1
|
Deng W, Cao Z, Dong R, Yan Y, Jiang Q. Irisin inhibits CCK-8-induced TNF-α production via integrin αVβ5-NF-κB signaling pathways in Nile tilapia (Oreochromis niloticus). FISH & SHELLFISH IMMUNOLOGY 2024; 144:109245. [PMID: 38000652 DOI: 10.1016/j.fsi.2023.109245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 11/02/2023] [Accepted: 11/20/2023] [Indexed: 11/26/2023]
Abstract
Irisin, a secreted myokine generated by fibronectin type III domain-containing protein 5, has recently shown the potential to alleviate inflammation. Cholecystokinin-octapeptide (CCK-8) is closely associated with the inflammatory factor TNF-α, a central cytokine in inflammatory reactions. However, the interactions between irisin and CCK-8 in regulating TNF-α production and the underlying mechanism have not yet been elucidated. In the present study, irisin treatment inhibited the basal and the CCK-8-induced TNF-α production in vivo. Additionally, neutralizing circulating irisin using an irisin antiserum significantly augmented the CCK-8-induced stimulation of TNF-α levels. Moreover, the incubation of head kidney cells with irisin or CCK-8 has opposite effects on TNF-α secretion. Notably, irisin treatment inhibited basal and CCK-8-stimulated TNF-α release and gene transcription in head kidney cells. Mechanistically, the inhibitory actions of irisin on basal and CCK-8-induced TNF-α production could be negated by co-administered with the selective integrin αVβ5 inhibitor cilengitide. In addition, the inhibitory effect of irisin on basal and CCK-8-triggered TNF-α production could be abolished by the inhibition of the nuclear factor-kappa B (NF-κB) signaling pathway. Furthermore, irisin impeded CCK-8-induced phosphorylation and degradation of IκBα, simultaneously inhibiting NF-κB phosphorylation, preventing its translocation into the nucleus, and suppressing its DNA-binding activity induced by CCK-8. Collectively, these results suggest that the inhibitory effect of irisin on TNF-α production caused by CCK-8 is mediated via the integrin αVβ5-NF-κB signaling pathways in tilapia.
Collapse
Affiliation(s)
- Wenjun Deng
- Key Laboratory of Bio-resources and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, PR China
| | - Zhikai Cao
- Key Laboratory of Bio-resources and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, PR China
| | - Rui Dong
- Key Laboratory of Bio-resources and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, PR China
| | - Yisha Yan
- Key Laboratory of Bio-resources and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, PR China
| | - Quan Jiang
- Key Laboratory of Bio-resources and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, PR China.
| |
Collapse
|
2
|
Zhong Z, Wang J, Han Q, Lin H, Luo H, Guo D, Jiang Y, Liu A. XBP1 impacts lung adenocarcinoma progression by promoting plasma cell adaptation to the tumor microenvironment. Front Genet 2022; 13:969536. [PMID: 36092910 PMCID: PMC9448868 DOI: 10.3389/fgene.2022.969536] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 08/01/2022] [Indexed: 11/13/2022] Open
Abstract
Background: The activation of X-box binding protein 1 (XBP1) plays an essential role in the unfolded protein response (UPR) of the endoplasmic reticulum (ER). XBP1 is commonly expressed in various tumors and is closely related to tumorigenesis and progression. However, the role of XBP1 in lung adenocarcinoma (LUAD), especially the prognostic value of its alternative splicing isoforms, remains largely unknown. Methods: The LUAD datasets were retrieved from the The Cancer Genome Atlas, ArrayExpress and Gene Expression Omnibus. GEPIA2 and meta-analysis were employed to explore the prognostic value, and bioinformatics analysis with the TIMER2.0 database was used to investigate immune cell infiltration. We performed single-cell analyses to identify cell types with high XBP1 expression. In addition, polymerase chain reaction (PCR) and DNA sequencing were performed to verify the authenticity of the new spliceosome. Results: In this study, we found that high expression of XBP1 was significantly associated with a good prognosis, and XBP1 expression was significantly positively correlated with B cell infiltration in LUAD. In addition, we found that high-level expression of a novel splicing isoform, XBP1 (XBP1-003), improved the prognosis of LUAD. Protein structural analysis demonstrated that XBP1-003 has several specific protein domains that are different from those of other XBP1 isoforms, indicating a unique function of this isoform in LUAD. Conclusion: All these results suggest that XBP1 plays an antitumorigenic role in LUAD through alternative splicing, which may be related to the adaptation of plasma cells. This sheds new light on the potential strategy for LUAD prognosis evaluation and immunotherapy.
