1
|
Liu Y, Zeng Y, Li R, Zhu X, Zhang Y, Li W, Li T, Zhu D, Hu G. A Random Particle Swarm Optimization Based on Cosine Similarity for Global Optimization and Classification Problems. Biomimetics (Basel) 2024; 9:204. [PMID: 38667215 PMCID: PMC11048164 DOI: 10.3390/biomimetics9040204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 03/23/2024] [Accepted: 03/25/2024] [Indexed: 04/28/2024] Open
Abstract
In today's fast-paced and ever-changing environment, the need for algorithms with enhanced global optimization capability has become increasingly crucial due to the emergence of a wide range of optimization problems. To tackle this issue, we present a new algorithm called Random Particle Swarm Optimization (RPSO) based on cosine similarity. RPSO is evaluated using both the IEEE Congress on Evolutionary Computation (CEC) 2022 test dataset and Convolutional Neural Network (CNN) classification experiments. The RPSO algorithm builds upon the traditional PSO algorithm by incorporating several key enhancements. Firstly, the parameter selection is adapted and a mechanism called Random Contrastive Interaction (RCI) is introduced. This mechanism fosters information exchange among particles, thereby improving the ability of the algorithm to explore the search space more effectively. Secondly, quadratic interpolation (QI) is incorporated to boost the local search efficiency of the algorithm. RPSO utilizes cosine similarity for the selection of both QI and RCI, dynamically updating population information to steer the algorithm towards optimal solutions. In the evaluation using the CEC 2022 test dataset, RPSO is compared with recent variations of Particle Swarm Optimization (PSO) and top algorithms in the CEC community. The results highlight the strong competitiveness and advantages of RPSO, validating its effectiveness in tackling global optimization tasks. Additionally, in the classification experiments with optimizing CNNs for medical images, RPSO demonstrated stability and accuracy comparable to other algorithms and variants. This further confirms the value and utility of RPSO in improving the performance of CNN classification tasks.
Collapse
Affiliation(s)
- Yujia Liu
- School of Intelligent Manufacturing Engineering, Jiangxi College of Application Science and Technology, Nanchang 330000, China
| | - Yuan Zeng
- School of Intelligent Manufacturing Engineering, Jiangxi College of Application Science and Technology, Nanchang 330000, China
| | - Rui Li
- School of Computer Science and Technology, Zhejiang Normal University, Jinhua 321004, China
| | - Xingyun Zhu
- School of Computer Science and Technology, Zhejiang Normal University, Jinhua 321004, China
| | - Yuemai Zhang
- School of Computer Science and Technology, Zhejiang Normal University, Jinhua 321004, China
| | - Weijie Li
- School of Computer Science and Technology, Zhejiang Normal University, Jinhua 321004, China
| | - Taiyong Li
- School of Computing and Artificial Intelligence, Southwestern University of Finance and Economics, Chengdu 611130, China;
| | - Donglin Zhu
- School of Computer Science and Technology, Zhejiang Normal University, Jinhua 321004, China
| | - Gangqiang Hu
- School of Computer Science and Technology, Zhejiang Normal University, Jinhua 321004, China
| |
Collapse
|
2
|
Han H, Liu Y, Hou Y, Qiao J. Multi-Modal multi-objective particle swarm optimization with self-adjusting strategy. Inf Sci (N Y) 2023. [DOI: 10.1016/j.ins.2023.02.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
|
3
|
Shami TM, Mirjalili S, Al-Eryani Y, Daoudi K, Izadi S, Abualigah L. Velocity pausing particle swarm optimization: a novel variant for global optimization. Neural Comput Appl 2023. [DOI: 10.1007/s00521-022-08179-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
AbstractParticle swarm optimization (PSO) is one of the most well-regard metaheuristics with remarkable performance when solving diverse optimization problems. However, PSO faces two main problems that degrade its performance: slow convergence and local optima entrapment. In addition, the performance of this algorithm substantially degrades on high-dimensional problems. In the classical PSO, particles can move in each iteration with either slower or faster speed. This work proposes a novel idea called velocity pausing where particles in the proposed velocity pausing PSO (VPPSO) variant are supported by a third movement option that allows them to move with the same velocity as they did in the previous iteration. As a result, VPPSO has a higher potential to balance exploration and exploitation. To avoid the PSO premature convergence, VPPSO modifies the first term of the PSO velocity equation. In addition, the population of VPPSO is divided into two swarms to maintain diversity. The performance of VPPSO is validated on forty three benchmark functions and four real-world engineering problems. According to the Wilcoxon rank-sum and Friedman tests, VPPSO can significantly outperform seven prominent algorithms on most of the tested functions on both low- and high-dimensional cases. Due to its superior performance in solving complex high-dimensional problems, VPPSO can be applied to solve diverse real-world optimization problems. Moreover, the velocity pausing concept can be easily integrated with new or existing metaheuristic algorithms to enhance their performances. The Matlab code of VPPSO is available at: https://uk.mathworks.com/matlabcentral/fileexchange/119633-vppso.
