1
|
Zhou Y, Geng Z, Song L, Wang D. Epidural hydroxyethyl starch ameliorating postdural puncture headache after accidental dural puncture. Chin Med J (Engl) 2023; 136:88-95. [PMID: 36728556 PMCID: PMC10106202 DOI: 10.1097/cm9.0000000000001967] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Indexed: 02/03/2023] Open
Abstract
BACKGROUND No convincing modalities have been shown to completely prevent postdural puncture headache (PDPH) after accidental dural puncture (ADP) during obstetric epidural procedures. We aimed to evaluate the role of epidural administration of hydroxyethyl starch (HES) in preventing PDPH following ADP, regarding the prophylactic efficacy and side effects. METHODS Between January 2019 and February 2021, patients with a recognized ADP during epidural procedures for labor or cesarean delivery were retrospectively reviewed to evaluate the prophylactic strategies for the development of PDPH at a single tertiary hospital. The development of PDPH, severity and duration of headache, adverse events associated with prophylactic strategies, and hospital length of stay postpartum were reported. RESULTS A total of 105 patients experiencing ADP received a re-sited epidural catheter. For PDPH prophylaxis, 46 patients solely received epidural analgesia, 25 patients were administered epidural HES on epidural analgesia, and 34 patients received two doses of epidural HES on and after epidural analgesia, respectively. A significant difference was observed in the incidence of PDPH across the groups (epidural analgesia alone, 31 [67.4%]; HES-Epidural analgesia, ten [40.0%]; HES-Epidural analgesia-HES, five [14.7%]; P <0.001). No neurologic deficits, including paresthesias and motor deficits related to prophylactic strategies, were reported from at least 2 months to up to more than 2 years after delivery. An overall backache rate related to HES administration was 10%. The multivariable regression analysis revealed that the HES-Epidural analgesia-HES strategy was significantly associated with reduced risk of PDPH following ADP (OR = 0.030, 95% confidence interval: 0.006-0.143; P < 0.001). CONCLUSIONS The incorporated prophylactic strategy was associated with a great decrease in the risk of PDPH following obstetric ADP. This strategy consisted of re-siting an epidural catheter with continuous epidural analgesia and two doses of epidural HES, respectively, on and after epidural analgesia. The efficacy and safety profiles of this strategy have to be investigated further.
Collapse
Affiliation(s)
- Yin Zhou
- Department of Anesthesiology, Peking University First Hospital, Beijing 100034 China
| | | | | | | |
Collapse
|
2
|
Song J, Pan X, Li J, Hu X, Yin W. Characteristics of New Oxygen-Carrying Plasma and Its Application Prospects in the Treatment of Severe Acute Pancreatitis. Pancreas 2023; 52:e1-e6. [PMID: 37378895 DOI: 10.1097/mpa.0000000000002212] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 06/29/2023]
Abstract
ABSTRACT Oxygen-carrying plasma, a new type of colloid substitute, is composed of hydroxyethyl starch and acellular hemoglobin-based oxygen carriers. It can supplement colloidal osmotic pressure and rapidly improve the body's oxygen supply. The resuscitation effect of the new oxygen-carrying plasma in animal shock models is better than that of hydroxyethyl starch or hemoglobin-based oxygen carriers alone. It can reduce the histopathological damage and mortality associated with severe acute pancreatitis, and it is expected to become an interesting treatment method for severe acute pancreatitis. This article reviews the characteristics of the new oxygen-carrying plasma, its role in fluid resuscitation, and its application prospects in the treatment of severe acute pancreatitis.