Collapse
Affiliation(s)
- Zhaoqian Zhong
- Guangdong Provincial Key Laboratory of Proteomics, State Key Laboratory of Organ Failure Research, Department of Pathophysiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Junhao Wang
- Guangdong Provincial Key Laboratory of Proteomics, State Key Laboratory of Organ Failure Research, Department of Pathophysiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Qizheng Han
- Guangdong Provincial Key Laboratory of Proteomics, State Key Laboratory of Organ Failure Research, Department of Pathophysiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Hong Lin
- Guangdong Provincial Key Laboratory of Proteomics, State Key Laboratory of Organ Failure Research, Department of Pathophysiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Haihua Luo
- Guangdong Provincial Key Laboratory of Proteomics, State Key Laboratory of Organ Failure Research, Department of Pathophysiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Danyan Guo
- Guangdong Provincial Key Laboratory of Proteomics, State Key Laboratory of Organ Failure Research, Department of Pathophysiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Yong Jiang
- Guangdong Provincial Key Laboratory of Proteomics, State Key Laboratory of Organ Failure Research, Department of Pathophysiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
- *Correspondence: Yong Jiang, ; Aihua Liu,
| | - Aihua Liu
- Department of Respiratory and Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
- *Correspondence: Yong Jiang, ; Aihua Liu,
| |
Collapse
|
3
|
Bong JH, Park JH, Sung JS, Lee CK, Lee GY, Kang MJ, Kim HO, Pyun JC. Rapid Analysis of Bacterial Contamination in Platelets without Pre-Enrichment Using Pig Serum-Derived Antibodies. ACS APPLIED BIO MATERIALS 2021; 4:7779-7789. [DOI: 10.1021/acsabm.1c00538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Ji-Hong Bong
- Department of Materials Science and Engineering, Yonsei University, 50 Yonsei-Ro, Seodaemun-Gu, Seoul 03722, Korea
| | - Jun-Hee Park
- Department of Materials Science and Engineering, Yonsei University, 50 Yonsei-Ro, Seodaemun-Gu, Seoul 03722, Korea
| | - Jeong Soo Sung
- Department of Materials Science and Engineering, Yonsei University, 50 Yonsei-Ro, Seodaemun-Gu, Seoul 03722, Korea
| | - Chang Kyu Lee
- Department of Materials Science and Engineering, Yonsei University, 50 Yonsei-Ro, Seodaemun-Gu, Seoul 03722, Korea
| | - Ga-Yeon Lee
- Department of Materials Science and Engineering, Yonsei University, 50 Yonsei-Ro, Seodaemun-Gu, Seoul 03722, Korea
| | - Min-Jung Kang
- Korea Institute of Science and Technology (KIST), Seoul 02792, Korea
| | - Hyun Ok Kim
- Department of Laboratory Medicine, Yonsei University College of Medicine, Seoul 03722, Korea
| | - Jae-Chul Pyun
- Department of Materials Science and Engineering, Yonsei University, 50 Yonsei-Ro, Seodaemun-Gu, Seoul 03722, Korea
| |
Collapse
|
4
|
Funakoshi A, Tatsuno K, Shimauchi T, Fujiyama T, Ito T, Tokura Y. Cholecystokinin Downregulates Psoriatic Inflammation by Its Possible Self-Regulatory Effect on Epidermal Keratinocytes. THE JOURNAL OF IMMUNOLOGY 2019; 202:2609-2615. [PMID: 30902899 DOI: 10.4049/jimmunol.1801426] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Accepted: 02/27/2019] [Indexed: 12/21/2022]
Abstract
Cholecystokinin (CCK) is a peptide hormone that functions in digestive organs and the CNS. We previously showed that CCK downregulates peripheral pruritus by suppressing degranulation of mast cells. In this study, we demonstrated that CCK octapeptide (CCK8) was constitutively expressed in the epidermis of normal skin, whereas its expression was lost in acanthotic lesions of psoriasis. In contrast, CCKA receptor (CCKAR), a high-affinity receptor for CCK, was constitutively expressed in the epidermis of psoriatic skin lesions. Expression of CCK was also reduced in skin lesions of an imiquimod (IMQ)-induced psoriatic mouse model. Notably, the expression level of CCK inversely correlated with the severity of epidermal inflammation, raising the possibility that CCK from epidermal keratinocytes suppresses the psoriatic inflammation. To verify this hypothesis, we investigated the effects of sulfated CCK octapeptide (CCK8S) on the development of IMQ-induced psoriatic inflammation. i.p. injection of CCK8S suppressed the IMQ-induced psoriatic inflammation accompanied by reduced mRNA expression of IL-17, IL-22, and IL-6 but not of IL-23. The suppressive effect of CCK8S was completely restored by administration of CCKAR antagonist. In vitro studies showed that exogenous CCK8S suppressed IL-6 production in CCKAR-expressing cultured human keratinocytes, and blocking the endogenous CCK signaling with CCKAR antagonist markedly enhanced IL-6 production. When keratinocytes were stimulated with IL-17, the expression of endogenous CCK was significantly decreased. These findings suggest that CCK physiologically functions as a negative regulator of keratinocyte-based inflammation in an autocrine or paracrine manner, although decreased CCK may pathologically contribute to continuous and aggravated skin lesions such as psoriasis.
