1
|
Kim T, Jeon J, Lee MS, Park JH, Chung Y, Yang HS. Development of Electrospun Nerve Guidance Conduits by a Milk-Derived Protein with Biodegradable Polymers for Peripheral Nerve Regeneration. ACS APPLIED BIO MATERIALS 2025; 8:3498-3512. [PMID: 40168646 DOI: 10.1021/acsabm.4c02000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2025]
Abstract
Bioactive and biodegradable fibrous conduits consisting of well-organized microfibers with longitudinal grooves on the fiber surface were prepared by electrospinning for nerve guidance conduit (NGC) application. Tubular constructs with uniaxially aligned topographical cues have great potential to enhance axonal regeneration and are needed to bridge large gaps between proximal and distal nerves. In this study, we developed electrospun NGCs using milk-derived casein protein (MDP) with biodegradable polycaprolactone and polylactic-co-glycolic acid. We designed and fabricated a biodegradable polymer for random fiber (RF), aligned fiber (AF), random fiber with MDP (MDP-RF), and aligned the fiber with MDP (MDP-AF) by using electrospinning. We hypothesized that topographically defined NGC as MDP-AF NGC would enhance axonal outgrowth by topographical cues and chemoattraction of the bioactive peptide in MDP for macrophage migration. The in vitro MDP-AF NGC results showed not only the promotion of a guidance effect on Schwann cell migration and macrophage polarization but also the enhancement of PC12 cell neurite outgrowth. Additionally, we demonstrated that the synergetic effects of the MDP-AF NGC enhanced the regeneration of injured sciatic nerves. To confirm the effect of MDP-AF NGC, we implanted it into a rat sciatic nerve (10 mm defect). The walking track analysis for sciatic function, electrophysiological test, gastrocnemius muscle weight, and histological and immunohistological analyses indicated that MDP-AF NGC effectively improved sciatic nerve regeneration compared with other groups at 4 and 8 weeks. Herein, we evolutionally developed MDP-AF NGC with geometric and chemotactic stimuli using an electrospinning method combined with a biocompatible synthetic polymer and bioactive casein protein.
Collapse
Affiliation(s)
- Taeoh Kim
- Department of Nanobiomedical Science & BK21 FOUR NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan 31116, Republic of Korea
| | - Jin Jeon
- Center for Biomaterials Biomedical Research Institute, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea
| | - Min Suk Lee
- Richard and Loan Hill Department of Biomedical Engineering, University of Illinois at Chicago, Chicago, Illinois 60612, United States
| | - Jin Hee Park
- Department of Nanobiomedical Science & BK21 FOUR NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan 31116, Republic of Korea
| | - Youngdoo Chung
- Department of Nanobiomedical Science & BK21 FOUR NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan 31116, Republic of Korea
| | - Hee Seok Yang
- Department of Nanobiomedical Science & BK21 FOUR NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan 31116, Republic of Korea
- Department of Biomedical Science & Engineering, Dankook University, Cheonan 31116, Republic of Korea
- Center for Bio-Medical Engineering Core-Facility, Dankook University, Cheonan 31116, Republic of Korea
| |
Collapse
|
2
|
Dhar H, Verma S, Dogra S, Katoch S, Vij R, Singh G, Sharma M. Functional attributes of bioactive peptides of bovine milk origin and application of in silico approaches for peptide prediction and functional annotations. Crit Rev Food Sci Nutr 2024; 64:9432-9454. [PMID: 37218679 DOI: 10.1080/10408398.2023.2212803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Bovine milk peptides are the protein fragments with diverse bioactive properties having antioxidant, anticarcinogenic, other therapeutic and nutraceutical potentials. These peptides are formed in milk by enzymatic hydrolysis, gastrointestinal digestion and fermentation processes. They have significant health impact with high potency and low toxicity making them a suitable natural alternative for preventing and managing diseases. Antibiotic resistance has increased the quest for better peptide candidates with antimicrobial effects. This article presents a comprehensive review on well documented antimicrobial, immunological, opioid, and anti-hypertensive activities of bovine milk peptides. It also covers the usage of computational biology tools and databases for prediction and analysis of the food-derived bioactive peptides. In silico analysis of amino acid sequences of Bos taurus milk proteins have been predicted to generate peptides with dipeptidyl peptidase IV inhibitory and ACE inhibitory properties, making them favorable candidates for developing blood sugar lowering drugs and anti-hypertensives. In addition to the prediction of new bioactive peptides, application of bioinformatics tools to predict novel functions of already known peptides is also discussed. Overall, this review focuses on the reported as well as predicted biologically active peptide of casein and whey proteins of bovine milk that can be utilized to develop therapeutic agents.
