1
|
Wang C, Jiang Z, Du M, Cong R, Wang W, Zhang T, Chen J, Zhang G, Li L. Novel Ser74 of NF-κB/IκBα phosphorylated by MAPK/ERK regulates temperature adaptation in oysters. Cell Commun Signal 2024; 22:539. [PMID: 39529137 PMCID: PMC11552224 DOI: 10.1186/s12964-024-01923-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Accepted: 11/01/2024] [Indexed: 11/16/2024] Open
Abstract
Phosphorylation of Ser32 and Ser36 controls the degradation of IκBα is the conserved cascade mechanisms of immune core signaling pathway, NF-κB pathway in metazoans, but it's response to abiotic stress and the presence of novel phosphorylation mechanisms in other species remain unclear. Herein, we reported a novel heat-induced phosphorylation site (Ser74) at oysters' major IκBα, which independently regulated ubiquitination-proteasome degradation without the requirement of phosphorylation at S32 and S36. And this site was phosphorylated by ERK/MAPK pathway, which then promoted REL nuclear translocation to activate cell survival related genes to defend heat-stress. The MAPK-NF-κB cascade exhibited divergent thermal responses and adaptation patterns between two congeneric oyster species with differential habitat temperatures, indicating its involvement in shaping temperature adaptation. This study demonstrated that the existence of complex and unique phosphorylation-mediated signaling transduction mechanism in marine invertebrates, and expanded our understanding of the evolution and function of established classical pathway crosstalk mechanisms.
Collapse
Affiliation(s)
- Chaogang Wang
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture(CAS), Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- National and Local Joint Engineering Laboratory of Ecological Mariculture, Qingdao, China
| | - Zhuxiang Jiang
- Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- National and Local Joint Engineering Laboratory of Ecological Mariculture, Qingdao, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Mingyang Du
- Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- National and Local Joint Engineering Laboratory of Ecological Mariculture, Qingdao, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Rihao Cong
- Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao, China
- Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- National and Local Joint Engineering Laboratory of Ecological Mariculture, Qingdao, China
- Southern Marine Science and Engineering Guangdong Laboratory (Zhanjiang), Zhanjiang, China
| | - Wei Wang
- Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao Marine Science and Technology Center, Qingdao, China
- National and Local Joint Engineering Laboratory of Ecological Mariculture, Qingdao, China
| | - Taiping Zhang
- Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- National and Local Joint Engineering Laboratory of Ecological Mariculture, Qingdao, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Jincheng Chen
- Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- National and Local Joint Engineering Laboratory of Ecological Mariculture, Qingdao, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Guofan Zhang
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture(CAS), Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao, China
- Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- National and Local Joint Engineering Laboratory of Ecological Mariculture, Qingdao, China
- Shandong Technology Innovation Center of Oyster Seed Industry, Qingdao, China
- Southern Marine Science and Engineering Guangdong Laboratory (Zhanjiang), Zhanjiang, China
| | - Li Li
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture(CAS), Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China.
- Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China.
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao Marine Science and Technology Center, Qingdao, China.
- National and Local Joint Engineering Laboratory of Ecological Mariculture, Qingdao, China.
- University of Chinese Academy of Sciences, Beijing, China.
- Shandong Technology Innovation Center of Oyster Seed Industry, Qingdao, China.