Collapse
|
4
|
Adaptive niching particle swarm optimization with local search for multimodal optimization. Appl Soft Comput 2022. [DOI: 10.1016/j.asoc.2022.109923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
5
|
A strategy learning framework for particle swarm optimization algorithm. Inf Sci (N Y) 2022. [DOI: 10.1016/j.ins.2022.10.069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
6
|
Ji JY, Wong ML. Decomposition-based multiobjective optimization for nonlinear equation systems with many and infinitely many roots. Inf Sci (N Y) 2022. [DOI: 10.1016/j.ins.2022.07.187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
7
|
Occupancy Grid-Based AUV SLAM Method with Forward-Looking Sonar. JOURNAL OF MARINE SCIENCE AND ENGINEERING 2022. [DOI: 10.3390/jmse10081056] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Simultaneous localization and mapping (SLAM) is an active localization method for Autonomous Underwater Vehicle (AUV), and it can mainly be used in unknown and complex areas such as coastal water, harbors, and wharfs. This paper presents a practical occupancy grid-based method based on forward-looking sonar for AUV. The algorithm uses an extended Kalman filter (EKF) to estimate the AUV motion states. First, the SLAM method fuses the data coming from the navigation sensors to predict the motion states. Subsequently, a novel particle swarm optimization genetic algorithm (PSO-GA) scan matching method is employed for matching the sonar scan data and grid map, and the matching pose would be used to correct the prediction states. Lastly, the estimated motion states and sonar scan data would be used to update the grid map. The experimental results based on the field data have validated that the proposed SLAM algorithm is adaptable to underwater conditions, and accurate enough to use for ocean engineering practical applications.
Collapse
|
8
|
Zhao S, Wang D. Elite-ordinary synergistic particle swarm optimization. Inf Sci (N Y) 2022. [DOI: 10.1016/j.ins.2022.07.131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
9
|
Zheng K, Yuan X, Xu Q, Dong L, Yan B, Chen K. Hybrid particle swarm optimizer with fitness-distance balance and individual self-exploitation strategies for numerical optimization problems. Inf Sci (N Y) 2022. [DOI: 10.1016/j.ins.2022.06.059] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
10
|
An Investigation on Hybrid Particle Swarm Optimization Algorithms for Parameter Optimization of PV Cells. ELECTRONICS 2022. [DOI: 10.3390/electronics11060909] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The demands for renewable energy generation are progressively expanding because of environmental safety concerns. Renewable energy is power generated from sources that are constantly replenished. Solar energy is an important renewable energy source and clean energy initiative. Photovoltaic (PV) cells or modules are employed to harvest solar energy, but the accurate modeling of PV cells is confounded by nonlinearity, the presence of huge obscure model parameters, and the nonattendance of a novel strategy. The efficient modeling of PV cells and accurate parameter estimation is becoming more significant for the scientific community. Metaheuristic algorithms are successfully applied for the parameter valuation of PV systems. Particle swarm optimization (PSO) is a metaheuristic algorithm inspired by animal behavior. PSO and derivative algorithms are efficient methods to tackle different optimization issues. Hybrid PSO algorithms were developed to improve the performance of basic ones. This review presents a comprehensive investigation of hybrid PSO algorithms for the parameter assessment of PV cells. This paper presents how much work is conducted in this field, and how much work can additionally be performed to improve this strategy and create more ideal arrangements of an issue. Algorithms are compared on the basis of the used objective function, type of diode model, irradiation conditions, and types of panels. More importantly, the qualitative analysis of algorithms is performed on the basis of computational time, computational complexity, convergence rate, search technique, merits, and demerits.