Collapse
Affiliation(s)
- Hena Dhar
- Department of Microbiology, School of Biosciences, RIMT University, Mandi Gobindgarh, India
| | - Subhash Verma
- Department of Veterinary Microbiology, Dr. G.C. Negi College of Veterinary & Animal Sciences, CSK Himachal Pradesh Agricultural University, Palampur, India
| | - Sarita Dogra
- PGIMR, Postgraduate Institute of Medical Education & Research, Chandigarh, India
| | - Shailja Katoch
- Department of Veterinary Microbiology, Sardar Vallabh Bhai Patel University of Agriculture and Technology, Meerut, India
| | - Rishika Vij
- Department of Veterinary Physiology & Biochemistry, Dr. G.C. Negi College of Veterinary & Animal Sciences, CSK Himachal Pradesh Agricultural University, Palampur, India
| | - Geetanjali Singh
- Department of Veterinary Physiology & Biochemistry, Dr. G.C. Negi College of Veterinary & Animal Sciences, CSK Himachal Pradesh Agricultural University, Palampur, India
| | - Mandeep Sharma
- Department of Veterinary Microbiology, Dr. G.C. Negi College of Veterinary & Animal Sciences, CSK Himachal Pradesh Agricultural University, Palampur, India
| |
Collapse
|
3
|
Shafique B, Murtaza MA, Hafiz I, Ameer K, Basharat S, Mohamed Ahmed IA. Proteolysis and therapeutic potential of bioactive peptides derived from Cheddar cheese. Food Sci Nutr 2023; 11:4948-4963. [PMID: 37701240 PMCID: PMC10494659 DOI: 10.1002/fsn3.3501] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 04/26/2023] [Accepted: 06/02/2023] [Indexed: 09/14/2023] Open
Abstract
Cheddar cheese-derived bioactive peptides are considered a potential component of functional foods. A positive impact of bioactive peptides on diet-related chronic, non-communicable diseases, like obesity, cardiovascular diseases, and diabetes, has been observed. Bioactive peptides possess multifunctional therapeutic potentials, including antimicrobial, immunomodulatory, antioxidant, enzyme inhibitory effects, anti-thrombotic, and phyto-pathological activities against various toxic compounds. Peptides can regulate human immune, gastrointestinal, hormonal, and neurological responses, which play an integral role in the deterrence and treatment of certain diseases like cancer, osteoporosis, hypertension, and other health disorders, as described in the present review. This review summarizes the categories of the Cheddar cheese-derived bioactive peptides, their general characteristics, physiological functions, and possible applications in healthcare.
Collapse
Affiliation(s)
- Bakhtawar Shafique
- Institute of Food Science and NutritionUniversity of SargodhaSargodhaPakistan
| | - Mian Anjum Murtaza
- Institute of Food Science and NutritionUniversity of SargodhaSargodhaPakistan
| | - Iram Hafiz
- Institute of ChemistryUniversity of SargodhaSargodhaPakistan
| | - Kashif Ameer
- Institute of Food Science and NutritionUniversity of SargodhaSargodhaPakistan
| | - Shahnai Basharat
- The University Institute of Diet and Nutritional SciencesThe University of LahoreLahorePakistan
| | - Isam A. Mohamed Ahmed
- Department of Food Science and Nutrition, College of Food and Agricultural SciencesKing Saud UniversityRiyadhSaudi Arabia
- Department of Food Science and Technology, Faculty of AgricultureUniversity of KhartoumShambatSudan
| |
Collapse
|
4
|
Lee MS, Jeon J, Park S, Lim J, Yang HS. Rationally designed bioactive milk-derived protein scaffolds enhanced new bone formation. Bioact Mater 2023; 20:368-380. [PMID: 35784638 PMCID: PMC9213433 DOI: 10.1016/j.bioactmat.2022.05.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 05/09/2022] [Accepted: 05/23/2022] [Indexed: 12/04/2022] Open
Abstract
Recently, a number of studies reported that casein was composed of various multifunctional bioactive peptides such as casein phosphopeptide and β-casochemotide-1 that bind calcium ions and induce macrophage chemotaxis, which is crucial for bone homeostasis and bone fracture repair by cytokines secreted in the process. We hypothesized that the effects of the multifunctional biopeptides in casein would contribute to improving bone regeneration. Thus, we designed a tissue engineering platform that consisted of casein and polyvinyl alcohol, which was a physical-crosslinked scaffold (milk-derived protein; MDP), via simple freeze-thaw cycles and performed surface modification using 3,4-dihydroxy-l-phenylalanine (DOPA), a mussel adhesive protein, for immobilizing adhesive proteins and cytokines for recruiting cells in vivo (MDP-DOPA). Both the MDP and MDP-DOPA groups proved indirectly contribution of macrophages migration as RAW 264.7 cells were highly migrated toward materials by contained bioactive peptides. We implanted MDP and MDP-DOPA in a mouse calvarial defect orthotopic model and evaluated whether MDP-DOPA showed much faster mineral deposition and higher bone density than that of the no-treatment and MDP groups. The MDP-DOPA group showed the accumulation of host M2 macrophages and mesenchymal stem cells (MSCs) around the scaffold, whereas MDP presented mostly M1 macrophages in the early stage. Bioactive peptide-containing scaffold was fabricated via simple freeze-thaw cycles, and subsequently, the surface was modified with adhesive protein. We confirmed that the multifunctional biopeptides regulated the migration of macrophages and enhanced osteogenic differentiation. The bioactive peptide-containing scaffold showed much faster and higher mineral deposition in vivo animal studies compared to the other groups.