Collapse
Affiliation(s)
- Jingyu Song
- From the Department of Emergency center of Xijing Hospital, Airforce Medical University, Xi'an, China
| | - Xinting Pan
- Department of Emergency Intensive Care Unit, the Affiliated Hospital of Qingdao University, Qingdao, China
| | - Junjie Li
- From the Department of Emergency center of Xijing Hospital, Airforce Medical University, Xi'an, China
| | - Xiaomin Hu
- From the Department of Emergency center of Xijing Hospital, Airforce Medical University, Xi'an, China
| | - Wen Yin
- From the Department of Emergency center of Xijing Hospital, Airforce Medical University, Xi'an, China
| |
Collapse
|
3
|
Shan R, Zhou H, Liu X, Su G, Liu G, Zhang X, Sun C, Yu Z, Zhan L, Huang Z. Neuroprotective effects of four different fluids on cerebral ischaemia/reperfusion injury in rats through stabilization of the blood-brain barrier. Eur J Neurosci 2021; 54:5586-5600. [PMID: 34258805 PMCID: PMC9292910 DOI: 10.1111/ejn.15385] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 06/29/2021] [Accepted: 07/05/2021] [Indexed: 12/12/2022]
Abstract
Protecting the blood–brain barrier (BBB) is a potential strategy to treat cerebral ischaemic injury. We previously reported that hypertonic sodium chloride hydroxyethyl starch 40 (HSH) treatment alleviates brain injury induced by transient middle cerebral artery occlusion (tMCAO). However, other fluids, including 20% mannitol (MN), 3% hypertonic sodium chloride (HTS) and hydroxyethyl starch 130/0.4 solution (HES), have the same effect as HSH in cerebral ischaemia/reperfusion injury (CI/RI) remains unclear. The present study evaluated the protective effects of these four fluids on the BBB in tMCAO rats. Sprague–Dawley (SD) rats were randomly assigned to six groups. A CI/RI rat model was established by tMCAO for 120 min followed by 24 h of reperfusion. The sham and tMCAO groups were treated with normal saline (NS), whereas the other four groups were treated with the four fluids. After 24 h of reperfusion, neurological function, brain oedema, brain infarction volume, permeability of the BBB, cortical neuron loss and protein and mRNA expression were assessed. The four fluids (especially HSH) alleviated neurological deficits and decreased the infarction volume, brain oedema, BBB permeability and cortical neuron loss induced by tMCAO. The expression levels of GFAP, IL‐1β, TNF‐α, MMP‐9, MMP‐3, AQP4, MMP‐9, PDGFR‐β and RGS5 were decreased, whereas the expression levels of laminin and claudin‐5 were increased. These data suggested that small‐volume reperfusion using HSH, HES, MN and HTS ameliorated CI/RI, probably by attenuating BBB disruption and postischaemic inflammation, with HSH exerting the strongest neuroprotective effect.
Collapse
Affiliation(s)
- Reai Shan
- Department of Anesthesiology, First Affiliated Hospital of Gannan Medical University, Ganzhou, China.,Key Laboratory of Prevention and treatment of cardiovascular and cerebrovascular diseases of Ministry of Education, Gannan Medical University, Ganzhou, China.,Institute of Pain Medicine, Gannan Medical University, Ganzhou, China
| | - Hongyan Zhou
- Department of Anesthesiology, Chongqing Hospital of Traditional Chinese Medicine, Chongqing, China
| | - Xinfang Liu
- Key Laboratory of Prevention and treatment of cardiovascular and cerebrovascular diseases of Ministry of Education, Gannan Medical University, Ganzhou, China
| | - Guangjun Su
- Key Laboratory of Prevention and treatment of cardiovascular and cerebrovascular diseases of Ministry of Education, Gannan Medical University, Ganzhou, China.,Graduate School, Gannan Medical University, Ganzhou, China
| | - Guangsen Liu