Collapse
Affiliation(s)
- Atsuko Funakoshi
- Department of Dermatology, Hamamatsu University School of Medicine, Hamamatsu 431-3192, Japan
| | - Kazuki Tatsuno
- Department of Dermatology, Hamamatsu University School of Medicine, Hamamatsu 431-3192, Japan
| | - Takatoshi Shimauchi
- Department of Dermatology, Hamamatsu University School of Medicine, Hamamatsu 431-3192, Japan
| | - Toshiharu Fujiyama
- Department of Dermatology, Hamamatsu University School of Medicine, Hamamatsu 431-3192, Japan
| | - Taisuke Ito
- Department of Dermatology, Hamamatsu University School of Medicine, Hamamatsu 431-3192, Japan
| | - Yoshiki Tokura
- Department of Dermatology, Hamamatsu University School of Medicine, Hamamatsu 431-3192, Japan
| |
Collapse
|
5
|
Fluorescence immunoassay of E. coli using anti-lipopolysaccharide antibodies isolated from human serum. Biosens Bioelectron 2019; 126:518-528. [DOI: 10.1016/j.bios.2018.10.036] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2018] [Revised: 10/07/2018] [Accepted: 10/17/2018] [Indexed: 12/21/2022]
|
6
|
Screen-detected gallstone disease and autoimmune diseases - A cohort study. Dig Liver Dis 2018; 50:594-600. [PMID: 29422240 DOI: 10.1016/j.dld.2018.01.127] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2017] [Revised: 12/23/2017] [Accepted: 01/14/2018] [Indexed: 12/11/2022]
Abstract
BACKGROUND Gallstone disease is highly prevalent and is associated with systemic inflammation. AIMS To determine whether screen-detected gallstones or cholecystectomy are associated with the occurrence of autoimmune and autoinflammatory diseases and the most common subgroups thereof. METHODS A cohort study of three randomly selected general population samples from Copenhagen was performed. Participants (n = 5928) were examined in the period 1982-1992, underwent abdominal ultrasound examination to detect gallstone disease, and followed through national registers until December 2014 (median 24.7 years) for occurrence of immunological diseases. Multivariable Cox regression analyses were performed. RESULTS Gallstone disease was identified in 10% (591/5928) of participants, of whom 6.8% had gallstones and 3.2% had cholecystectomy at baseline. Gallstone disease was associated with incidence of autoimmune diseases (12.9% versus 7.92%; hazard ratio 1.46; 95% confidence interval [CI], [1.11;1.91]), diabetes mellitus type 1 (5.95% versus 3.67%; 1.53; [1.02;2.30]), and autoimmune thyroid disease (3.70% versus 1.59%; 2.06; [1.26;3.38]). Rheumatoid arthritis, autoinflammatory diseases, or any subgroups thereof were not associated. CONCLUSIONS In a large general population sample, screen-detected gallstone disease was associated with the development of autoimmune diseases during long-term follow-up. Future research efforts are needed to further explore common disease mechanisms.
