1
|
Carlson EG, Lopez JC, Yamaguchi Y, Gibson J, Priceman SJ, LaBarge MA. CD105 + fibroblasts support an immunosuppressive niche in women at high risk of breast cancer initiation. Breast Cancer Res 2025; 27:81. [PMID: 40375322 PMCID: PMC12079957 DOI: 10.1186/s13058-025-02040-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Accepted: 05/01/2025] [Indexed: 05/18/2025] Open
Abstract
BACKGROUND Aging is the greatest risk factor for breast cancer, and although epithelial cells are the source of carcinomas, epithelial changes alone do not fully explain cancer susceptibility. Fibroblasts and macrophages are key stromal constituents around the cells of origin for cancer in breast tissue. With age, macrophages surrounding terminal ductal lobular units (TDLUs) become increasingly immunosuppressive. CD105+ fibroblasts intercalate within TDLUs, drive luminal differentiation, and give rise to immunosuppressive cancer-associated fibroblasts in other tissues. We propose that differences in fibroblasts are a crucial component of the stroma that shapes cancer susceptibility. METHODS Primary peri-epithelial fibroblast cultures were established from prophylactic and reduction mammoplasties from 30 women ranging in age from 16 to 70 years and from BRCA1 mutation carriers. Growth characteristics, transcriptional profiles, differentiation potential, and secreted proteins were profiled for fibroblast subtypes from diverse donors. Co-cultures with fibroblasts, macrophages, and T cells were used to ascertain the functional role played by CD105+ fibroblasts in immune cell modulation. RESULTS We found that peri-epithelial CD105+ fibroblasts are enriched in older women as well as women who carry BRCA1 mutations. These CD105+ fibroblasts exhibit robust adipogenesis and secrete factors related to macrophage polarization. Macrophages cocultured with fibroblasts better maintain or enhance polarization states than media alone. CD105+ fibroblasts increased expression of immunosuppressive macrophage genes. CD105+ fibroblasts supported anti-inflammatory macrophage-mediated suppression of T cell proliferation, whereas CD105- fibroblasts significantly reduced the suppressive effect of anti-inflammatory macrophages on T cell proliferation. CONCLUSIONS Establishment of a coculture system to dissect the molecular circuits between CD105+ fibroblasts and macrophages that drive immunosuppressive macrophage polarization has broad utility in understanding mammary gland development and events that precede cancer initiation. CD105+ fibroblasts and macrophages may coordinate to suppress immunosurveillance and increase breast cancer susceptibility.
Collapse
Affiliation(s)
- Eric G Carlson
- Department of Population Sciences, City of Hope, Duarte, CA, USA
| | - Jennifer C Lopez
- Department of Population Sciences, City of Hope, Duarte, CA, USA
| | - Yukiko Yamaguchi
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope, Duarte, CA, USA
| | - Jackson Gibson
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope, Duarte, CA, USA
| | - Saul J Priceman
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope, Duarte, CA, USA
- Department of Medicine, University of Southern California, Los Angeles, United States
| | - Mark A LaBarge
- Department of Population Sciences, City of Hope, Duarte, CA, USA.
| |
Collapse
|
2
|
Carlson EG, Lopez JC, Yamaguchi Y, Gibson J, Priceman S, LaBarge MA. CD105+ fibroblasts support an immunosuppressive niche in women at high risk of breast cancer initiation. RESEARCH SQUARE 2025:rs.3.rs-5777126. [PMID: 40235480 PMCID: PMC11998780 DOI: 10.21203/rs.3.rs-5777126/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 04/17/2025]
Abstract
BACKGROUND Aging is the greatest risk factor for breast cancer, and although epithelial cells are the source of carcinomas, epithelial changes alone do not fully explain cancer susceptibility. Fibroblasts and macrophages are key stromal constituents around the cells of origin for cancer in breast tissue. With age, macrophages surrounding terminal ductal lobular units (TDLUs) become increasingly immunosuppressive. CD105 + fibroblasts intercalate within TDLUs, drive luminal differentiation, and give rise to immunosuppressive cancer-associated fibroblasts in other tissues. We propose that differences in fibroblasts are a crucial component of the stroma that shapes cancer susceptibility. METHODS Primary fibroblast cultures were established from prophylactic and reduction mammoplasties from women ranging in age from 16 to 70 years and breast cancer risk ( BRCA1 mutation carriers). Growth characteristics, transcriptional profiles, differentiation potential, and secreted proteins were profiled for fibroblast subtypes from diverse donors. Co-cultures with fibroblasts, monocytes, macrophages, and T cells were used to ascertain the functional role played by CD105 + fibroblasts in immune cell modulation. RESULTS We found that peri-epithelial CD105 + fibroblasts are enriched in older women as well as women who carry BRCA1 mutations. These CD105 + fibroblasts exhibit robust adipogenesis and secrete factors related to macrophage polarization. Macrophages cocultured with fibroblasts better maintain or enhance polarization states than media alone. CD105 + fibroblasts increased expression of immunosuppressive macrophage genes. CD105 + fibroblasts supported anti-inflammatory macrophage-mediated suppression of T cell proliferation, whereas CD105 - fibroblasts significantly reduced the suppressive effect of anti-inflammatory macrophages on T cell proliferation. CONCLUSIONS Establishment of a coculture system to dissect the molecular circuits between CD105 + fibroblasts and macrophages that drive immunosuppressive macrophage polarization has broad utility in understanding mammary gland development and events that precede cancer initiation. CD105 + fibroblasts and macrophages may coordinate to suppress immunosurveillance and increase breast cancer susceptibility.