- Department of Anesthesiology, First Affiliated Hospital of Gannan Medical University, Ganzhou, China.,Key Laboratory of Prevention and treatment of cardiovascular and cerebrovascular diseases of Ministry of Education, Gannan Medical University, Ganzhou, China.,Graduate School, Gannan Medical University, Ganzhou, China
| | - Xiaoli Zhang
- Department of Anesthesiology, First Affiliated Hospital of Gannan Medical University, Ganzhou, China.,Key Laboratory of Prevention and treatment of cardiovascular and cerebrovascular diseases of Ministry of Education, Gannan Medical University, Ganzhou, China.,Graduate School, Gannan Medical University, Ganzhou, China
| | - Cong Sun
- Department of Anesthesiology, First Affiliated Hospital of Gannan Medical University, Ganzhou, China.,Key Laboratory of Prevention and treatment of cardiovascular and cerebrovascular diseases of Ministry of Education, Gannan Medical University, Ganzhou, China.,Graduate School, Gannan Medical University, Ganzhou, China
| | - Zining Yu
- Key Laboratory of Prevention and treatment of cardiovascular and cerebrovascular diseases of Ministry of Education, Gannan Medical University, Ganzhou, China.,Graduate School, Gannan Medical University, Ganzhou, China
| | - Lifang Zhan
- Department of Anesthesiology, First Affiliated Hospital of Gannan Medical University, Ganzhou, China.,Key Laboratory of Prevention and treatment of cardiovascular and cerebrovascular diseases of Ministry of Education, Gannan Medical University, Ganzhou, China
| | - Zhihua Huang
- Key Laboratory of Prevention and treatment of cardiovascular and cerebrovascular diseases of Ministry of Education, Gannan Medical University, Ganzhou, China.,Institute of Pain Medicine, Gannan Medical University, Ganzhou, China.,Department of Physiology, Gannan Medical University, Ganzhou, China
| |
Collapse
|
4
|
Schick MA, Burek M, Förster CY, Nagai M, Wunder C, Neuhaus W. Hydroxyethylstarch revisited for acute brain injury treatment. Neural Regen Res 2021; 16:1372-1376. [PMID: 33318420 PMCID: PMC8284304 DOI: 10.4103/1673-5374.300978] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Infusion of the colloid hydroxyethylstarch has been used for volume substitution to maintain hemodynamics and microcirculation after e.g., severe blood loss. In the last decade it was revealed that hydroxyethylstarch can aggravate acute kidney injury, especially in septic patients. Because of the serious risk for critically ill patients, the administration of hydroxyethylstarch was restricted for clinical use. Animal studies and recently published in vitro experiments showed that hydroxyethylstarch might exert protective effects on the blood-brain barrier. Since the prevention of blood-brain barrier disruption was shown to go along with the reduction of brain damage after several kinds of insults, we revisit the topic hydroxyethylstarch and discuss a possible niche for the application of hydroxyethylstarch in acute brain injury treatment.
Collapse
Affiliation(s)
- Martin A Schick
- Department of Anesthesiology and Critical Care, Medical Center-University of Freiburg; Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Malgorzata Burek
- Department of Anaesthesia and Critical Care, University Hospital Würzburg, Würzburg, Germany
| | - Carola Y Förster
- Department of Anaesthesia and Critical Care, University Hospital Würzburg, Würzburg, Germany
| | - Michiaki Nagai
- Department of Internal Medicine, General Medicine and Cardiology, Hiroshima City Asa Hospital, Hiroshima, Japan
| | - Christian Wunder
- Robert-Bosch-Krankenhaus, Department of Anesthesiology and Intensive Care Medicine, Stuttgart, Germany
| | - Winfried Neuhaus
- Competence Unit Molecular Diagnostics, Center Health and Bioresources, Austrian Institute of Technology GmbH, Vienna, Austria
| |
Collapse
|
5
|