| |
Collapse
|
2
|
Lim SG, Suk K, Lee WH. LETMD1 Regulates Phagocytosis and Inflammatory Responses to Lipopolysaccharide via Reactive Oxygen Species Generation and NF-κB Activation in Macrophages. THE JOURNAL OF IMMUNOLOGY 2020; 204:1299-1309. [PMID: 31980577 DOI: 10.4049/jimmunol.1900551] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Accepted: 12/23/2019] [Indexed: 01/10/2023]
Abstract
LETM1 domain-containing protein 1 (LETMD1), also known as HCCR-1, is a mitochondrial protein and is known to regulate p53 and STAT3 activities in cancer cells. In this study, we present, for the first time (to our knowledge), data indicating that LETMD1 suppresses multiple immune responses in monocyte/macrophage lineage cells and mouse primary macrophages. Attenuation of LETMD1 expression with specific small interfering RNA and short hairpin RNA constructs enhanced LPS-induced expressions of inflammatory mediators in macrophages. In addition, LETMD1 attenuation caused potentiation of phagocytosis as well as migration in a macrophage-like cell line, U937. These enhancing effects were associated with altered activation of signaling adaptors (such as NF-κB, MAPKs, p53, and JAK-STAT) involved in TLR4 signaling. Especially, LETMD1 selectively regulated TLR4-induced NF-κB activation via MyD88 but not via TIR-domain-containing adapter-inducing IFN-β (TRIF). Attenuation of LETMD1 expression caused mitochondrial hyperpolarization and subsequent decrease in ATP production and increase in mitochondrial/cellular reactive oxygen species (ROS) and intracellular calcium levels. LETMD1 attenuation also enhanced LPS-induced expression of NADPH oxidase (NOX) 2, the main producer of cellular ROS in phagocytes, through augmenting IFN regulatory factor 1. Accordingly, treatment with ROS scavenger, NOX2 suppressing agents, or calcium chelators resulted in suppression of LPS-induced cytokine production as well as NF-κB activation in cells with LETMD1 attenuation. These findings reveal a previously unknown function of LETMD1 and provide evidences showing LETMD1 negatively regulates macrophage functions by modulating mitochondrial function, subsequent ROS generation, and NF-κB activation.
Collapse
Affiliation(s)
- Su-Geun Lim
- School of Life Sciences, Brain Korea 21 Plus/Kyungpook National University Creative BioResearch Group, Kyungpook National University, Daegu 41566, Republic of Korea; and
| | - Kyoungho Suk
- Department of Pharmacology, Brain Science and Engineering Institute, Brain Korea 21 Plus/Kyungpook National University Biomedical Convergence Program, Kyungpook National University School of Medicine, Daegu 41944, Republic of Korea
| | - Won-Ha Lee
- School of Life Sciences, Brain Korea 21 Plus/Kyungpook National University Creative BioResearch Group, Kyungpook National University, Daegu 41566, Republic of Korea; and
| |
Collapse
|
3
|
Abstract
Oridonin has attracted considerable attention in the last decade because of its anti-cancer pharmacological properties. This ent-kaurane diterpenoid, isolated from the Chinese herb Rabdosia rubescens and some related species, has
demonstrated great potential in the treatment profile of many diseases by exerting anti-tumor, anti-inflammatory, pro-apoptotic, and neurological effects. Unfortunately, the mechanisms via which oridonin exerts these effects remain poorly understood. This review provides an overview of the multifunctional effects of oridonin as well as the reasons for its potential for investigations in the treatment of many diseases other than cancer.
Collapse
Affiliation(s)
- Brice Ayissi Owona
- Division of Immunopathology of the Nervous System, Institute of Pathology and Neuropathology, University of Tübingen, Calwer Street 3, Tübingen, Germany,
| | | |
Collapse
|
4
|
Escherichia coli maltose-binding protein activates mouse peritoneal macrophages and induces M1 polarization via TLR2/4 in vivo and in vitro. Int Immunopharmacol 2014; 21:171-80. [PMID: 24825603 DOI: 10.1016/j.intimp.2014.04.025] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2014] [Revised: 04/24/2014] [Accepted: 04/29/2014] [Indexed: 11/21/2022]
Abstract
Maltose-binding protein (MBP) is a component of the maltose transport system of Escherichia coli. Our previous study found that MBP combined with Bacillus Calmette-Guerin (BCG) increases the percentage of activated macrophages in the spleen and the pinocytic activity of peritoneal macrophages in vivo. However, the effect of MBP alone on macrophages remains unclear. In the present study, the results showed that MBP enhanced LPS-stimulated macrophage activity in vivo. Subsequently, we investigated the regulatory effect of MBP on mouse peritoneal macrophages in vitro and the possible underlying mechanism. The results showed that MBP directly promoted macrophage phagocytic activity and increased the production of NO, IL-1β and IL-6. Notably, macrophage phenotypic analysis showed that MBP significantly increased iNOS, IL-12p70 and CD16/32. In contrast, MBP decreased the secretion of IL-10 and slightly decreased Arg-1 mRNA and CD206 protein expression. These results suggested that MBP activated macrophages and polarized them into M1 macrophages. Further study found that MBP directly bound to macrophages and upregulated TLR2 mRNA expression. This process was accompanied by a clear increase in MyD88 expression and phosphorylation of p38 MAPK and IκB-α, but these effects were largely abrogated by pretreatment with anti-TLR2 or anti-TLR4 antibodies. The effects of MBP on macrophage NO production were also partially inhibited by anti-TLR2 and/or anti-TLR4 antibodies. Furthermore, the effect of MBP on IL-12 and IL-10 secretion was largely influenced by the NF-κB inhibitor PDTC and the p38 MAPK inhibitor SB203580. These results suggest that MBP directly activates macrophages and induces M1 polarization through a process that may involve TLR2 and TLR4.
