1
|
Kawai A, Nagatomo Y, Yukino-Iwashita M, Nakazawa R, Taruoka A, Yumita Y, Takefuji A, Yasuda R, Toya T, Ikegami Y, Masaki N, Ido Y, Adachi T. β 1 Adrenergic Receptor Autoantibodies and IgG Subclasses: Current Status and Unsolved Issues. J Cardiovasc Dev Dis 2023; 10:390. [PMID: 37754819 PMCID: PMC10531529 DOI: 10.3390/jcdd10090390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 09/01/2023] [Accepted: 09/05/2023] [Indexed: 09/28/2023] Open
Abstract
A wide range of anti-myocardial autoantibodies have been reported since the 1970s. Among them, autoantibodies against the β1-adrenergic receptor (β1AR-AAb) have been the most thoroughly investigated, especially in dilated cardiomyopathy (DCM). Β1AR-Aabs have agonist effects inducing desensitization of β1AR, cardiomyocyte apoptosis, and sustained calcium influx which lead to cardiac dysfunction and arrhythmias. Β1AR-Aab has been reported to be detected in approximately 40% of patients with DCM, and the presence of the antibody has been associated with worse clinical outcomes. The removal of anti-myocardial autoantibodies including β1AR-AAb by immunoadsorption is beneficial for the improvement of cardiac function for DCM patients. However, several studies have suggested that its efficacy depended on the removal of AAbs belonging to the IgG3 subclass, not total IgG. IgG subclasses differ in the structure of the Fc region, suggesting that the mechanism of action of β1AR-AAb differs depending on the IgG subclasses. Our previous clinical research demonstrated that the patients with β1AR-AAb better responded to β-blocker therapy, but the following studies found that its response also differed among IgG subclasses. Further studies are needed to elucidate the possible pathogenic role of IgG subclasses of β1AR-AAbs in DCM, and the broad spectrum of cardiovascular diseases including HF with preserved ejection fraction.
Collapse
Affiliation(s)
- Akane Kawai
- Department of Cardiology, National Defense Medical College, Tokorozawa 359-8513, Japan; (A.K.)
| | - Yuji Nagatomo
- Department of Cardiology, National Defense Medical College, Tokorozawa 359-8513, Japan; (A.K.)
| | - Midori Yukino-Iwashita
- Department of Cardiology, National Defense Medical College, Tokorozawa 359-8513, Japan; (A.K.)
| | - Ryota Nakazawa
- Department of Cardiology, National Defense Medical College, Tokorozawa 359-8513, Japan; (A.K.)
| | - Akira Taruoka
- Department of Cardiology, National Defense Medical College, Tokorozawa 359-8513, Japan; (A.K.)
| | - Yusuke Yumita
- Department of Cardiology, National Defense Medical College, Tokorozawa 359-8513, Japan; (A.K.)
| | - Asako Takefuji
- Department of Cardiology, National Defense Medical College, Tokorozawa 359-8513, Japan; (A.K.)
| | - Risako Yasuda
- Department of Intensive Care, National Defense Medical College, Tokorozawa 359-8513, Japan
| | - Takumi Toya
- Department of Cardiology, National Defense Medical College, Tokorozawa 359-8513, Japan; (A.K.)
| | - Yukinori Ikegami
- Department of Cardiology, National Defense Medical College, Tokorozawa 359-8513, Japan; (A.K.)
| | - Nobuyuki Masaki
- Department of Intensive Care, National Defense Medical College, Tokorozawa 359-8513, Japan
| | - Yasuo Ido
- Department of Cardiology, National Defense Medical College, Tokorozawa 359-8513, Japan; (A.K.)
| | - Takeshi Adachi
- Department of Cardiology, National Defense Medical College, Tokorozawa 359-8513, Japan; (A.K.)
