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| |
Collapse
|
21
|
Zhou J, Zhao T. State estimation for neural networks with two additive time-varying delay components using delay-product-type augmented Lyapunov–Krasovskii functionals. Neurocomputing 2019. [DOI: 10.1016/j.neucom.2019.03.037] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|