Collapse
|
3
|
Lombardi EMS, Mizutani RF, Terra-Filho M, Ubiratan de Paula S. Biomarkers related to silicosis and pulmonary function in individuals exposed to silica. Am J Ind Med 2023; 66:984-995. [PMID: 37615855 DOI: 10.1002/ajim.23528] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 06/21/2023] [Accepted: 08/06/2023] [Indexed: 08/25/2023]
Abstract
BACKGROUND The identification of markers that can facilitate the early diagnosis of silicosis has remained challenging. We evaluated the association of inflammatory markers with the presence of silicosis and lung function impairment in individuals exposed to silica. METHODS Individuals exposed and not exposed to silica were assessed by occupational history, clinical findings, lung function, chest imaging findings, and inflammatory markers. RESULTS Among 297 men evaluated, 51 were unexposed controls (G1), 149 were exposed to silica without silicosis (G2), and 97 were exposed to silica with silicosis (G3). Inflammatory marker levels were higher in G3 than in G2 and G1. Platelet/lymphocyte ratio (PLR), lactate dehydrogenase (LDH), soluble tumor necrosis factor II (sTNFRII), and macrophage inflammatory protein-4 (MIP-4) were associated with silicosis, and LDH, neutrophil/lymphocyte ratio (NLR), sTNFRII, monocyte chemoattractant protein-1 (MCP-1), soluble vascular cell adhesion molecule-1 (sVCAM-1), and fibrinogen were negatively associated with lung function. CONCLUSION Blood inflammatory markers are associated with silicosis and impaired lung function.
Collapse
Affiliation(s)
- Elisa M S Lombardi
- Divisao de Pneumologia, Instituto do Coraçao (InCor), Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de São Paulo, Sao Paulo, Brazil
| | - Rafael F Mizutani
- Divisao de Pneumologia, Instituto do Coraçao (InCor), Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de São Paulo, Sao Paulo, Brazil
| | | | - Santos Ubiratan de Paula
- Divisao de Pneumologia, Instituto do Coraçao (InCor), Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de São Paulo, Sao Paulo, Brazil
| |
Collapse
|
4
|
Yu S, Kalinin AA, Paraskevopoulou MD, Maruggi M, Cheng J, Tang J, Icke I, Luo Y, Wei Q, Scheibe D, Hunter J, Singh S, Nguyen D, Carpenter AE, Horman SR. Integrating inflammatory biomarker analysis and artificial-intelligence-enabled image-based profiling to identify drug targets for intestinal fibrosis. Cell Chem Biol 2023; 30:1169-1182.e8. [PMID: 37437569 PMCID: PMC10529501 DOI: 10.1016/j.chembiol.2023.06.014] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Revised: 03/11/2023] [Accepted: 06/13/2023] [Indexed: 07/14/2023]
Abstract
Intestinal fibrosis, often caused by inflammatory bowel disease, can lead to intestinal stenosis and obstruction, but there are no approved treatments. Drug discovery has been hindered by the lack of screenable cellular phenotypes. To address this, we used a scalable image-based morphology assay called Cell Painting, augmented with machine learning algorithms, to identify small molecules that could reverse the activated fibrotic phenotype of intestinal myofibroblasts. We then conducted a high-throughput small molecule chemogenomics screen of approximately 5,000 compounds with known targets or mechanisms, which have achieved clinical stage or approval by the FDA. By integrating morphological analyses and AI using pathologically relevant cells and disease-relevant stimuli, we identified several compounds and target classes that are potentially able to treat intestinal fibrosis. This phenotypic screening platform offers significant improvements over conventional methods for identifying a wide range of drug targets.