Gerhartl A, Hahn K, Neuhoff A, Friedl HP, Förster CY, Wunder C, Schick M, Burek M, Neuhaus W. Hydroxyethylstarch (130/0.4) tightens the blood-brain barrier in vitro. Brain Res 2019; 1727:146560. [PMID: 31756307 DOI: 10.1016/j.brainres.2019.146560] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2019] [Revised: 11/15/2019] [Accepted: 11/17/2019] [Indexed: 02/08/2023]
Abstract
In order to prevent cerebral vasospasm after a subarachnoid hemorrhage (SAH), the so-called triple H-therapy (hypertension, hypervolemia, hemodilution) could be applied. In these cases, colloidal solutions containing Hydroxyethylstarch (HES) are used to induce hypervolemia. The administration of HES is very much under debate for the mentioned use, because in general the application of HES for the treatment of critical ill patients has been reduced tremendously in the last years due to its nephrotoxic effects. In this context, there are limited data investigating the influence of HES on the blood-brain barrier. These data might help to assess if a transient administration of HES is possibly justifiable to prevent cerebral ischemia during vasospasm despite the risk of an acute kidney injury. To address this question, a mouse blood-brain barrier in vitro model based on cell line cerebEND was exposed to different HES concentrations and compared to NaCl-containing control solutions. In order to assess the effects of HES on blood-brain barrier properties, cell viability, transendothelial electrical resistance, permeability of carboxyfluorescein, mRNA and protein expression and localization of tight junction proteins were determined. In summary, 1.5-4% HES attenuated cell viability in a mild, concentration dependent manner compared to the NaCl control solution (0% HES). At the mRNA level 1% and 4% HES significantly increased the expression of tight junction associated proteins (ZO-1 and occludin) and the glucose transporter Glut-1 (Slc2a1). In correspondence to this, 4% HES inhibited breakdown of the paracellular barrier in comparison to the control NaCl group (0% HES) shown by transendothelial electrical resistance values and the permeability of the paracellular marker carboxyfluorescein. These effects at the functional level were confirmed by immunofluorescence microscopic images of junctional proteins. The obtained in vitro data showed a potential for HES to counteract blood-brain barrier damage. Future studies are needed to reveal the applicability of HES as a blood-brain barrier stabilizing agent.
Collapse
Affiliation(s)
- Anna Gerhartl
- AIT - Austrian Institute of Technology GmbH, Center Health and Bioresources, Competence Unit Molecular Diagnostics, Giefinggasse 4, 1210 Vienna, Austria
| | - Kathrin Hahn
- AIT - Austrian Institute of Technology GmbH, Center Health and Bioresources, Competence Unit Molecular Diagnostics, Giefinggasse 4, 1210 Vienna, Austria
| | - Anja Neuhoff
- University of Wuerzburg, Department of Anesthesia and Critical Care, Oberduerrbacherstraße 6, 97080 Wuerzburg, Germany
| | - Heinz-Peter Friedl
- AIT - Austrian Institute of Technology GmbH, Center Health and Bioresources, Competence Unit Molecular Diagnostics, Giefinggasse 4, 1210 Vienna, Austria
| | - Carola Y Förster
- University of Wuerzburg, Department of Anesthesia and Critical Care, Oberduerrbacherstraße 6, 97080 Wuerzburg, Germany
| | - Christian Wunder
- Robert-Bosch-Hospital, Anesthesiology and Intensive Care Medicine, Auerbachstraße 110, 70376 Stuttgart, Germany
| | - Martin Schick
- University of Freiburg, Medical Center, Anesthesiology and Critical Care, Hugstetter Straße 55, 79106 Freiburg im Breisgau, Germany
| | - Malgorzata Burek
- University of Wuerzburg, Department of Anesthesia and Critical Care, Oberduerrbacherstraße 6, 97080 Wuerzburg, Germany
| | - Winfried Neuhaus
- AIT - Austrian Institute of Technology GmbH, Center Health and Bioresources, Competence Unit Molecular Diagnostics, Giefinggasse 4, 1210 Vienna, Austria.