| |
Collapse
|
2
|
Tang K, Wu Y, Zheng Q, Chen X. Bibliometric research on analysis of links between periodontitis and cardiovascular diseases. Front Cardiovasc Med 2023; 10:1255722. [PMID: 37745126 PMCID: PMC10512184 DOI: 10.3389/fcvm.2023.1255722] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Accepted: 08/10/2023] [Indexed: 09/26/2023] Open
Abstract
Background Periodontitis (PD) and cardiovascular diseases (CVD) rank among the most prevalent pathologies worldwide, and their correlation has been a subject of prolonged investigation. Numerous studies suggest shared etiological factors; however, a definitive causal connection remains unestablished. The objective of this study was to employ bibliometric and visual analyses in order to comprehensively examine the overarching characteristics, focal areas of research, and prospective trends pertaining to the PD-CVD relationship. Methods We sourced articles, reviews, and online publications on PD- and CVD- research from the Web of Science Core Collection (WoSCC) spanning from January 1, 1993, to May 15, 2023. A triad of analytical tools (R-Bibliometrix, VOSviewer 1.6.19, and CiteSpace 6.2.R3) were utilized to facilitate collaboration network analysis, co-citation analysis, co-occurrence analysis, and citation burst detection. Results Out of the 1,116 publications that fulfilled the eligibility criteria in the WoSCC database, the comprehensive characteristics analysis divulged a sustained growth trend in publication frequency. In the cluster analysis of reference co-citation and keyword co-occurrence, prominent themes such as "periodontitis", "cardiovascular diseases", "inflammation", "Porphyromonas gingivalis", and "atherosclerosis" consistently emerged. Contemporary topics such as "peri-implantitis," "COVID-19", "cardiovascular risk factors," and "endocarditis" were pinpointed as burgeoning research hotspots. Conclusion Based on this bibliometric study, in the field of association studies between PD and CVD, the etiologic mechanisms of both diseases have been intensively studied in the last three decades. Periodontal pathogens might serve as potential initiating factors linking PD and CVD. Inflammation may constitute a significant etiological factor shared by both diseases. Several emerging topics, such as COVID-19 and peri-implantitis, exhibit promising potential. This exhaustive overview casts light on pivotal research arenas, augmenting the field's understanding and stimulating further scholarly investigations.
Collapse
Affiliation(s)
| | | | | | - Xuepeng Chen
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Clinical Research Center for Oral Diseases of Zhejiang Province, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou, China
| |
Collapse
|
3
|
Matsuo I, Ohnuki Y, Suita K, Ishikawa M, Mototani Y, Ito A, Hayakawa Y, Nariyama M, Morii A, Kiyomoto K, Tsunoda M, Gomi K, Okumura S. Effects of chronic Porphylomonas gingivalis lipopolysaccharide infusion on cardiac dysfunction in mice. J Oral Biosci 2021; 63:394-400. [PMID: 34757204 DOI: 10.1016/j.job.2021.10.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 09/30/2021] [Accepted: 10/06/2021] [Indexed: 10/20/2022]
Abstract
OBJECTIVE Periodontitis (PD) is a chronic inflammatory disease of tooth-supportive tissue. An association between PD and cardiovascular disease (CVD) has been established. Although PD is generally accepted as a risk factor for CVD, the existence of a relationship remains debatable. Possible mechanisms include the release of inflammatory mediators such as lipopolysaccharide (LPS), which may spread systemically and promote CVD. METHODS To compare the effects of lipopolysaccharide derived from Porphylomonas gingivalis (PG-LPS) on cardiac muscle in mice, mice were treated for 1 week with/without PG-LPS at a dose equivalent to the circulating level in PD patients (0.8 mg/kg/day). RESULTS Cardiac function in terms of left ventricular ejection function was significantly decreased at 1 week compared to that in the control (from 66 ± 0.5% to 57 ± 1.1%). Compared to the controls, the number of apoptotic myocytes and the area of fibrosis were significantly increased by approximately 2.7-fold and 14-fold, respectively. The impairment of cardiac function appeared to involve the activation of cAMP/PKA signaling and cAMP/calmodulin kinase II signaling (CaMKII), leading to cardiac fibrosis, myocyte apoptosis and heart failure. CONCLUSIONS Our results indicate that cAMP/PKA and cAMP/CaMKII signaling may be a new therapeutic target for the treatment of cardiovascular diseases in patients with periodontitis.