Collapse
|
5
|
Zang L, He H, Xu Q, Yu Y, Zheng N, Liu W, Hayashi T, Tashiro SI, Onodera S, Ikejima T. Reactive oxygen species H2O2 and •OH, but not O2•(-) promote oridonin-induced phagocytosis of apoptotic cells by human histocytic lymphoma U937 cells. Int Immunopharmacol 2013; 15:414-23. [PMID: 23352441 DOI: 10.1016/j.intimp.2013.01.004] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2012] [Revised: 01/04/2013] [Accepted: 01/07/2013] [Indexed: 01/28/2023]
Abstract
We reported previously that phagocytosis of apoptotic cells by U937 cells was enhanced by the treatment with oridonin that showed high activity to induce the generation of reactive oxygen species (ROS) in many cells. ROS, important signaling molecules, are involved in the immune defenses, cell repair and proliferation. In this study, oridonin caused modest amount of ROS generation in U937 cells, with hydrogen peroxide (H2O2) and hydroxyl free radical (OH) as the major types. Meanwhile, H2O2 and OH were positive regulators involved in oridonin-enhanced engulfment of apoptotic cells through down-regulating mitochondrial membrane potential (MMP) and inducing autophagy. The ROS-mediated phagocytosis was independent of cellular adenosine triphosphate (ATP) levels. H2O2 and OH generation also activated phosphatidylinositol 3-kinases-Akt (PI3K-Akt) and phospholipase C γ-protein kinase C(PLC γ)-Ras-Raf-ERK signaling pathways, which were essential for oridonin-induced engulfment of apoptotic cells. Phagocytosis, the loss of MMP, autophagy and the activated signaling pathways were all suppressed by ROS scavenger N-acetyl-l-cysteine (NAC), H2O2 scavenger catalase or OH scavenger glutathione (GSH). However, superoxide anion (O2-) and its scavenger superoxide dismutase (SOD) did not significantly affect these oridonin-induced biological processes.
Collapse
Affiliation(s)
- Linghe Zang
- China-Japan Research Institute of Medical Pharmaceutical Sciences, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, PR China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Liu Z, Ouyang L, Peng H, Zhang WZ. Oridonin: targeting programmed cell death pathways as an anti-tumour agent. Cell Prolif 2013; 45:499-507. [PMID: 23106297 DOI: 10.1111/j.1365-2184.2012.00849.x] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Oridonin, an active diterpenoid isolated from traditional Chinese herbal medicine, has drawn rising attention for its remarkable apoptosis- and autophagy-inducing activity and relevant molecular mechanisms in cancer therapy. Apoptosis is a well known type of cell death, whereas autophagy can play either pro-survival or pro-death roles in cancer cells. Accumulating evidence has recently revealed relationships between apoptosis and autophagy induced by oridonin; however, molecular mechanisms behind them remain to be discovered. In this review, we focus on highlighting updated research on oridonin-induced cell death signalling pathways implicated in apoptosis and autophagy, in many types of cancer. In addition, we further discuss cross-talk between apoptosis and autophagy induced by oridonin, in cancer. Taken together, these findings open new perspectives for further exploring oridonin as a potential anti-tumour agent targeting apoptosis and autophagy, in future anti-cancer therapeutics.