| |
Collapse
|
6
|
Wu WC, Hsiao PY, Huang YC. Effects of amylose content on starch-chitosan composite film and its application as a wound dressing. JOURNAL OF POLYMER RESEARCH 2019. [DOI: 10.1007/s10965-019-1770-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
7
|
|
8
|
Khan SA, Adogwa O, Gan TJ, Null UT, Verla T, Gokhale S, White WD, Britz GW, Zomorodi AR, James ML, McDonagh DL. Effect of 6% hydroxyethyl starch 130/0.4 in 0.9% sodium chloride (Voluven®) on complications after subarachnoid hemorrhage: a retrospective analysis. SPRINGERPLUS 2013; 2:314. [PMID: 23888282 PMCID: PMC3717154 DOI: 10.1186/2193-1801-2-314] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/10/2013] [Accepted: 07/08/2013] [Indexed: 12/29/2022]
Abstract
Background 6% Hydroxyethyl Starch 130/0.4 in 0.9% Sodium Chloride (Voluven®; 6% HES 130/0.4) is a colloid often used for fluid resuscitation in patients with subarachnoid hemorrhage (SAH), despite a lack of safety data for this use. The purpose of our study was to evaluate the effect of 6% HES 130/0.4 on major complications associated with SAH. Methods Medical records of all patients presenting between May 2010 and September 2012 with aneurysmal SAH were analyzed. Patients were divided in two groups based on the administration of 6% HES 130/0.4; HES group (n=57) and Non-HES group (n=72). The primary outcome included a composite of three major complications associated with SAH: Delayed Cerebral Ischemia (DCI), Hydrocephalus (HCP) requiring cerebrospinal fluid (CSF) shunting, and Rebleeding. Results The study groups were similar with respect to most characteristics except the incidences of hypertension, ischemic heart disease, Fisher grade and lowest hemoglobin during stay. The odds of developing the primary composite outcome was higher in the HES group [OR= 3.1(1.30-7.36), p=0.01]. The patients in the HES group had a significantly longer median duration of hospital (19 vs 14 days) and Neurointensive Care Unit stay (14 vs 10 days) compared to the Non HES group. Conclusion We observed increased complications after SAH with 6% HES 130/0.4 (Voluven®) administration. An adequately powered prospective randomized controlled trial into the safety of 6% HES 130/0.4 in this patient population is warranted. Electronic supplementary material The online version of this article (doi:10.1186/2193-1801-2-314) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Shariq A Khan
- Department of Anesthesiology, Duke University Medical Centre, Durham, NC USA ; Department of Anesthesiology, Singapore General Hospital, Singapore, Singapore
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Peng Z, Zhu Y, Zhang Y, Wilhelmsen K, Jia C, Jin J, Xue Q, Feng X, Zhang F, Yu B. Effects of ghrelin on pulmonary NOD2 mRNA expression and NF-κB activation when protects against acute lung injury in rats challenged with cecal ligation and puncture. Int Immunopharmacol 2012; 13:440-5. [PMID: 22575870 DOI: 10.1016/j.intimp.2012.04.006] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2011] [Revised: 04/09/2012] [Accepted: 04/11/2012] [Indexed: 12/18/2022]
Abstract
BACKGROUND Many studies have shown that ghrelin can down-regulate inflammatory cytokine expression via the inhibition of NF-κB activity and therefore, its administration to septic patients is considered beneficial. However, our knowledge of ghrelin's effects on the upstream activators of the NF-κB pathway, such as NOD2, is still limited. This study aimed to investigate the possible involvement of the NOD2 signaling pathway in the anti-inflammatory effects of ghrelin. METHODS Twenty-four male SD rats received cecal ligation and puncture (CLP) or sham operation, followed by infusion of saline or ghrelin. The lungs were harvested 6h after CLP or sham operation and analyzed for lung histopathology, neutrophil infiltration, inflammatory cytokines (TNF-α, and IL-6), NOD2 mRNA expression, and activation of NF-κB. Furthermore, survival was recorded for ten days in additional groups of rats. RESULTS Compared with sham group, neutrophil infiltration, TNF-α and IL-6 levels, NOD2 mRNA expression, as well as NF-κB activation in lungs from rats undergoing CLP were significantly increased. After the administration of ghrelin, all inflammatory parameters analyzed were lower than those without ghrelin following CLP. In addition, ghrelin improved survival after CLP. CONCLUSION Our results indicate that in a CLP model of sepsis, the beneficial effects that ghrelin has on inflammatory outcomes are mediated at least in part through inhibition of NOD2 expression upstream of NF-κB.
Collapse
Affiliation(s)
- Zhiyou Peng
- Department of Anesthesiology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200025, PR China
| | | | | | | | | | | | | | | | | | | |
Collapse
|