Collapse
Affiliation(s)
- Ichiro Matsuo
- Department of Physiology, Tsurumi University School of Dental Medicine, Yokohama, 230-8501, Japan; Department of Periodontology, Tsurumi University School of Dental Medicine, Yokohama, 230-8501, Japan
| | - Yoshiki Ohnuki
- Department of Physiology, Tsurumi University School of Dental Medicine, Yokohama, 230-8501, Japan
| | - Kenji Suita
- Department of Physiology, Tsurumi University School of Dental Medicine, Yokohama, 230-8501, Japan
| | - Misao Ishikawa
- Department of Oral Anatomy, Tsurumi University School of Dental Medicine, Yokohama, 230-8501, Japan
| | - Yasumasa Mototani
- Department of Physiology, Tsurumi University School of Dental Medicine, Yokohama, 230-8501, Japan
| | - Aiko Ito
- Department of Orthodontics, Tsurumi University School of Dental Medicine, Yokohama, 230-8501, Japan
| | - Yoshio Hayakawa
- Department of Physiology, Tsurumi University School of Dental Medicine, Yokohama, 230-8501, Japan; Department of Dental Anesthesiology, Tsurumi University School of Dental Medicine, Yokohama, 230-8501, Japan
| | - Megumi Nariyama
- Department of Pediatric Dentistry, Tsurumi University School of Dental Medicine, Yokohama, 236-8501, Japan
| | - Akinaka Morii
- Department of Physiology, Tsurumi University School of Dental Medicine, Yokohama, 230-8501, Japan; Department of Periodontology, Tsurumi University School of Dental Medicine, Yokohama, 230-8501, Japan
| | - Kenichi Kiyomoto
- Department of Physiology, Tsurumi University School of Dental Medicine, Yokohama, 230-8501, Japan; Department of Periodontology, Tsurumi University School of Dental Medicine, Yokohama, 230-8501, Japan
| | - Michinori Tsunoda
- Department of Physiology, Tsurumi University School of Dental Medicine, Yokohama, 230-8501, Japan; Department of Periodontology, Tsurumi University School of Dental Medicine, Yokohama, 230-8501, Japan
| | - Kazuhiro Gomi
- Department of Periodontology, Tsurumi University School of Dental Medicine, Yokohama, 230-8501, Japan
| | - Satoshi Okumura
- Department of Physiology, Tsurumi University School of Dental Medicine, Yokohama, 230-8501, Japan.
| |
Collapse
|
4
|
Scherbaum I, Heidecke H, Bunte K, Peters U, Beikler T, Boege F. Autoantibodies against M 5-muscarinic and beta 1-adrenergic receptors in periodontitis patients. Aging (Albany NY) 2020; 12:16609-16620. [PMID: 32857064 PMCID: PMC7485715 DOI: 10.18632/aging.103864] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Accepted: 07/21/2020] [Indexed: 12/12/2022]
Abstract
Autoantibodies against muscarinic and beta1-adrenergic receptors are considered a potential cause and/or risk factor for chronic heart failure. Association of periodontitis with such autoantibodies and with impaired heart function has been observed in patients exposed to endemic Chagas' disease, which triggers by itself cardiomyopathy and receptor immunization.Here we studied the association between periodontitis, markers of cardiac injury and receptor autoimmunization in periodontitis patients (n = 147) not exposed to Chagas' disease. The autoantibodies were determined by IgG binding to native intact muscarinic and beta1-adrenergic receptors or to a cyclic peptide mimicking the disease-relevant conformational autoepitope presented by the active beta1-adrenergic receptor. Possible cardiac injury and inflammatory status were judged by serum levels of proBNP/Troponin I and CRP/IL-6, respectively. These parameters were analysed in healthy and periodontally diseased individuals as well as before and after periodontal therapy.Patients with periodontitis had significantly (p < 0.001) higher levels of autoantibodies against M5-muscarinic and beta1-adrenergic receptors, which further increased following periodontal therapy. Receptor autoantibodies were associated with increased inflammatory status but not with increased markers of cardiac injury. Thus, our data indicate that periodontitis triggers systemic inflammation, which is associated with receptor autoimmunization, and, independently thereof, with cardiac injury.