Collapse
Affiliation(s)
- Min Suk Lee
- Department of Nanobiomedical Science & BK21 FOUR NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan, 31116, Republic of Korea
- Medical Laser Research Center, College of Medicine, Dankook University, Cheonan, 31116, Republic of Korea
| | - Jin Jeon
- Department of Nanobiomedical Science & BK21 FOUR NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan, 31116, Republic of Korea
| | - Sihyeon Park
- Department of Nanobiomedical Science & BK21 FOUR NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan, 31116, Republic of Korea
| | - Juhan Lim
- Department of Nanobiomedical Science & BK21 FOUR NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan, 31116, Republic of Korea
| | - Hee Seok Yang
- Department of Nanobiomedical Science & BK21 FOUR NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan, 31116, Republic of Korea
- Center for Bio-Medical Engineering Core-Facility, Dankook University, Cheonan, 31116, Republic of Korea
- Corresponding author. Department of Nanobiomedical Science & BK21 FOUR NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan, 31116, Republic of Korea.
| |
Collapse
|
5
|
Nagashima K, Fujii N, Oka S, Yamashita A, Itagaki F, Yasuno N, Watanabe M, Kishimoto S. Peptides Derived from Soybean β-Conglycinin Induce the Migration of Human Peripheral Polymorphonuclear Leukocytes. Biol Pharm Bull 2023; 46:898-906. [PMID: 37394641 DOI: 10.1248/bpb.b23-00010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/04/2023]
Abstract
Food-derived peptides have various biological activities. When food proteins are ingested orally, they are digested into peptides by endogenous digestive enzymes and absorbed by the immune cell-rich intestinal tract. However, little is known about the effects of food-derived peptides on the motility of human immune cells. In this study, we aimed to understand the effects of peptides derived from a soybean protein β-conglycinin on the motility of human peripheral polymorphonuclear leukocytes. We illustrated that MITL and MITLAIPVNKPGR, produced by digestion using in-vivo enzymes (trypsin and pancreatic elastase) of β-conglycinin, induces the migration of dibutyryl cAMP (Bt2 cAMP)-differentiated human promyelocytic leukemia 60 (HL-60) cells and human polymorphonuclear leukocytes in a dose- and time-dependent manner. This migration was more pronounced in Bt2 cAMP-differentiated HL-60 cells; mRNA expression of formyl peptide receptor (FPR) 1 increased significantly than in all-trans-retinoic acid (ATRA)-differentiated HL-60 cells. This migration was inhibited by tert-butoxycarbonyl (Boc)-MLP, an inhibitor of FPR, and by pretreatment with pertussis toxin (PTX). However, the effect was weak when treated with WRW4, a selective inhibitor of the FPR2. We then demonstrated that MITLAIPVNKPGR induced intracellular calcium responses in human polymorphonuclear leukocytes and Bt2 cAMP-HL60 cells. Furthermore, pre-treatment by fMLP desensitized the calcium response of MITLAIPVNKPGR in these cells. From the above, MITLAIPVNKPGR and MITL derived from soybean β-conglycinin induced polymorphonuclear leukocyte migration via the FPR1-dependent mechanism. We found chemotactic peptides to human polymorphonuclear leukocytes, which are the endogenous enzyme digests of soybean protein.