Collapse
Affiliation(s)
- Shan Yu
- Takeda Development Center Americas, Inc., San Diego, CA 92121, USA.
| | | | | | - Marco Maruggi
- Takeda Development Center Americas, Inc., San Diego, CA 92121, USA
| | - Jie Cheng
- Takeda Development Center Americas, Inc., Cambridge, MA 02142, USA
| | - Jie Tang
- Takeda Development Center Americas, Inc., San Diego, CA 92121, USA
| | - Ilknur Icke
- Takeda Development Center Americas, Inc., Cambridge, MA 02142, USA
| | - Yi Luo
- Takeda Development Center Americas, Inc., San Diego, CA 92121, USA
| | - Qun Wei
- Takeda Development Center Americas, Inc., San Diego, CA 92121, USA
| | - Dan Scheibe
- Takeda Development Center Americas, Inc., San Diego, CA 92121, USA
| | - Joel Hunter
- Takeda Development Center Americas, Inc., San Diego, CA 92121, USA
| | - Shantanu Singh
- Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
| | - Deborah Nguyen
- Takeda Development Center Americas, Inc., San Diego, CA 92121, USA
| | | | - Shane R Horman
- Takeda Development Center Americas, Inc., San Diego, CA 92121, USA.
| |
Collapse
|
5
|
Archer M, Bernhardt SM, Hodson LJ, Woolford L, Van der Hoek M, Dasari P, Evdokiou A, Ingman WV. CCL2-Mediated Stromal Interactions Drive Macrophage Polarization to Increase Breast Tumorigenesis. Int J Mol Sci 2023; 24:ijms24087385. [PMID: 37108548 PMCID: PMC10138606 DOI: 10.3390/ijms24087385] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 04/12/2023] [Accepted: 04/12/2023] [Indexed: 04/29/2023] Open
Abstract
CCL2 is an inflammatory cytokine that regulates macrophage activity and is implicated in increased mammographic density and early breast tumorigenesis. The role of CCL2 in mediating stromal interactions that contribute to breast tumorigenesis has yet to be fully elucidated. THP-1-derived macrophages and mammary fibroblasts were co-cultured for 72 h. Fibroblasts and macrophages were analysed for phenotype, expression of inflammatory and ECM-regulatory genes and collagen production. Mice overexpressing CCL2 in the mammary glands were analysed for global gene expression by RNAseq at 12 weeks of age. These mice were cross-bred with PyMT mammary tumour mice to examine the role of CCL2 in tumorigenesis. The co-culture of macrophages with fibroblasts resulted in macrophage polarization towards an M2 phenotype, and upregulated expression of CCL2 and other genes associated with inflammation and ECM remodelling. CCL2 increased the production of insoluble collagen by fibroblasts. A global gene expression analysis of CCL2 overexpressing mice revealed that CCL2 upregulates cancer-associated gene pathways and downregulates fatty acid metabolism gene pathways. In the PyMT mammary tumour model, CCL2 overexpressing mice exhibited increased macrophage infiltration and early tumorigenesis. Interactions between macrophages and fibroblasts regulated by CCL2 can promote an environment that may increase breast cancer risk, leading to enhanced early tumorigenesis.
Collapse
Affiliation(s)
- Maddison Archer
- Discipline of Surgical Specialties, Adelaide Medical School, University of Adelaide, The Queen Elizabeth Hospital, Woodville South, SA 5011, Australia
- Robinson Research Institute, University of Adelaide, Adelaide, SA 5006, Australia
| | - Sarah M Bernhardt
- Discipline of Surgical Specialties, Adelaide Medical School, University of Adelaide, The Queen Elizabeth Hospital, Woodville South, SA 5011, Australia
- Robinson Research Institute, University of Adelaide, Adelaide, SA 5006, Australia
| | - Leigh J Hodson
- Discipline of Surgical Specialties, Adelaide Medical School, University of Adelaide, The Queen Elizabeth Hospital, Woodville South, SA 5011, Australia
- Robinson Research Institute, University of Adelaide, Adelaide, SA 5006, Australia
| | - Lucy Woolford
- School of Animal and Veterinary Sciences, Faculty of Sciences, Roseworthy Campus, University of Adelaide, Roseworthy, SA 5371, Australia
| | - Mark Van der Hoek
- South Australian Genomics Centre, South Australian Health and Medical Research Institute, Adelaide, SA 5000, Australia
| | - Pallave Dasari
- Discipline of Surgical Specialties, Adelaide Medical School, University of Adelaide, The Queen Elizabeth Hospital, Woodville South, SA 5011, Australia
- Robinson Research Institute, University of Adelaide, Adelaide, SA 5006, Australia
| | - Andreas Evdokiou
- Discipline of Surgical Specialties, Adelaide Medical School, University of Adelaide, The Queen Elizabeth Hospital, Woodville South, SA 5011, Australia
| | - Wendy V Ingman
- Discipline of Surgical Specialties, Adelaide Medical School, University of Adelaide, The Queen Elizabeth Hospital, Woodville South, SA 5011, Australia
- Robinson Research Institute, University of Adelaide, Adelaide, SA 5006, Australia
| |
Collapse
|
6
|