Collapse
Affiliation(s)
- Isabel Scherbaum
- Central Institute for Clinical Chemistry and Laboratory Diagnostics, Heinrich Heine University Düsseldorf, Medical Faculty, Düsseldorf, Germany
| | | | - Kübra Bunte
- Department of Periodontics, Preventive and Restorative Dentistry, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Ulrike Peters
- Department of Periodontics, Preventive and Restorative Dentistry, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Thomas Beikler
- Department of Periodontics, Preventive and Restorative Dentistry, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Fritz Boege
- Central Institute for Clinical Chemistry and Laboratory Diagnostics, Heinrich Heine University Düsseldorf, Medical Faculty, Düsseldorf, Germany
| |
Collapse
|
5
|
Wang X, Han M, He S, Zhang Y, Xu X, Wang Y, Dang C, Zhang J, Wang H, Chen M, Liu J, Hou D, Zhao W, Xu L, Zhang L. Diagnostic and prognostic value of autoantibodies against β 1-adrenoreceptors in patients with heart failure following acute myocardial infarction: A 5-year prospective study. Exp Ther Med 2020; 19:1259-1266. [PMID: 32010297 PMCID: PMC6966159 DOI: 10.3892/etm.2019.8331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Accepted: 11/15/2019] [Indexed: 11/18/2022] Open
Abstract
A number of studies have suggested that autoantibodies against β1-adrenoreceptors (β1R-AAbs) have an important role in pathophysiological processes of heart failure. The aim of the present study was to determine whether β1R-AAbs are implicated in cardiac dysfunction following acute myocardial infarction (AMI) and their association with prognosis. A total of 33 cases with systolic heart failure (SHF), 49 with diastolic heart failure (DHF) and 44 with normal heart function following AMI were recruited. β1R-AAbs were detected by ELISA and major adverse cardiac events (MACEs) were recorded during the 5-year follow-up. The positive rate of β1R-AAbs in the SHF group (45.5%) was significantly higher compared with that in the DHF (22.4%; P<0.05) and normal (15.9%; P<0.05) groups. The area under the receiver operating characteristics curve for the diagnosis of SHF was 0.630 (95% CI: 0.514–0.747, P=0.026). During a median follow-up period of 51.0±15.4 months, the positive rate of β1R-AAbs in the MACEs group was significantly higher compared with that in the non-MACEs group (P<0.05). Multivariate logistic regression analysis indicated that the left ventricular ejection fraction and diabetes were independent predictors of 5-year MACEs following AMI, whereas β1R-AAbs were not. Kaplan-Meier analysis revealed that the cumulative MACEs-free survival rate was the lowest in the SHF group, followed by the DHF and normal groups (P<0.05). Therefore, β1R-AAbs were indicated to be of value for early diagnosis of SHF after AMI but not as independent predictors for the prognosis of patients with AMI.
Collapse
Affiliation(s)
- Xin Wang
- Heart Center and Beijing Key Laboratory of Hypertension Research, Beijing Chaoyang Hospital, Capital Medical University, Beijing 100020, P.R. China
| | - Mengmeng Han
- Heart Center and Beijing Key Laboratory of Hypertension Research, Beijing Chaoyang Hospital, Capital Medical University, Beijing 100020, P.R. China
| | - Shan He
- Heart Center, Beijing Chaoyang Hospital Jingxi Branch, Capital Medical University, Beijing 100020, P.R. China
| | - Yuan Zhang
- Heart Center and Beijing Key Laboratory of Hypertension Research, Beijing Chaoyang Hospital, Capital Medical University, Beijing 100020, P.R. China
| | - Xiaorong Xu
- Heart Center and Beijing Key Laboratory of Hypertension Research, Beijing Chaoyang Hospital, Capital Medical University, Beijing 100020, P.R. China