Collapse
Affiliation(s)
- Kazuki Nagashima
- Laboratory of Clinical Pharmaceutics, Faculty of Pharma-Sciences, Teikyo University
| | | | - Saori Oka
- Laboratory of Molecular Health Science, Faculty of Pharma-Sciences, Teikyo University
| | - Atsushi Yamashita
- Laboratory of Biological Chemistry, Faculty of Pharma-Sciences, Teikyo University
| | - Fumio Itagaki
- Laboratory of Clinical Pharmaceutics, Faculty of Pharma-Sciences, Teikyo University
| | - Nobuhiro Yasuno
- Laboratory of Hospital Pharmacy, Faculty of Pharma-Science, Teikyo University
| | - Machiko Watanabe
- Laboratory of Clinical Pharmaceutics, Faculty of Pharma-Sciences, Teikyo University
| | - Seishi Kishimoto
- Radioisotope Research Center, Teikyo University
- Research Center for Pharmaceutical Education, Faculty of Pharma-Sciences, Teikyo University
| |
Collapse
|
6
|
Wang L, Shao X, Cheng M, Fan X, Wang C, Jiang H, Zhang X. Mechanisms and applications of milk‐derived bioactive peptides in Food for Special Medical Purposes. Int J Food Sci Technol 2022. [DOI: 10.1111/ijfs.15622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Affiliation(s)
- Linlin Wang
- College of Food Science and Engineering Qilu University of Technology (Shandong Academy of Sciences) Jinan China
| | - Xiaoqing Shao
- College of Food Science and Engineering Qilu University of Technology (Shandong Academy of Sciences) Jinan China
| | - Ming Cheng
- Qingdao Research Institute of Husbandry and Veterinary Qingdao China
| | - Xiaoxue Fan
- College of Food Science and Engineering Qilu University of Technology (Shandong Academy of Sciences) Jinan China
| | - Cunfang Wang
- College of Food Science and Engineering Qilu University of Technology (Shandong Academy of Sciences) Jinan China
| | - Hua Jiang
- College of Food Science and Engineering Qilu University of Technology (Shandong Academy of Sciences) Jinan China
| | - Xiaoning Zhang
- College of Food Science and Engineering Qilu University of Technology (Shandong Academy of Sciences) Jinan China
| |
Collapse
|
7
|
Edwards TS, Dawson KL, Keenan JI, Day AS. A simple method to generate β-casomorphin-7 by in vitro digestion of casein from bovine milk. J Funct Foods 2021; 85:104631. [DOI: 10.1016/j.jff.2021.104631] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
8
|
Kendall E, Millard A, Beaumont J. The "weanling's dilemma" revisited: Evolving bodies of evidence and the problem of infant paleodietary interpretation. AMERICAN JOURNAL OF PHYSICAL ANTHROPOLOGY 2021; 175 Suppl 72:57-78. [PMID: 33460467 DOI: 10.1002/ajpa.24207] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 10/23/2020] [Accepted: 12/06/2020] [Indexed: 01/02/2023]
Abstract
Breastfeeding is known to be a powerful mediator of maternal and childhood health, with impacts throughout the life course. Paleodietary studies of the past 30 years have accordingly taken an enduring interest in the health and diet of young children as a potential indicator of population fertility, subsistence, and mortality patterns. While progress has been made in recent decades toward acknowledging the agency of children, many paleodietary reconstructions have failed to incorporate developments in cognate disciplines revealing synergistic dynamics between maternal and offspring biology. Paleodietary interpretation has relied heavily on the "weanling's dilemma," in which infants are thought to face a bleak choice between loss of immunity or malnutrition. Using a review of immunological and epidemiological evidence for the dynamic and supportive role that breastfeeding plays throughout the complementary feeding period, this article offers context and nuance for understanding past feeding transitions. We suggest that future interpretative frameworks for infant paleodietary and bioarchaeological research should include a broad knowledge base that keeps pace with relevant developments outside of those disciplines.
Collapse
Affiliation(s)
- Ellen Kendall
- Department of Archaeology, Durham University, Durham, UK
| | - Andrew Millard
- Department of Archaeology, Durham University, Durham, UK
| | - Julia Beaumont
- School of Archaeological and Forensic Sciences, University of Bradford, Bradford, UK
| |
Collapse
|
9
|
Bioactive Peptides in Milk: From Encrypted Sequences to Nutraceutical Aspects. BEVERAGES 2017. [DOI: 10.3390/beverages3030041] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
10
|
Sharp JA, Wanyonyi S, Modepalli V, Watt A, Kuruppath S, Hinds LA, Kumar A, Abud HE, Lefevre C, Nicholas KR. The tammar wallaby: A marsupial model to examine the timed delivery and role of bioactives in milk. Gen Comp Endocrinol 2017; 244:164-177. [PMID: 27528357 PMCID: PMC6408724 DOI: 10.1016/j.ygcen.2016.08.007] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Revised: 07/29/2016] [Accepted: 08/11/2016] [Indexed: 12/12/2022]
Abstract
It is now clear that milk has multiple functions; it provides the most appropriate nutrition for growth of the newborn, it delivers a range of bioactives with the potential to stimulate development of the young, it has the capacity to remodel the mammary gland (stimulate growth or signal cell death) and finally milk can provide protection from infection and inflammation when the mammary gland is susceptible to these challenges. There is increasing evidence to support studies using an Australian marsupial, the tammar wallaby (Macropus eugenii), as an interesting and unique model to study milk bioactives. Reproduction in the tammar wallaby is characterized by a short gestation, birth of immature young and a long lactation. All the major milk constituents change substantially and progressively during lactation and these changes have been shown to regulate growth and development of the tammar pouch young and to have roles in mammary gland biology. This review will focus on recent reports examining the control of lactation in the tammar wallaby and the timed delivery of milk bioactivity.