Novak CM, Sethuraman S, Luikart KL, Reader BF, Wheat JS, Whitson B, Ghadiali SN, Ballinger MN. Alveolar macrophages drive lung fibroblast function in cocultures of IPF and normal patient samples. Am J Physiol Lung Cell Mol Physiol 2023; 324:L507-L520. [PMID: 36791050 PMCID: PMC10259863 DOI: 10.1152/ajplung.00263.2022] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 01/19/2023] [Accepted: 02/13/2023] [Indexed: 02/16/2023] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is characterized by increased collagen accumulation that is progressive and nonresolving. Although fibrosis progression may be regulated by fibroblasts and alveolar macrophage (AM) interactions, this cellular interplay has not been fully elucidated. To study AM-fibroblast interactions, cells were isolated from IPF and normal human lung tissue and cultured independently or together in direct 2-D coculture, direct 3-D coculture, indirect transwell, and in 3-D hydrogels. AM influence on fibroblast function was assessed by gene expression, cytokine/chemokine secretion, and hydrogel contractility. Normal AMs cultured in direct contact with fibroblasts downregulated extracellular matrix (ECM) gene expression whereas IPF AMs had little to no effect. Fibroblast contractility was assessed by encapsulating cocultures in 3-D collagen hydrogels and monitoring gel diameter over time. Both normal and IPF AMs reduced baseline contractility of normal fibroblasts but had little to no effect on IPF fibroblasts. When stimulated with Toll-like receptor (TLR) agonists, IPF AMs increased production of pro-inflammatory cytokines TNFα and IL-1β, compared with normal AMs. TLR ligand stimulation did not alter fibroblast contraction, but stimulation with exogenous TNFα and TGFβ did alter contraction. To determine if the observed changes required cell-to-cell contact, AM-conditioned media and transwell systems were utilized. Transwell culture showed decreased ECM gene expression changes compared with direct coculture and conditioned media from AMs did not alter fibroblast contraction regardless of disease state. Taken together, these data indicate that normal fibroblasts are more responsive to AM crosstalk, and that AM influence on fibroblast behavior depends on cell proximity.
Collapse
Affiliation(s)
- Caymen M Novak
- Department of Internal Medicine, Division of Pulmonary, Critical Care and Sleep Medicine, Ohio State University Wexner Medical Center, Davis Heart and Lung Research Institute, Columbus, Ohio, United States
| | - Shruthi Sethuraman
- Department of Biomedical Engineering, Ohio State University, Columbus, Ohio, United States
| | - Kristina L Luikart
- Department of Biomedical Engineering, Ohio State University, Columbus, Ohio, United States
| | - Brenda F Reader
- Department of Biomedical Engineering, Ohio State University, Columbus, Ohio, United States
| | - Jana S Wheat
- Department of Internal Medicine, Division of Pulmonary, Critical Care and Sleep Medicine, Ohio State University Wexner Medical Center, Davis Heart and Lung Research Institute, Columbus, Ohio, United States
| | - Bryan Whitson
- Department of Biomedical Engineering, Ohio State University, Columbus, Ohio, United States
| | - Samir N Ghadiali
- Department of Biomedical Engineering, Ohio State University, Columbus, Ohio, United States
| | - Megan N Ballinger
- Department of Internal Medicine, Division of Pulmonary, Critical Care and Sleep Medicine, Ohio State University Wexner Medical Center, Davis Heart and Lung Research Institute, Columbus, Ohio, United States
| |
Collapse
|
7
|
Molecular pathways and role of epigenetics in the idiopathic pulmonary fibrosis. Life Sci 2022; 291:120283. [PMID: 34998839 DOI: 10.1016/j.lfs.2021.120283] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 12/19/2021] [Accepted: 12/27/2021] [Indexed: 12/12/2022]
Abstract
Idiopathic pulmonary fibrosis (IPF) is a fatal lung disease with unknown etiological factors that can progress to other dangerous diseases like lung cancer. Environmental and genetic predisposition are the two major etiological or risk factors involved in the pathology of the IPF. Among the environmental risk factors, smoking is one of the major causes for the development of IPF. Epigenetic pathways like nucleosomes remodeling, DNA methylation, histone modifications and miRNA mediated genes play a crucial role in development of IPF. Mutations in the genes make the epigenetic factors as important drug targets in IPF. Transcriptional changes due to environmental factors are also involved in the progression of IPF. The mutations in human telomerase reverse transcriptase (hTERT) have shown decreased life expectancy in IPF patients. The TERT-gene is highly expressed in chronic smokers and makes the role of epigenetics evident. Drug like nintedanib acts through vascular endothelial growth factor receptors (VEGFR), while drug pirfenidone acts through transforming growth factor (TGF), which is useful in IPF. Gefitinib, a tyrosine kinase inhibitor of EGFR, is useful as an anti-fibrosis agent in preclinical models. Newer drugs such as Celgene-CC90001 and FibroGen-FG-3019 are currently under investigations acts through the modulating epigenetic mechanisms. Thus, the study on epigenetics opens a wide window for the discovery of newer drugs. This study provides an elementary analysis of multiple regulators of epigenetics and their roles associated with the pathology of IPF. Further, this review also includes epigenetic drugs under development in preclinical and clinical stages.