Collapse
Affiliation(s)
- Z Liu
- Department of Hepato-biliary Surgery, General Hospital of PLA, Beijing, China
| | | | | | | |
Collapse
|
7
|
Ji Z, Tang Q, Zhang J, Yang Y, Liu Y, Pan Y. Oridonin-induced apoptosis in SW620 human colorectal adenocarcinoma cells. Oncol Lett 2011; 2:1303-1307. [PMID: 22848306 DOI: 10.3892/ol.2011.408] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2011] [Accepted: 08/15/2011] [Indexed: 12/16/2022] Open
Abstract
Oridonin, a diterpenoid isolated from Rabdosia rubescens (Hemsl.) Hara, inhibited the growth of human tumor cell lines SW620 (colon), MCF-7 (breast) and K562 (bone marrow), and induced significant levels of apoptosis in SW620. Morphological changes indicative of cell apoptosis were observed after the cells were exposed to oridonin for 24 h. Growth inhibition was associated with G1 phase arrest, and with time- and dose-dependent increases in caspase-3 activity. We therefore conclude that oridonin inhibits the proliferation of SW620 cells by induction of apoptosis via the activation of caspase-3. Our data suggest that oridonin may have significant potential as an anti-colorectal adenocarcinoma agent.
Collapse
Affiliation(s)
- Zhe Ji
- National Engineering Research Center of Edible Fungi; Key Laboratory of Applied Mycological Resources and Utilization, Ministry of Agriculture; Shanghai Key Laboratory of Agricultural Genetics and Breeding; Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai 201106
| | | | | | | | | | | |
Collapse
|
8
|
Jilani K, Qadri SM, Zelenak C, Lang F. Stimulation of suicidal erythrocyte death by oridonin. Arch Biochem Biophys 2011; 511:14-20. [PMID: 21575590 DOI: 10.1016/j.abb.2011.05.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2011] [Revised: 04/26/2011] [Accepted: 05/01/2011] [Indexed: 01/04/2023]
Abstract
Oridonin triggers apoptosis of cancer cells and was suggested as anticancer agent. Oridonin is partially effective through mitochondrial depolarization and partially by modifying gene expression. Erythrocytes lack mitochondria and nuclei but may undergo eryptosis, a suicidal cell death characterized by cell shrinkage and cell membrane scrambling with phosphatidylserine exposure at the cell surface. Triggers of eryptosis include increase of cytosolic Ca(2+)-activity, ATP depletion and ceramide formation. The present study explored, whether oridonin triggers eryptosis. Cytosolic Ca(2+)-concentration was estimated from Fluo3-fluorescence, cell volume from forward scatter in FACS analysis, phosphatidylserine exposure from binding of fluorescent annexin V, hemolysis from hemoglobin release, ATP concentration utilizing a luciferin-luciferase assay and ceramide abundance utilizing fluorescent anti-ceramide antibodies. A 48 h exposure to oridonin (≥25μM) significantly increased cytosolic Ca(2+)-concentration, increased ceramide formation, decreased forward scatter and triggered annexin V-binding (the latter in >20% of the erythrocytes). Oridonin didn't decrease ATP concentration and hemolysed <5% of erythrocytes. The effects of oridonin on annexin V binding were partially reversed in the nominal absence of Ca(2+) and by the addition of amiloride (1mM). The present observations reveal a completely novel effect of oridonin, i.e. triggering of Ca(2+) entry and ceramide formation as well as suicidal death of erythrocytes.