Collapse
Affiliation(s)
- Julie A Sharp
- Institute for Frontier Materials, Deakin University, Geelong 3216, Australia; Cancer Program, Monash Biomedicine Discovery Institute and Department of Anatomy and Developmental Biology, Monash University, Clayton 3800, Victoria, Australia.
| | - Stephen Wanyonyi
- School of Medicine, Deakin University, Geelong 3216, Australia; Institute for Agriculture and the Environment, University of Southern Queensland, Toowoomba, QLD 4350, Australia
| | | | - Ashalyn Watt
- Institute for Frontier Materials, Deakin University, Geelong 3216, Australia
| | | | - Lyn A Hinds
- CSIRO Health and Biosecurity, Canberra, ACT 2601, Australia
| | - Amit Kumar
- School of Medicine, Deakin University, Geelong 3216, Australia; PeterMac Callum Cancer Research Institute, East Melbourne 3002, Victoria, Australia
| | - Helen E Abud
- Cancer Program, Monash Biomedicine Discovery Institute and Department of Anatomy and Developmental Biology, Monash University, Clayton 3800, Victoria, Australia
| | - Christophe Lefevre
- School of Medicine, Deakin University, Geelong 3216, Australia; Division of Bioinformatics, Walter and Eliza Hall Medical Research Institute, Melbourne, Victoria 3000, Australia; PeterMac Callum Cancer Research Institute, East Melbourne 3002, Victoria, Australia; Department of Medical Biology (WEHI), The University of Melbourne, Melbourne 3000, Victoria, Australia
| | - Kevin R Nicholas
- Cancer Program, Monash Biomedicine Discovery Institute and Department of Anatomy and Developmental Biology, Monash University, Clayton 3800, Victoria, Australia
| |
Collapse
|
11
|
Singh P, Singh TP, Gandhi N. Prevention of lipid oxidation in muscle foods by milk proteins and peptides: A review. FOOD REVIEWS INTERNATIONAL 2016. [DOI: 10.1080/87559129.2016.1261297] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Parminder Singh
- Department of Livestock Products Technology, College of Veterinary Science, Guru Angad Dev Veterinary and Animal Sciences University, Ludhiana, India
| | - Tarun pal Singh
- Division of Livestock Products Technology, Indian Veterinary Research Institute, Izatnagar, Bareilly, India
| | - Neeraj Gandhi
- Department of Food Science and Technology, College of Agriculture, Punjab Agricultural University, Ludhiana, India
| |
Collapse
|
12
|
Alsaigh T, Chang M, Richter M, Mazor R, Kistler EB. In vivo analysis of intestinal permeability following hemorrhagic shock. World J Crit Care Med 2015; 4:287-295. [PMID: 26557479 PMCID: PMC4631874 DOI: 10.5492/wjccm.v4.i4.287] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2015] [Revised: 07/07/2015] [Accepted: 08/21/2015] [Indexed: 02/06/2023] Open
Abstract
AIM: To determine the time course of intestinal permeability changes to proteolytically-derived bowel peptides in experimental hemorrhagic shock.
METHODS: We injected fluorescently-conjugated casein protein into the small bowel of anesthetized Wistar rats prior to induction of experimental hemorrhagic shock. These molecules, which fluoresce when proteolytically cleaved, were used as markers for the ability of proteolytically cleaved intestinal products to access the central circulation. Blood was serially sampled to quantify the relative change in concentration of proteolytically-cleaved particles in the systemic circulation. To provide spatial resolution of their location, particles in the mesenteric microvasculature were imaged using in vivo intravital fluorescent microscopy. The experiments were then repeated using an alternate measurement technique, fluorescein isothiocyanate (FITC)-labeled dextrans 20, to semi-quantitatively verify the ability of bowel-derived low-molecular weight molecules (< 20 kD) to access the central circulation.
RESULTS: Results demonstrate a significant increase in systemic permeability to gut-derived peptides within 20 min after induction of hemorrhage (1.11 ± 0.19 vs 0.86 ± 0.07, P < 0.05) compared to control animals. Reperfusion resulted in a second, sustained increase in systemic permeability to gut-derived peptides in hemorrhaged animals compared to controls (1.2 ± 0.18 vs 0.97 ± 0.1, P < 0.05). Intravital microscopy of the mesentery also showed marked accumulation of fluorescent particles in the microcirculation of hemorrhaged animals compared to controls. These results were replicated using FITC dextrans 20 [10.85 ± 6.52 vs 3.38 ± 1.11 fluorescent intensity units (× 105, P < 0.05, hemorrhagic shock vs controls)], confirming that small bowel ischemia in response to experimental hemorrhagic shock results in marked and early increases in gut membrane permeability.