Collapse
|
8
|
Irinotecan and its metabolite SN38 inhibits procollagen I production of dermal fibroblasts from Systemic Sclerosis patients. Sci Rep 2021; 11:18011. [PMID: 34504265 PMCID: PMC8429710 DOI: 10.1038/s41598-021-97538-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 08/18/2021] [Indexed: 11/29/2022] Open
Abstract
Systemic sclerosis (SSc) is a rare autoimmune connective tissue disease characterized by a microangiopathy and fibrosis of the skin and internal organs. No treatment has been proved to be efficient in case of early or advanced SSc to prevent or reduce fibrosis. There are strong arguments for a key role of topo-I in the pathogenesis of diffuse SSc. Irinotecan, a semisynthetic derivative of Camptothecin, specifically target topo-I. This study was undertaken to evaluate the effects of noncytotoxic doses of irinotecan or its active metabolite SN38 on collagen production in SSc fibroblasts. Dermal fibroblasts from 4 patients with SSc and 2 healthy donors were cultured in the presence or absence of irinotecan or SN38. Procollagen I release was determined by ELISA and expression of a panel of genes involved in fibrosis was evaluated by qRT-PCR. Subcytotoxic doses of irinotecan and SN38 caused a significant and dose-dependent decrease of the procollagen I production in dermal fibroblasts from SSc patients, respectively − 48 ± 3%, p < 0.0001 and − 37 ± 6.2%, p = 0.0097. Both irinotecan and SN38 led to a global downregulation of genes involved in fibrosis such as COL1A1, COL1A2, MMP1 and ACTA2 in dermal fibroblasts from SSc patients (respectively − 27; − 20.5; − 30.2 and − 30% for irinotecan and − 61; − 55; − 50 and − 54% for SN38). SN38 increased significantly CCL2 mRNA level (+ 163%). The inhibitory effect of irinotecan and its active metabolite SN38 on collagen production by SSc fibroblasts, which occurs through regulating the levels of expression of genes mRNA, suggests that topoisomerase I inhibitors may be effective in limiting fibrosis in such patients.
Collapse
|
9
|
d'Alessandro M, Bergantini L, Cameli P, Lanzarone N, Perillo F, Perrone A, Bargagli E. BAL and serum multiplex lipid profiling in idiopathic pulmonary fibrosis and fibrotic hypersensitivity pneumonitis. Life Sci 2020; 256:117995. [PMID: 32574666 DOI: 10.1016/j.lfs.2020.117995] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Revised: 06/17/2020] [Accepted: 06/18/2020] [Indexed: 02/06/2023]
Abstract
BACKGROUND Differential diagnosis between IPF and fibrotic HP (fHP) can be challenging: these two ILDs share many common features but call for different therapeutic approaches. In the present study, differential lipid mediator profiles were analysed by a new method in BAL and serum from HP and IPF patients. MATERIALS AND METHODS 76 patients were enrolled retrospectively in the study. Median age (IQR) was 67 years (51-74); 63% were males, 30 had fHP and 46 had IPF. Serum and BAL samples were collected at initial diagnosis. For quantification of serum and BAL lipid mediators was used bead-based multiplex LEGENDPlex™ analysis (Biolegend). RESULTS Serum Apo A1 levels were significantly higher in IPF than fHP patients (p = 0.314); indeed, serum levels of CCL2 and Apo C3 were lower in HP than in IPF patients (p = 0.013 and p = 0.041, respectively). BAL concentrations of Apo A1, adipsin, Apo C3 and APN were significantly lower in IPF than in fHP patients (p < 0.0001, p < 0.0001, p = 0.007 and p = 0.023, respectively). In the logistic regression, IPF was tested as dependent variable. Serum levels of Apo A1, CCL2 and Apo C3 were tested as independent variables and ROC curve analysis of model performance showed AUC 93% (p < 0.0001); on the other hand, BAL concentrations of Apo A1, adipsin, Apo C3 and APN showed AUC 81% (p < 0.0001). DISCUSSION Lipid biomarkers evaluated in BAL in our study confirm the hypothesis that fHP and IPF have different lung fibrosis phenotypes. The former is a post-inflammatory cell-regulated ILD and the second is more related to tissue remodeling and repair.