| | - Yuxing Wang
- Heart Center and Beijing Key Laboratory of Hypertension Research, Beijing Chaoyang Hospital, Capital Medical University, Beijing 100020, P.R. China
| | - Caijing Dang
- Heart Center and Beijing Key Laboratory of Hypertension Research, Beijing Chaoyang Hospital, Capital Medical University, Beijing 100020, P.R. China
| | - Juan Zhang
- Heart Center and Beijing Key Laboratory of Hypertension Research, Beijing Chaoyang Hospital, Capital Medical University, Beijing 100020, P.R. China
| | - Hua Wang
- Heart Center and Beijing Key Laboratory of Hypertension Research, Beijing Chaoyang Hospital, Capital Medical University, Beijing 100020, P.R. China
| | - Mulei Chen
- Heart Center and Beijing Key Laboratory of Hypertension Research, Beijing Chaoyang Hospital, Capital Medical University, Beijing 100020, P.R. China
| | - Jiamei Liu
- Heart Center and Beijing Key Laboratory of Hypertension Research, Beijing Chaoyang Hospital, Capital Medical University, Beijing 100020, P.R. China
| | - Dongyan Hou
- Heart Center and Beijing Key Laboratory of Hypertension Research, Beijing Chaoyang Hospital, Capital Medical University, Beijing 100020, P.R. China
| | - Wenshu Zhao
- Heart Center and Beijing Key Laboratory of Hypertension Research, Beijing Chaoyang Hospital, Capital Medical University, Beijing 100020, P.R. China
| | - Lin Xu
- Heart Center and Beijing Key Laboratory of Hypertension Research, Beijing Chaoyang Hospital, Capital Medical University, Beijing 100020, P.R. China
| | - Lin Zhang
- Heart Center and Beijing Key Laboratory of Hypertension Research, Beijing Chaoyang Hospital, Capital Medical University, Beijing 100020, P.R. China
| |
Collapse
|
6
|
Cao N, Chen H, Bai Y, Yang X, Xu W, Hao W, Zhou Y, Chai J, Wu Y, Wang Z, Yin X, Wang L, Wang W, Liu H, Fu MLX. β2-adrenergic receptor autoantibodies alleviated myocardial damage induced by β1-adrenergic receptor autoantibodies in heart failure. Cardiovasc Res 2019; 114:1487-1498. [PMID: 29746700 DOI: 10.1093/cvr/cvy105] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2018] [Accepted: 05/03/2018] [Indexed: 01/27/2023] Open
Abstract
Aims β1-adrenergic receptor autoantibodies (β1-AAs) and β2-adrenergic receptor autoantibodies (β2-AAs) are present in patients with heart failure (HF); however, their interrelationship with cardiac structure and function remains unknown. This study explored the effects of the imbalance between β1-AAs and β2-AAs on cardiac structure and its underlying mechanisms in HF. Methods and results Patients with left systolic HF who suffered from coronary heart disease (65.9%) or dilated cardiomyopathy (34.1%) were divided into New York Heart Association Classes I-II (n = 51) and Classes III-IV (n = 37) and compared with healthy volunteers as controls (n = 41). Total immunoglobulin G from HF patient serum comprising β1-AAs and/or β2-AAs were determined and purified for in vitro studies from neonatal rat cardiomyocytes (NRCMs). In addition, HF was induced by doxorubicin in mice. We observed that the increased ratio of β1-AAs/β2-AAs was associated with worsening HF in patients. Moreover, β2-AAs from patients with HF suppressed the hyper-shrinking and apoptosis of NRCMS induced by β1-AAs from some patients. Finally, β2-AAs alleviated both myocardial damage and β1-AAs production induced by doxorubicin in mice. Conclusion β2-AAs were capable of antagonizing the effects imposed by β1-AAs both in vitro and in vivo. The imbalance of β1-AAs and β2-AAs in patients with HF is a mechanism underlying HF progression, and the increasing ratio of β1-AAs/β2-AAs should be considered a clinical assessment factor for the deterioration of cardiac function in patients with HF.