CONCLUSION: Increased small bowel permeability in hemorrhagic shock may allow for systemic absorption of otherwise retained proteolytically-generated peptides, with consequent hemodynamic instability and remote organ failure.
Collapse
|
13
|
Tulini FL, Hymery N, Choiset Y, Chobert JM, Haertlé T, De Martinis ECP, Le Blay G. Milk fermented with the probiotic candidate Lactobacillus paracasei FT700 induces differentiation of monocytes toward macrophages in vitro. J Funct Foods 2015. [DOI: 10.1016/j.jff.2015.04.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
|
14
|
Murofushi Y, Villena J, Morie K, Kanmani P, Tohno M, Shimazu T, Aso H, Suda Y, Hashiguchi K, Saito T, Kitazawa H. The toll-like receptor family protein RP105/MD1 complex is involved in the immunoregulatory effect of exopolysaccharides from Lactobacillus plantarum N14. Mol Immunol 2014; 64:63-75. [PMID: 25466614 DOI: 10.1016/j.molimm.2014.10.027] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2014] [Revised: 10/28/2014] [Accepted: 10/29/2014] [Indexed: 01/10/2023]
Abstract
The radioprotective 105 (RP105)/MD1 complex is a member of the Toll-like receptor (TLR) family. It was reported that RP105/MD1 cooperates with the lipopolysaccharide (LPS) receptor TLR4/MD2 complex and plays a crucial role in the response of immune cells to LPS. This work evaluated whether RP105, TLR4 or TLR2 were involved in the immunoregulatory capacities of Lactobacillus plantarum N14 (LP14) or its exopolysaccharides (EPS). EPS from LP14 were fractionated into neutral (NPS) and acidic (APS) EPS by anion exchange chromatography. Experiments with transfectant HEK(RP105/MD1) and HEK(TLR2) cells demonstrated that LP14 strongly activated NF-κB via RP105 and TLR2. When we studied the capacity of APS to activate NF-κB pathway in HEK(RP105/MD1) and HEK(TLR4) cells; we observed that APS strongly stimulated both transfectant cells. Our results also showed that LP14 and APS were able to decrease the production of pro-inflammatory cytokines (IL-6, IL-8 and MCP-1) in porcine intestinal epithelial (PIE) cells in response to enterotoxigenic Escherichia coli (ETEC) challenge. In order to confirm the role of TLR2, TLR4 and RP105 in the immunoregulatory effect of APS from LP14, we used small interfering RNA (siRNA) to knockdown these receptors in PIE cells. The capacity of LP14 and APS to modulate pro-inflammatory cytokine expression was significantly reduced in PIE(RP105-/-) cells. It was also shown that LP14 and APS were capable of upregulating negative regulators of the TLR signaling in PIE cells. This work describes for the first time that a Lactobacillus strain and its EPS reduce inflammation in intestinal epithelial cells in a RP105/MD1-dependend manner.
Collapse
Affiliation(s)
- Yo Murofushi
- Food and Feed Immunology Group, Graduate School of Agricultural Science, Tohoku University, Aobaku, Sendai 981-8555, Japan.
| | - Julio Villena
- Food and Feed Immunology Group, Graduate School of Agricultural Science, Tohoku University, Aobaku, Sendai 981-8555, Japan; Laboratory of Immunobiotechnology, CERELA-CONICET, Tucuman, Argentina.
| | - Kyoko Morie
- Food and Feed Immunology Group, Graduate School of Agricultural Science, Tohoku University, Aobaku, Sendai 981-8555, Japan.
| | - Paulraj Kanmani
- Food and Feed Immunology Group, Graduate School of Agricultural Science, Tohoku University, Aobaku, Sendai 981-8555, Japan.
| | - Masanori Tohno
- Functional Feed Research Team, National Institute of Livestock and Grassland Science, National Agricultural Research Organization, Nasushiobara, Tochigi 329-2793, Japan.
| | - Tomoyuki Shimazu
- Laboratory of Animal Breeding and Genetics, Graduate School of Agricultural Science, Tohoku University, Aobaku, Sendai 981-8555, Japan.
| | - Hisashi Aso
- Cell Biology Laboratory, Graduate School of Agricultural Science, Tohoku University, Aobaku, Sendai 981-8555, Japan.
| | - Yoshihito Suda
- Department of Food, Agriculture and Environment, Miyagi University, Sendai 982-0215, Japan.
| | | | - Tadao Saito
- Food and Feed Immunology Group, Graduate School of Agricultural Science, Tohoku University, Aobaku, Sendai 981-8555, Japan.