Collapse
|
7
|
Ye S, Shi K, Xu J, Wang M, Li CJ. Cholecystokinin octapeptide inhibits the inflammatory response and improves neurological outcome in a porcine model of cardiopulmonary resuscitation. Exp Ther Med 2017; 15:2583-2588. [PMID: 29467854 DOI: 10.3892/etm.2017.5680] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Accepted: 11/22/2017] [Indexed: 11/05/2022] Open
Abstract
Previous studies have demonstrated that cholecystokinin octapeptide (CCK8) induces hypothermia and inhibits the systemic inflammatory response in septic shock in rat and murine models. The present study aimed to ascertain whether CCK8 induced hypothermia and improved the neurological outcomes in a porcine model of cardiopulmonary resuscitation (CPR). Ventricular fibrillation was induced and left untreated for 10 min in 12 male Bama miniature pigs. Defibrillation was attempted after 5 min of CPR. At 5 min following resuscitation, the pigs were randomized and equally assigned into the CCK8 or the control group. CCK8 was continuously infused for 1 h at a dose of 44.4 µg/kg/h and a rate of 20 ml/h in the CCK8 group. Body temperature, hemodynamic measurements and post-resuscitation myocardial function were monitored in the first 4 h following CPR. Neuron specific enzyme (NSE), S100B protein, tumor necrosis factor (TNF)-α and interleukin (IL)-6 were measured at baseline and 4, 12 and 24 h following resuscitation. The neurological deficient score (NDS) was recorded and cerebral samples were collected for terminal deoxynucleotidyl-transferase-mediated dUTP nick end labelling assay and integrated optical density (IOD) analysis at 24 h following CPR. The results revealed that hypothermia was not induced by CCK8; however, post-resuscitation NSE, S100B, IL-6 and TNF-α were significantly decreased, and NDS and IOD were significantly improved in the CCK8 group compared with the control group (P<0.05). The present study revealed that in a porcine model of CPR, CCK8 does not induce hypothermia, but inhibits the inflammatory response and significantly improves neurological outcomes.
Collapse
Affiliation(s)
- Sen Ye
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China.,Department of Emergency, People's Hospital of Yuyao, Yuyao, Zhejiang 315400, P.R. China
| | - Kejia Shi
- Department of Emergency, People's Hospital of Yuyao, Yuyao, Zhejiang 315400, P.R. China
| | - Jiefeng Xu
- Department of Emergency, People's Hospital of Yuyao, Yuyao, Zhejiang 315400, P.R. China
| | - Moli Wang
- Department of Emergency, People's Hospital of Yuyao, Yuyao, Zhejiang 315400, P.R. China
| | - Chun-Jian Li
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| |
Collapse
|
8
|
El-Kassas S, Odemuyiwa S, Hajishengallis G, Connell TD, Nashar TO. Expression and Regulation of Cholecystokinin Receptor in the Chicken's Immune Organs and Cells. ACTA ACUST UNITED AC 2017; 7. [PMID: 28149670 DOI: 10.4172/2155-9899.1000471] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Cholecystokinin (CCK) is a neuropeptide that affects growth rate in chickens by regulating appetite. CCK peptides exert their function by binding to two identified receptors, CCKAR and CCKBR in the GI tract and the brain, respectively, as well as in other organs. In mammals, CCK/CCKAR interactions affect a number of immunological parameters, including regulation of lymphocytes and functioning of monocytes. Thus, food intake and growth can potentially be altered by infection and the resulting inflammatory immune response. It is uncertain, however, whether chicken express CCKAR in immune organs and cells, and, if so, whether CCKAR expression is regulated by pathogen derived inflammatory stimuli. Herein, we identify expression of CCKAR protein in chicken peripheral blood mononuclear cells (PBMC) including monocytes, and expression of the CCKAR gene in PBMC, thymus, bursa, and spleen, in selected commercial and pure chicken breeds. Further, stimulation with various types of E. coli heat-labile enterotoxins or lipopolysaccharide significantly regulated expression of CCKAR on monocytes in the different breeds. Ligation of CCKAR with antibodies in PBMC induced mobilization of Ca2+, indicating that CCKAR is signal competent. Injection with polyinosinic: polycytidylic acid (poly I:C), a synthetic analogue of double stranded viral RNA that binds Toll-Like Receptor-3 (TLR3), also regulated gene expressions of CCKAR and proinflammatory cytokines, in the different breeds. Interestingly, variations in the expression levels of proinflammatory cytokines in the different breeds were highly correlated with CCKAR expression levels. Taken together, these findings indicate that the physiological function of CCKAR in the chicken is tightly regulated in immune organs and cells by external inflammatory stimuli, which in turn regulate growth. This is the first report CCKAR expression in immune organs and cells, in any species, and the initial observation that CCKAR is regulated by inflammatory stimuli associated with bacterial and viral infection.