Collapse
|
11
|
Location Optimization of VTS Radar Stations Considering Environmental Occlusion and Radar Attenuation. ISPRS INTERNATIONAL JOURNAL OF GEO-INFORMATION 2022. [DOI: 10.3390/ijgi11030183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Waterway traffic monitoring is an important content in waterway traffic management. Taking into account that the number of monitored water areas is growing and that waterway traffic management capabilities are insufficient in the current situation in China, this paper investigates the location optimization of the vessel traffic service (VTS) radar station. During the research process, radar attenuation and environmental occlusion, as well as variable coverage radius and multiple covering are all considered. In terms of the radar attenuation phenomenon in the propagation process and obstacles such as mountains and islands in the real world, judgment and evaluation methods in a three-dimensional space are proposed. Moreover, a bi-objective mathematical model is then developed, as well as a modified adaptive strategy particle swarm optimization algorithm. Finally, a numerical example and a case are given to verify the effectiveness of the proposed methods, model, and algorithm. The results show the methods, model, and algorithm proposed in this paper can solve the model efficiently and provide a method to optimize the VTS radar station location in practice.
Collapse
|
12
|
Stochastic Cognitive Dominance Leading Particle Swarm Optimization for Multimodal Problems. MATHEMATICS 2022. [DOI: 10.3390/math10050761] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Optimization problems become increasingly complicated in the era of big data and Internet of Things, which significantly challenges the effectiveness and efficiency of existing optimization methods. To effectively solve this kind of problems, this paper puts forward a stochastic cognitive dominance leading particle swarm optimization algorithm (SCDLPSO). Specifically, for each particle, two personal cognitive best positions are first randomly selected from those of all particles. Then, only when the cognitive best position of the particle is dominated by at least one of the two selected ones, this particle is updated by cognitively learning from the better personal positions; otherwise, this particle is not updated and directly enters the next generation. With this stochastic cognitive dominance leading mechanism, it is expected that the learning diversity and the learning efficiency of particles in the proposed optimizer could be promoted, and thus the optimizer is expected to explore and exploit the solution space properly. At last, extensive experiments are conducted on a widely acknowledged benchmark problem set with different dimension sizes to evaluate the effectiveness of the proposed SCDLPSO. Experimental results demonstrate that the devised optimizer achieves highly competitive or even much better performance than several state-of-the-art PSO variants.
Collapse
|
13
|
Li W, Shi C, Xu Q, Huang Y. Dynamic Population Cooperative. INTERNATIONAL JOURNAL OF SWARM INTELLIGENCE RESEARCH 2022. [DOI: 10.4018/ijsir.313664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Particle swarm optimization (PSO) has attracted wide attention in the recent decade. Although PSO is an efficient and simple evolutionary algorithm and has been successfully applied to solve optimization problems in many real-world fields, premature maturation and poor local search capability remain two critical issues for PSO. Therefore, to alleviate these disadvantages, a dynamic population cooperative particle swarm optimization for global optimization problems (DPCPSO) is proposed. Firstly, to enhance local search capability, an elite neighborhood learning strategy is constructed by leveraging information from elite particles. Meanwhile, to make the particle easily jump out of the local optimum, a crossover-mutation mechanism is utilized. Finally, a dynamic population partitioning mechanism is designed to balance exploration and exploitation capabilities. 16 classic benchmark functions and 1 real-world optimization problem are used to test the proposed algorithm against with 6 typical PSO algorithms. The experimental results show that DPCPSO is statistically and significantly better than the compared algorithms for most of the test problems. Moreover, the convergence speed and convergence accuracy of DPCPSO are also significantly improved. Therefore, the algorithm is highly competitive in solving global optimization problems.
Collapse
Affiliation(s)
- Wei Li
- Jiangxi University of Science and Technology, China
| | - Cisong Shi
- Jiangxi University of Science and Technology, China
| | - Qing Xu
- Jiangxi University of Science and Technology, China
| | | |
Collapse
|
14
|
|