| | - Haruki Kitazawa
- Food and Feed Immunology Group, Graduate School of Agricultural Science, Tohoku University, Aobaku, Sendai 981-8555, Japan.
| |
Collapse
|
15
|
Wachi S, Kanmani P, Tomosada Y, Kobayashi H, Yuri T, Egusa S, Shimazu T, Suda Y, Aso H, Sugawara M, Saito T, Mishima T, Villena J, Kitazawa H. Lactobacillus delbrueckii TUA4408L and its extracellular polysaccharides attenuate enterotoxigenic Escherichia coli-induced inflammatory response in porcine intestinal epitheliocytes via Toll-like receptor-2 and 4. Mol Nutr Food Res 2014; 58:2080-93. [PMID: 24995380 DOI: 10.1002/mnfr.201400218] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2014] [Revised: 05/31/2014] [Accepted: 06/27/2014] [Indexed: 01/04/2023]
Abstract
SCOPE Immunobiotics are known to modulate intestinal immune responses by regulating Toll-like receptor (TLR) signaling pathways, which are responsible for the induction of cytokines and chemokines in response to microbial-associated molecular patterns. However, little is known about the immunomodulatory activity of compounds or molecules from immunobiotics. METHODS AND RESULTS We evaluated whether Lactobacillus delbrueckii subsp. delbrueckii TUA4408L (Ld) or its extracellular polysaccharide (EPS): acidic EPS (APS) and neutral EPS (NPS), modulated the response of porcine intestinal epitheliocyte (PIE) cells against Enterotoxigenic Escherichia coli (ETEC) 987P. The roles of TLR2, TLR4, and TLR negative regulators in the immunoregulatory effects were also studied. ETEC-induced inflammatory cytokines were downregulated when PIE cells were prestimulated with both Ld or EPSs. Ld, APS, and NPS inhibited ETEC mediated mitogen-activated protein kinase (MAPK) and nuclear factor-κB (NF-κB) activation by upregulating TLR negative regulators. The capability of Ld to suppress inflammatory cytokines was diminished when PIE cells were blocked with anti-TLR2 antibody, while APS failed to suppress inflammatory cytokines when cells were treated with anti-TLR4 antibody. Induction of Ca²⁺ fluxes in TLR knockdown cells confirmed that TLR2 plays a principal role in the immunomodulatory action of Ld, while the activity of APS is mediated by TLR4. In addition, NPS activity depends on both TLR4 and TLR2. CONCLUSION Ld and its EPS have the potential to be used for the development of anti-inflammatory functional foods to prevent intestinal diseases in both humans and animals.
Collapse
Affiliation(s)
- Satoshi Wachi
- Food and Feed Immunology Group, Graduate School of Agricultural Science, Tohoku University, Sendai, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Effects of Chondroitin Sulfate and Its Oligosaccharides on Toll-Like Receptor-Mediated IL-6 Secretion by Macrophage-Like J774.1 Cells. Biosci Biotechnol Biochem 2014; 75:1283-9. [DOI: 10.1271/bbb.110055] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
17
|
Wang W, Gu F, Wei C, Tang Y, Zheng X, Ren M, Qin Y. PGPIPN, a therapeutic hexapeptide, suppressed human ovarian cancer growth by targeting BCL2. PLoS One 2013; 8:e60701. [PMID: 23593287 PMCID: PMC3622516 DOI: 10.1371/journal.pone.0060701] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2012] [Accepted: 03/01/2013] [Indexed: 11/19/2022] Open
Abstract
Bioactive peptides, either derived from nature resources or synthesized by rational design, have been demonstrated potential for therapeutic agents against numerous human diseases, including cancer. However, the mechanism of therapeutic peptides against cancer has not been well elucidated. Here we show that PGPIPN, a hexapeptide derived from bovine β-casein, inhibited the proliferation of human ovarian cancer cells line SKOV(3) as well as the primary ovarian cancer cells in vitro. Consistently, PGPIPIN also decreased tumor growth rate in xenograft ovarian cancer model mice in a dose-dependent manner. Further study demonstrated that the anti-tumor effect of PGPIPN is partially through promoting cell apoptosis by inhibiting BCL2 pathway. Thus, our study suggests that PGPIPN is a potential therapeutic agent for the treatment of ovarian cancer or other types of cancer.