Collapse
Affiliation(s)
- Seham El-Kassas
- Department of Pathobiology, College of Veterinary Medicine, Tuskegee University, Tuskegee, AL 36088, USA; College of Veterinary Medicine, Kafrelsheikh University, Kafrelsheikh, Egypt
| | - Solomon Odemuyiwa
- Department of Pathobiology, College of Veterinary Medicine, Tuskegee University, Tuskegee, AL 36088, USA
| | - George Hajishengallis
- Department of Microbiology, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Terry D Connell
- The Department of Microbiology & Immunology and The Witebsky Center for Microbial Pathogenesis and Immunology, The Jacobs School of Medicine and Biomedical Research, University at Buffalo, NY 14214, USA
| | - Toufic O Nashar
- Department of Pathobiology, College of Veterinary Medicine, Tuskegee University, Tuskegee, AL 36088, USA
| |
Collapse
|
9
|
Wen D, An M, Gou H, Liu X, Liu L, Ma C, Cong B. Cholecystokinin-8 inhibits methamphetamine-induced neurotoxicity via an anti-oxidative stress pathway. Neurotoxicology 2016; 57:31-38. [DOI: 10.1016/j.neuro.2016.08.008] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Revised: 06/07/2016] [Accepted: 08/15/2016] [Indexed: 11/28/2022]
|
10
|
Cholecystokinin octapeptide regulates the differentiation and effector cytokine production of CD4(+) T cells in vitro. Int Immunopharmacol 2014; 20:307-15. [PMID: 24704498 DOI: 10.1016/j.intimp.2014.03.013] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2013] [Revised: 03/19/2014] [Accepted: 03/19/2014] [Indexed: 12/14/2022]
Abstract
Cholecystokinin octapeptide (CCK-8), an immunomodulatory peptide, can promote or suppress the development or function of specific CD4(+) T cell subsets by regulating antigen-presenting cell functions. In the current study, we investigated whether CCK-8 exerts a direct effect on T cells through influencing differentiation and cytokine production of distinct CD4(+) T cell subsets in vitro. Our results showed that CCK-8 differentially affects the development and function of CD4(+) T cell populations, with a negative influence on Th1 and Th17 cells and positive regulatory effect on inducible T regulatory cells (iTreg). Notably, CCK-8 suppressed Th1 while slightly enhancing Th2 development and cytokine production. Similarly, CCK-8 inhibited the differentiation of Th17 cells and promoted Foxp3 expression. L-364,718 and LY-288,513, selective antagonists of CCK1R and CCK2R, respectively, suppressed the effects of CCK-8 on CD4(+) T cell subset-specific transcription factors. Our findings strongly indicate that CCK-8 exerts a direct effect on T cells, which is dependent on CCKRs, particularly CCK2R. The collective results aid in further clarifying the mechanism underlying the anti-inflammatory and immunoregulatory effects of CCK-8.
Collapse
|
11
|
Jia X, Cong B, Zhang J, Li H, Liu W, Chang H, Dong M, Ma C. CCK8 negatively regulates the TLR9-induced activation of human peripheral blood pDCs by targeting TRAF6 signaling. Eur J Immunol 2013; 44:489-99. [PMID: 24301797 DOI: 10.1002/eji.201343725] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2013] [Revised: 10/07/2013] [Accepted: 10/29/2013] [Indexed: 11/11/2022]
Abstract
Plasmacytoid dendritic cells (pDCs) are specialized in rapid and massive secretion of type I interferon in response to foreign nuclei acids. Combined with their antigen presentation capacity, this powerful functionality enables pDCs to orchestrate innate and adaptive immune responses. Cholecystokinin octapeptide (CCK8) is a potent immunomodulator, whose role in pDCs function is unknown. In this study, we found that two different cholecystokinin receptors, CCK1R and CCK2R, are expressed on human peripheral blood pDCs. Exogenous CCK8 was able to modulate the TLR-induced activation of pDCs, including phenotypic maturation, IFN-α synthesis and secretion, and could also regulate the potential of pDCs to induce adaptive immune responses in vitro. CCK8 inhibited TLR9-induced activation of tumor-necrosis factor receptor-associated factor 6, which is an important adapter protein in activation of interferon-regulatory factor (IRF)5 and IRF7, possibly through CCK2R, by evoking the activity of protein kinase (PK)A and reducing the activity of PKC. All these results indicate that CCK8 can inhibit the TLR9-induced phenotypic maturation and activation of pDCs, acting through CCK2R by modulating the tumor-necrosis factor receptor-associated factor 6 signaling pathways.
Collapse
Affiliation(s)
- Xianxian Jia
- Basic Medicine, Hebei Medical University, Shijiazhuang, Hebei, People's Republic of China
| | | | | | | | | | | | | | | |
Collapse
|