Collapse
Affiliation(s)
- Miriana d'Alessandro
- Respiratory Diseases and Lung Transplantation, Department of Medical and Surgical Sciences & Neurosciences, Siena University Hospital, Siena, Italy.
| | - Laura Bergantini
- Respiratory Diseases and Lung Transplantation, Department of Medical and Surgical Sciences & Neurosciences, Siena University Hospital, Siena, Italy
| | - Paolo Cameli
- Respiratory Diseases and Lung Transplantation, Department of Medical and Surgical Sciences & Neurosciences, Siena University Hospital, Siena, Italy
| | - Nicola Lanzarone
- Respiratory Diseases and Lung Transplantation, Department of Medical and Surgical Sciences & Neurosciences, Siena University Hospital, Siena, Italy
| | - Felice Perillo
- Respiratory Diseases and Lung Transplantation, Department of Medical and Surgical Sciences & Neurosciences, Siena University Hospital, Siena, Italy
| | - Anna Perrone
- Respiratory Diseases and Lung Transplantation, Department of Medical and Surgical Sciences & Neurosciences, Siena University Hospital, Siena, Italy
| | - Elena Bargagli
- Respiratory Diseases and Lung Transplantation, Department of Medical and Surgical Sciences & Neurosciences, Siena University Hospital, Siena, Italy
| |
Collapse
|
10
|
Sgalla G, Flore M, Siciliano M, Richeldi L. Antibody-based therapies for idiopathic pulmonary fibrosis. Expert Opin Biol Ther 2020; 20:779-786. [PMID: 32098521 DOI: 10.1080/14712598.2020.1735346] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
INTRODUCTION Pirfenidone and nintedanib have been the first agents demonstrating to slow down the progressive functional decline in patients with Idiopathic Pulmonary Fibrosis (IPF). Antibody-based therapies with precise molecular targets have been largely investigated over the last decade in IPF as alternative or complementary treatments, in the hope to ameliorate the relentless fibrotic process of IPF. AREAS COVERED In this review, we summarize the available evidence on two groups of monoclonal antibodies tested in IPF: those directed against known fibrogenic factors and matrix components, and those developed to antagonize the inflammation and immunity pathways. While the latter have failed to demonstrate any clinical efficacy in IPF so far, the anti-CTGF pamrevlumab has been recently proved to be capable of slowing down functional decline as compared to placebo, prompting further investigation. EXPERT OPINION Despite most trials on antibody-based therapies in IPF provided so far unsatisfying results, the therapeutic development in this field should continue to be pursued to deliver a more personalized treatment approach in the future, which is not currently offered by available treatment options. A more careful trial designing and the use of valid predictive markers of response to treatment are required to enhance effectiveness of future trials.
Collapse
Affiliation(s)
- Giacomo Sgalla
- Unità Operativa Complessa di Pneumologia, Dipartimento Scienze Gastroenterologiche, Endocrino-Metaboliche e Nefro-Urologiche, Fondazione Policlinico Universitario "A. Gemelli" IRCCS , Rome, Italy
| | - Mariachiara Flore
- Unità Operativa Complessa di Pneumologia, Dipartimento Scienze Gastroenterologiche, Endocrino-Metaboliche e Nefro-Urologiche, Fondazione Policlinico Universitario "A. Gemelli" IRCCS , Rome, Italy
| | - Matteo Siciliano
- Unità Operativa Complessa di Pneumologia, Dipartimento Scienze Gastroenterologiche, Endocrino-Metaboliche e Nefro-Urologiche, Fondazione Policlinico Universitario "A. Gemelli" IRCCS , Rome, Italy
| | - Luca Richeldi
- Unità Operativa Complessa di Pneumologia, Dipartimento Scienze Gastroenterologiche, Endocrino-Metaboliche e Nefro-Urologiche, Fondazione Policlinico Universitario "A. Gemelli" IRCCS , Rome, Italy.,Università Cattolica del Sacro Cuore , Rome, Italy
| |
Collapse
|
11
|
Zhang X, Fujii T, Ogata H, Yamasaki R, Masaki K, Cui Y, Matsushita T, Isobe N, Kira JI. Cerebrospinal fluid cytokine/chemokine/growth factor profiles in idiopathic hypertrophic pachymeningitis. J Neuroimmunol 2019; 330:38-43. [PMID: 30784775 DOI: 10.1016/j.jneuroim.2019.01.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Revised: 01/17/2019] [Accepted: 01/17/2019] [Indexed: 02/06/2023]
Abstract
Hypertrophic pachymeningitis (HP) is a rare neurologic disease causing inflammatory fibrous thickening of the brain and spinal dura mater. We investigated the cerebrospinal fluid cytokine profile of HP by measuring 28 cytokines/chemokines/growth factors with a multiplexed fluorescent immunoassay in 8 patients with HP (6 idiopathic, 1 IgG4-related, 1 anti-neutrophil cytoplasmic antibody-related), and 11 with other non-inflammatory neurologic diseases (OND). Interleukin (IL)-4, IL-5, IL-9, IL-10, TNF-α, and CXCL8/IL-8 levels were significantly higher in idiopathic HP (IHP) than OND. Cluster analyses disclosed two major clusters: one mainly consisted of IHP and the other of OND, suggesting a unique cytokine profile in IHP.