Collapse
Affiliation(s)
- Kashif Jilani
- Department of Physiology, University of Tuebingen, Gmelinstraße 5, D-72076 Tuebingen, Germany
| | | | | | | |
Collapse
|
9
|
Chen S, Liu J, Zhang H. Efficacy of rabdosia rubescens in the treatment of gingivitis. ACTA ACUST UNITED AC 2009; 29:659-63. [PMID: 19821105 DOI: 10.1007/s11596-009-0525-2] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2009] [Indexed: 01/12/2023]
Abstract
This study evaluated the efficacy of rabdosia rubescens against gingivitis and compared the therapeutic efficacy of different dosage forms of rabdosia rubescens. A multi-center, randomized, double-blind, double-simulation, positive-controlled and parallel trial was conducted. A total of 136 patients exhibiting clinical symptoms of gingivitis were enrolled. The subjects were randomly assigned to two groups: test group (n=67), in which rabdosia rubescens drop pill (960 mg) and 4 tablets of simulation agent of rabdosia rubescen were orally given to the subjects three times a day for 5 days; and control group (n=69), in which the subjects were administered the tablets of rabdosia rubescens (1000 mg) and 24 drop pills of simulation agent of rabdosia rubescens thrice daily for 5 days. The experimental protocols and diagnostic criteria were established by expert panel prior to the experiment. The clinical symptoms were graded according to the severity of the disease and quantified. The total scores and scores for each clinical symptom of gingivitis were assessed at baseline and on the 6th day post-treatment. The therapeutic efficacy was compared between the two groups and in each group itself before and after the treatment. The results showed that in the two groups, the subjects who were given rabdosia rubescens, drop pill or tablet, had a decrease in total scores and scores for each clinical symptom when compared with those before treatment (P<0.01). There was significant difference in the therapeutic efficacy between the test group and the control group with the efficacy rate being 92.54% and 79.71% respectively (P<0.05). It was concluded that rabdosia rubescens showed great promise in treating gingivitis. And rabdosia rubescens drop pill was more efficacious than rabdosia rubescens tablet.
Collapse
Affiliation(s)
- Sui Chen
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| | | | | |
Collapse
|
10
|
Bioinformatics analysis of the early inflammatory response in a rat thermal injury model. BMC Bioinformatics 2007; 8:10. [PMID: 17214898 PMCID: PMC1797813 DOI: 10.1186/1471-2105-8-10] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2006] [Accepted: 01/10/2007] [Indexed: 12/25/2022] Open
Abstract
Background Thermal injury is among the most severe forms of trauma and its effects are both local and systemic. Response to thermal injury includes cellular protection mechanisms, inflammation, hypermetabolism, prolonged catabolism, organ dysfunction and immuno-suppression. It has been hypothesized that gene expression patterns in the liver will change with severe burns, thus reflecting the role the liver plays in the response to burn injury. Characterizing the molecular fingerprint (i.e., expression profile) of the inflammatory response resulting from burns may help elucidate the activated mechanisms and suggest new therapeutic intervention. In this paper we propose a novel integrated framework for analyzing time-series transcriptional data, with emphasis on the burn-induced response within the context of the rat animal model. Our analysis robustly identifies critical expression motifs, indicative of the dynamic evolution of the inflammatory response and we further propose a putative reconstruction of the associated transcription factor activities. Results Implementation of our algorithm on data obtained from an animal (rat) burn injury study identified 281 genes corresponding to 4 unique profiles. Enrichment evaluation upon both gene ontologies and transcription factors, verifies the inflammation-specific character of the selections and the rationalization of the burn-induced inflammatory response. Conducting the transcription network reconstruction and analysis, we have identified transcription factors, including AHR, Octamer Binding Proteins, Kruppel-like Factors, and cell cycle regulators as being highly important to an organism's response to burn response. These transcription factors are notable due to their roles in pathways that play a part in the gross physiological response to burn such as changes in the immune response and inflammation. Conclusion Our results indicate that our novel selection/classification algorithm has been successful in selecting out genes with play an important role in thermal injury. Additionally, we have demonstrated the value of an integrative approach in identifying possible points of intervention, namely the activation of certain transcription factors that govern the organism's response.
Collapse
|