Collapse
Affiliation(s)
- Ning Cao
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing, PR China.,Beijing Key Laboratory of Metabolic Disorders Related Cardiovascular Disease, Capital Medical University, Beijing, PR China
| | - Hao Chen
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing, PR China.,Beijing Key Laboratory of Metabolic Disorders Related Cardiovascular Disease, Capital Medical University, Beijing, PR China
| | - Yan Bai
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing, PR China.,Beijing Key Laboratory of Metabolic Disorders Related Cardiovascular Disease, Capital Medical University, Beijing, PR China
| | - Xiaochun Yang
- Department of Cardiology, Beijing An Zhen Hospital, Capital Medical University, and Beijng Institute of Heart, Lung and Blood Vessel Disease, Beijing, PR China
| | - Wenli Xu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing, PR China.,Beijing Key Laboratory of Metabolic Disorders Related Cardiovascular Disease, Capital Medical University, Beijing, PR China
| | - Weiwei Hao
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing, PR China.,Beijing Key Laboratory of Metabolic Disorders Related Cardiovascular Disease, Capital Medical University, Beijing, PR China
| | - Yi Zhou
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing, PR China.,Beijing Key Laboratory of Metabolic Disorders Related Cardiovascular Disease, Capital Medical University, Beijing, PR China
| | - Jiayin Chai
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing, PR China.,Beijing Key Laboratory of Metabolic Disorders Related Cardiovascular Disease, Capital Medical University, Beijing, PR China
| | - Ye Wu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing, PR China.,Beijing Key Laboratory of Metabolic Disorders Related Cardiovascular Disease, Capital Medical University, Beijing, PR China
| | - Zhaojia Wang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing, PR China.,Beijing Key Laboratory of Metabolic Disorders Related Cardiovascular Disease, Capital Medical University, Beijing, PR China
| | - Xiaochen Yin
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing, PR China.,Beijing Key Laboratory of Metabolic Disorders Related Cardiovascular Disease, Capital Medical University, Beijing, PR China
| | - Li Wang
- Department of Pathology, Shanxi Medical University, Taiyuan, People's Republic of China
| | - Wen Wang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing, PR China.,Beijing Key Laboratory of Metabolic Disorders Related Cardiovascular Disease, Capital Medical University, Beijing, PR China
| | - Huirong Liu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing, PR China.,Beijing Key Laboratory of Metabolic Disorders Related Cardiovascular Disease, Capital Medical University, Beijing, PR China
| | - Michael L X Fu
- Section of Cardiology, Department of Medicine, Sahlgrenska University Hospital/Östra Hospital, Göteborg, Sweden
| |
Collapse
|
7
|
Wang L, Ning N, Wang C, Hou X, Yuan Y, Ren Y, Sun C, Yan Z, Wang X, Liu H. Endoplasmic reticulum stress contributed to β1-adrenoceptor autoantibody-induced reduction of autophagy in cardiomyocytes. Acta Biochim Biophys Sin (Shanghai) 2019; 51:1016-1025. [PMID: 31553425 DOI: 10.1093/abbs/gmz089] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2019] [Revised: 06/22/2019] [Accepted: 07/15/2019] [Indexed: 12/31/2022] Open
Abstract
Autophagy reduction has been confirmed as an important mechanism in apoptosis induction. Our previous study showed that decreased autophagy induced by β1-adrenoceptor autoantibodies (β1-AAs) enhanced cardiomyocyte apoptosis and contributed to heart failure progression. Endoplasmic reticulum stress (ERS) is known to be an important mechanism in intracellular homeostasis and is closely related to autophagy. However, ERS in β1-AA-induced autophagy dysfunction of cardiomyocytes remains unclear. In this study, we used an active immunization rat model and H9c2 cardiomyocytes to study the role of ERS in β1-AA-induced autophagy. Results showed that prolonged action of β1-AAs significantly reduced the autophagy of myocardial tissues and H9c2 cardiomyocytes, and ERS and its related apoptotic pathways were significantly activated. Moreover, mRFP-GFP-LC3 double-labeled adenoviruses were used to detect cardiomyocyte autophagic flux to confirm that β1-AAs caused a significant decrease in autophagic flux in H9c2 cardiomyocytes. The ERS inhibitor, 4-phenylbutyrate (4-PBA), partially attenuated the β1-AA-induced reduction of cardiomyocyte autophagy, consistent with the effect of the mammalian target of rapamycin inhibitor rapamycin (Rapa). Compared to the pretreatment with 4-PBA or Rapa alone, pretreatment with the combination of 4-PBA and Rapa had a greater effect on attenuating the β1-AA-induced decrease in autophagy and β1-AA-induced apoptosis in cardiomyocytes. This study provides an experimental basis for the role of β1-AAs in the homeostatic maintenance of cardiomyocytes in patients with heart failure with respect to autophagy and ERS.