Collapse
Affiliation(s)
- Xu Zhang
- Department of Neurology, Neurological Institute, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan; Department of Neurology and Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin, China. shu-@neuro.med.kyushu-u.ac.jp
| | - Takayuki Fujii
- Department of Neurology, Neurological Institute, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan.
| | - Hidenori Ogata
- Department of Neurology, Neurological Institute, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan.
| | - Ryo Yamasaki
- Department of Neurology, Neurological Institute, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan.
| | - Katsuhisa Masaki
- Department of Neurology, Neurological Institute, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Yiwen Cui
- Department of Neurology, Neurological Institute, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan.
| | - Takuya Matsushita
- Department of Neurology, Neurological Institute, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan.
| | - Noriko Isobe
- Department of Neurological Therapeutics, Neurological Institute, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan.
| | - Jun-Ichi Kira
- Department of Neurology, Neurological Institute, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan.
| |
Collapse
|
12
|
Raker VK, Ook KY, Haub J, Lorenz N, Schmidt T, Stegemann A, Böhm M, Schuppan D, Steinbrink K. Myeloid cell populations and fibrogenic parameters in bleomycin- and HOCl-induced fibrosis. Exp Dermatol 2018; 25:887-894. [PMID: 27307019 DOI: 10.1111/exd.13124] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/31/2016] [Indexed: 12/11/2022]
Abstract
Mouse models resembling systemic sclerosis can be chemically induced by application of bleomycin or hypochloric acid (HOCl). To date, little is known about inflammatory cells and their potential role in scleroderma (Scl)-related fibrosis. Therefore, we compared both Scl models to define the early immune cell subsets in relation to fibrosis-related parameters. Both agents induced a significant increase in dermal thickness and collagen deposition after 4 weeks, as hallmarks of Scl. However, clinical skin thickness, densely packed, sirius red-stained collagen bundles and collagen cross-links were more pronounced in HOCl-induced Scl. In parallel, there was a significant upregulation of procollagen α1(I), α-SMA and TGF-β transcripts in HOCl animals, whereas IL-1β and MMP-13 mRNA levels were significantly increased in bleomycin-treated mice. Flow cytometric analysis of the Scl skin demonstrated an early cellular infiltrate containing mainly CD19+ B cells, CD4+ T cells, CD11c+ DC and CD11b+ myeloid cells, the latter ones being significantly more prominent after HOCl injection. Subanalysis revealed that Scl mice exhibited a significant increase of inflammatory myeloid CD11b+ Ly6Clow-high CD64low-high cells (HOCl>bleomycin). In particular, in the HOCl model, activated dermal macrophages (CCR2low MHCIIhigh ) and monocyte-derived DC (CCR2high MHCIIhigh ) predominated over less activated CD11b+ myeloid cells. In conclusion, the two models differ in certain aspects of the murine and human scleroderma but in the HOCl model, myeloid CD11b+ MHCIIhigh cells correlate with some fibrosis-related parameters. Therefore, analysis of both models is suggested to cover a comprehensive profile of Scl symptoms but with focus on the HOCl model when the role of early myeloid immune cells will be evaluated.
Collapse
Affiliation(s)
- Verena K Raker
- Department of Dermatology, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany. .,Research Center for Immune Therapy, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany.