Collapse
Affiliation(s)
- Wei Wang
- Department of Biochemistry & Molecular Biology, Anhui Medical University, Heifei, Anhui, China
| | - Fang Gu
- Department of Biochemistry & Molecular Biology, Anhui Medical University, Heifei, Anhui, China
| | - Cai Wei
- Department of Biochemistry & Molecular Biology, Anhui Medical University, Heifei, Anhui, China
| | - Yigui Tang
- Department of Biochemistry & Molecular Biology, Anhui Medical University, Heifei, Anhui, China
| | - Xin Zheng
- Department of Biochemistry & Molecular Biology, Anhui Medical University, Heifei, Anhui, China
| | - Mingqiang Ren
- Department of Biochemistry & Molecular Biology, Anhui Medical University, Heifei, Anhui, China
- Georgia Health Sciences University Cancer Center, Augusta, Georgia, United States of America
| | - Yide Qin
- Department of Biochemistry & Molecular Biology, Anhui Medical University, Heifei, Anhui, China
- * E-mail:
| |
Collapse
|
18
|
Whey protein hydrolysates decrease IL-8 secretion in lipopolysaccharide (LPS)-stimulated respiratory epithelial cells by affecting LPS binding to Toll-like receptor 4. Br J Nutr 2013; 110:58-68. [PMID: 23286514 DOI: 10.1017/s0007114512004655] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
UNLABELLED Whey proteins (WP) exert anti-inflammatory and antioxidant effects. Hyperbaric pressurisation of whey increases its digestibility and changes the spectrum of peptides released during digestion. We have shown that dietary supplementation with pressurised whey improves nutritional status and systemic inflammation in patients with cystic fibrosis (CF). Both clinical indices are largely affected by airway processes, to which respiratory epithelial cells actively contribute. Here, we tested whether peptides released from the digestion of pressurised whey can attenuate the inflammatory responses of CF respiratory epithelial cells. Hydrolysates of pressurised WP (pWP) and native WP (nWP, control) were generated in vitro and tested for anti-inflammatory properties judged by the suppression of IL-8 production in CF and non-CF respiratory epithelial cell lines (CFTE29o- and 1HAEo-, respectively). We observed that, in both cell lines, pWP hydrolysate suppressed IL-8 production stimulated by lipopolysaccharide (LPS) to a greater magnitude compared with nWP hydrolysate. Neither hydrolysate suppressed IL-8 production induced by TNF-α or IL-1β, suggesting an effect on the Toll-like receptor (TLR) 4 pathway, the cellular sensor for LPS. Further, neither hydrolysate affected TLR4 expression or neutralised LPS. Both pWP and nWP hydrolysates similarly reduced LPS binding to surface TLR4, while pWP tended to more potently increase extracellular antioxidant capacity. IN CONCLUSION (1) anti-inflammatory properties of whey are enhanced by pressurisation; (2) suppression of IL-8 production may contribute to the clinical effects of pressurised whey supplementation on CF; (3) this effect may be partly explained by a combination of reduced LPS binding to TLR4 and enhanced extracellular antioxidant capacity.
Collapse
|
19
|
|
20
|
Monogioudi E, Faccio G, Lille M, Poutanen K, Buchert J, Mattinen ML. Effect of enzymatic cross-linking of β-casein on proteolysis by pepsin. Food Hydrocoll 2011. [DOI: 10.1016/j.foodhyd.2010.05.007] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
21
|
Lamy E, da Costa G, Santos R, Capela E Silva F, Potes J, Pereira A, Coelho AV, Sales Baptista E. Sheep and goat saliva proteome analysis: a useful tool for ingestive behavior research? Physiol Behav 2009; 98:393-401. [PMID: 19615390 DOI: 10.1016/j.physbeh.2009.07.002] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2008] [Revised: 06/25/2009] [Accepted: 07/08/2009] [Indexed: 01/22/2023]
Abstract
Sheep and goats differ in diet selection, which may reflect different abilities to deal with the ingestion of plant secondary metabolites. Although saliva provides a basis for immediate oral information via sensory cues and also a mechanism for detoxification, our understanding of the role of saliva in the pre-gastric control of the intake of herbivores is rudimentary. Salivary proteins have important biological functions, but despite their significance, their expression patterns in sheep and goats have been little studied. Protein separation techniques coupled to mass spectrometry based techniques have been used to obtain an extensive comprehension of human saliva protein composition but far fewer studies have been undertaken on animals' saliva. We used two-dimensional electrophoresis gel analysis to compare sheep and goats parotid saliva proteome. Matrix-assisted laser desorption ionization-time of flight (MALDI-TOF) and liquid chromatography tandem mass spectrometry (LC-MS/MS) were used to identify proteins. From a total of 260 sheep and 205 goat saliva protein spots, 117 and 106 were identified, respectively. A high proportion of serum proteins were found in both salivary protein profiles. Major differences between the two species were detected for proteins within the range of 25-35 kDa. This study presents the parotid saliva proteome of sheep and goat and highlights the potential of proteomics for investigation relating to intake behavior research.
Collapse
Affiliation(s)
- E Lamy
- ICAAM-Instituto de Ciências Agrárias e Ambientais Mediterrânicas, Universidade de Evora, 7002-554 Evora, Portugal
| | | | | | | | | | | | | | | |
Collapse
|