Collapse
Affiliation(s)
- Li Wang
- Department of Pathology, School of Basic Medical Sciences, Shanxi Medical University, Taiyuan 030001, China
| | - Na Ning
- Department of Pathology, School of Basic Medical Sciences, Shanxi Medical University, Taiyuan 030001, China
| | - Changtu Wang
- Department of Pathology, School of Basic Medical Sciences, Shanxi Medical University, Taiyuan 030001, China
| | - Xiaohong Hou
- Department of Pathology, School of Basic Medical Sciences, Shanxi Medical University, Taiyuan 030001, China
| | - Yuan Yuan
- Laboratory of Morphology, School of Basic Medical Sciences, Shanxi Medical University, Taiyuan 030001, China
| | - Yanan Ren
- Department of Physiology, School of Basic Medical Sciences, Shanxi Medical University, Taiyuan 030001, China
| | - Cong Sun
- Department of Pathology, School of Basic Medical Sciences, Shanxi Medical University, Taiyuan 030001, China
| | - Zi Yan
- Department of Physiology, School of Basic Medical Sciences, Shanxi Medical University, Taiyuan 030001, China
| | - Xiaohui Wang
- Department of Pathology, School of Basic Medical Sciences, Shanxi Medical University, Taiyuan 030001, China
- Laboratory of Morphology, School of Basic Medical Sciences, Shanxi Medical University, Taiyuan 030001, China
| | - Huirong Liu
- Department of Physiology, School of Basic Medical Sciences, Shanxi Medical University, Taiyuan 030001, China
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China
| |
Collapse
|
8
|
Abstract
It has been recognized that myocardial apoptosis is one major factor in the development of heart dysfunction and autophagy has been shown to influence the apoptosis. In previous studies, we reported that anti-β1-adrenergic receptor autoantibodies (β1-AABs) decreased myocardial autophagy, but the role of decreased autophagy in cardiomyocyte apoptosis remains unclear. In the present study, we used a β1-AAB-immunized rat model to investigate the role of decreased autophagy in cardiomyocyte apoptosis. We reported that the level of autophagic flux increased early and then decreased in an actively β1-AAB-immunized rat model. Rapamycin, an mTOR inhibitor, restored myocardial apoptosis in the presence of β1-AABs. Further, we found that the early increase of autophagy was an adaptive stress response that is possibly unrelated to β1-AR, and the activation of the β1-AR and PKA contributed to late decreased autophagy. Then, after upregulating or inhibiting autophagy with rapamycin, Atg5 overexpression adenovirus or 3-methyladenine in cultured primary neonatal rat cardiomyocytes, we found that autophagy decline promoted myocardial apoptosis effectively through the mitochondrial apoptotic pathway. In conclusion, the reduction of apoptosis through the proper regulation of autophagy may be important for treating patients with β1-AAB-positive heart dysfunction.
Collapse
|
9
|
A Periodontal pathogen Porphyromonas gingivalis deteriorates Isoproterenol-Induced myocardial remodeling in mice. Hypertens Res 2016; 40:35-40. [DOI: 10.1038/hr.2016.114] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Revised: 07/18/2016] [Accepted: 07/20/2016] [Indexed: 12/13/2022]
|
10
|
Hutchings CJ, Cseke G, Osborne G, Woolard J, Zhukov A, Koglin M, Jazayeri A, Pandya-Pathak J, Langmead CJ, Hill SJ, Weir M, Marshall FH. Monoclonal anti-β1-adrenergic receptor antibodies activate G protein signaling in the absence of β-arrestin recruitment. MAbs 2014; 6:246-61. [PMID: 24253107 DOI: 10.4161/mabs.27226] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Thermostabilized G protein-coupled receptors used as antigens for in vivo immunization have resulted in the generation of functional agonistic anti-β1-adrenergic (β1AR) receptor monoclonal antibodies (mAbs). The focus of this study was to examine the pharmacology of these antibodies to evaluate their mechanistic activity at β1AR. Immunization with the β1AR stabilized receptor yielded five stable hybridoma clones, four of which expressed functional IgG, as determined in cell-based assays used to evaluate cAMP stimulation. The antibodies bind diverse epitopes associated with low nanomolar agonist activity at β1AR, and they appeared to show some degree of biased signaling as they were inactive in an assay measuring signaling through β-arrestin. In vitro characterization also verified different antibody receptor interactions reflecting the different epitopes on the extracellular surface of β1AR to which the mAbs bind. The anti-β1AR mAbs only demonstrated agonist activity when in dimeric antibody format, but not as the monomeric Fab format, suggesting that agonist activation may be mediated through promoting receptor dimerization. Finally, we have also shown that at least one of these antibodies exhibits in vivo functional activity at a therapeutically-relevant dose producing an increase in heart rate consistent with β1AR agonism.
Collapse
|
11
|
Agonistic autoantibodies directed against G-protein-coupled receptors and their relationship to cardiovascular diseases. Semin Immunopathol 2014; 36:351-63. [PMID: 24777744 DOI: 10.1007/s00281-014-0425-9] [Citation(s) in RCA: 80] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2014] [Accepted: 04/01/2014] [Indexed: 02/06/2023]
Abstract
Agonistic autoantibodies (AABs) against G-protein-coupled receptor (GPCR) are present mainly in diseases of the cardiovascular system or in diseases associated with cardiovascular disturbances. The increasing knowledge about the role of autoantibodies against G-protein-coupled receptor (GPCR-AABs) as pathogenic drivers, the resulting development of strategies aimed at their removal or neutralization, and the evidenced patient benefit associated with such therapies have created the need for a summary of GPCR-AAB-associated diseases. Here, we summarize the present knowledge about GPCR-AABs in cardiovascular diseases. The identity of the GPCR-AABs and their prevalence in each of several specific cardiovascular diseases are documented. The structure of GPCR is also briefly discussed. Using this information, differences between classic agonists and GPCR-AABs in their GPCR binding and activation are presented and the resulting pathogenic consequences are discussed. Furthermore, treatment strategies that are currently under study, most of which are aimed at the removal and in vivo neutralization of GPCR-AABs, are indicated and their patient benefits discussed. In this context, immunoadsorption using peptides/proteins or aptamers as binders are introduced. The use of peptides or aptamers for in vivo neutralization of GPCR-AABs is also described. Particular attention is given to the GPCR-AABs directed against the adrenergic beta1-, beta2-, and α1-receptor as well as the muscarinic receptor M2, angiotensin II-angiotensin receptor type I, endothelin1 receptor type A, angiotensin (1-7) Mas-receptor, and 5-hydroxytryptamine receptor 4. Among the diseases associated with GPCR-AABs, special focus is given to idiopathic dilated cardiomyopathy, Chagas' cardiomyopathy, malignant and pulmonary hypertension, and kidney diseases. Relationships of GPCR-AABs are indicated to glaucoma, peripartum cardiomyopathy, myocarditis, pericarditis, preeclampsia, Alzheimer's disease, Sjörgren's syndrome, and metabolic syndrome after cancer chemotherapy.
Collapse
|
12
|
Yang L, Wang YL, Liu S, Zhang PP, Chen Z, Liu M, Tang H. miR-181b promotes cell proliferation and reduces apoptosis by repressing the expression of adenylyl cyclase 9 (AC9) in cervical cancer cells. FEBS Lett 2013; 588:124-30. [PMID: 24269684 DOI: 10.1016/j.febslet.2013.11.019] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2013] [Accepted: 11/07/2013] [Indexed: 10/26/2022]
Abstract
MicroRNAs are a class of small, endogenous, non-coding RNAs that function as post-transcriptional regulators. In this study, we found that miR-181b promoted cell proliferation and inhibited cell apoptosis in cervical cancer cells. And we validated a new miR-181b target gene, adenylyl cyclase 9 (AC9). miR-181b restricted cAMP production by post-transcriptionally downregulating AC9 expression. Phenotypic experiments indicated that miR-181b and AC9 exerted opposite effects on cell proliferation and apoptosis.
Collapse
Affiliation(s)
- Lei Yang
- Tianjin Life Science Research Center, Department of Microbiology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Yan-Li Wang
- Tianjin Life Science Research Center, Department of Microbiology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Shang Liu
- Tianjin Life Science Research Center, Department of Microbiology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Pei-Pei Zhang
- Tianjin Life Science Research Center, Department of Microbiology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Zheng Chen
- Tianjin Life Science Research Center, Department of Microbiology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Min Liu
- Tianjin Life Science Research Center, Department of Microbiology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Hua Tang
- Tianjin Life Science Research Center, Department of Microbiology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China.
| |
Collapse
|
13
|
Reina S, Hoyos F, Carranza N, Borda E. Salivary inflammatory mediators and metalloproteinase 3 in patients with chronic severe periodontitis before and after periodontal phase I therapy. ACTA ACUST UNITED AC 2013. [DOI: 10.7243/2053-5775-1-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|