| | - Kim Y Ook
- Research Center for Immune Therapy, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany.,Institute of Translational Immunology, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Jessica Haub
- Department of Dermatology, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany.,Research Center for Immune Therapy, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Nadine Lorenz
- Department of Dermatology, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany.,Research Center for Immune Therapy, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Talkea Schmidt
- Department of Dermatology, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany.,Research Center for Immune Therapy, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | | | - Markus Böhm
- University Medical Center Münster, Munster, Germany
| | - Detlef Schuppan
- Research Center for Immune Therapy, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany.,Institute of Translational Immunology, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Kerstin Steinbrink
- Department of Dermatology, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany.,Research Center for Immune Therapy, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| |
Collapse
|
13
|
DeLeon-Pennell KY, Iyer RP, Ero OK, Cates CA, Flynn ER, Cannon PL, Jung M, Shannon D, Garrett MR, Buchanan W, Hall ME, Ma Y, Lindsey ML. Periodontal-induced chronic inflammation triggers macrophage secretion of Ccl12 to inhibit fibroblast-mediated cardiac wound healing. JCI Insight 2017; 2:94207. [PMID: 28931761 DOI: 10.1172/jci.insight.94207] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Accepted: 08/10/2017] [Indexed: 12/20/2022] Open
Abstract
Chronic inflammatory diseases, such as periodontal disease, associate with adverse wound healing in response to myocardial infarction (MI). The goal of this study was to elucidate the molecular basis for impaired cardiac wound healing in the setting of periodontal-induced chronic inflammation. Causal network analysis of 168 inflammatory and extracellular matrix genes revealed that chronic inflammation induced by a subseptic dose of Porphyromonas gingivalis lipopolysaccharide (LPS) exacerbated infarct expression of the proinflammatory cytokine Ccl12. Ccl12 prevented initiation of the reparative response by prolonging inflammation and inhibiting fibroblast conversion to myofibroblasts, resulting in diminished scar formation. Macrophage secretion of Ccl12 directly impaired fibronectin and collagen deposition and indirectly stimulated collagen degradation through upregulation of matrix metalloproteinase-2. In post-MI patients, circulating LPS levels strongly associated with the Ccl12 homologue monocyte chemotactic protein 1 (MCP-1). Patients with LPS levels ≥ 1 endotoxin units (EU)/ml (subseptic endotoxemia) at the time of hospitalization had increased end diastolic and systolic dimensions compared with post-MI patients with < 1 EU/ml, indicating that low yet pathological concentrations of circulating LPS adversely impact post-MI left ventricle (LV) remodeling by increasing MCP-1. Our study provides the first evidence to our knowledge that chronic inflammation inhibits reparative fibroblast activation and generates an unfavorable cardiac-healing environment through Ccl12-dependent mechanisms.
Collapse
Affiliation(s)
- Kristine Y DeLeon-Pennell
- Research Service, G.V. (Sonny) Montgomery Veterans Affairs Medical Center, Jackson, Mississippi, USA.,Mississippi Center for Heart Research, Department of Physiology and Biophysics
| | | | - Osasere K Ero
- Mississippi Center for Heart Research, Department of Physiology and Biophysics
| | - Courtney A Cates
- Mississippi Center for Heart Research, Department of Physiology and Biophysics
| | - Elizabeth R Flynn
- Mississippi Center for Heart Research, Department of Physiology and Biophysics
| | - Presley L Cannon
- Mississippi Center for Heart Research, Department of Physiology and Biophysics
| | - Mira Jung
- Mississippi Center for Heart Research, Department of Physiology and Biophysics
| | - De'Aries Shannon
- Mississippi Center for Heart Research, Department of Physiology and Biophysics
| | | | | | - Michael E Hall
- Mississippi Center for Heart Research, Department of Physiology and Biophysics.,Division of Cardiology, University of Mississippi Medical Center, Jackson, Mississippi, USA
| | - Yonggang Ma
- Mississippi Center for Heart Research, Department of Physiology and Biophysics
| | - Merry L Lindsey
- Research Service, G.V. (Sonny) Montgomery Veterans Affairs Medical Center, Jackson, Mississippi, USA.,Mississippi Center for Heart Research, Department of Physiology and Biophysics
| |
Collapse
|
14
|
Koli K, Sutinen E, Rönty M, Rantakari P, Fortino V, Pulkkinen V, Greco D, Sipilä P, Myllärniemi M. Gremlin-1 Overexpression in Mouse Lung Reduces Silica-Induced Lymphocyte Recruitment - A Link to Idiopathic Pulmonary Fibrosis through Negative Correlation with CXCL10 Chemokine. PLoS One 2016; 11:e0159010. [PMID: 27428020 PMCID: PMC4948891 DOI: 10.1371/journal.pone.0159010] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2016] [Accepted: 06/25/2016] [Indexed: 12/24/2022] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is characterized by activation and injury of epithelial cells, the accumulation of connective tissue and changes in the inflammatory microenvironment. The bone morphogenetic protein (BMP) inhibitor protein gremlin-1 is associated with the progression of fibrosis both in human and mouse lung. We generated a transgenic mouse model expressing gremlin-1 in type II lung epithelial cells using the surfactant protein C (SPC) promoter and the Cre-LoxP system. Gremlin-1 protein expression was detected specifically in the lung after birth and did not result in any signs of respiratory insufficiency. Exposure to silicon dioxide resulted in reduced amounts of lymphocyte aggregates in transgenic lungs while no alteration in the fibrotic response was observed. Microarray gene expression profiling and analyses of bronchoalveolar lavage fluid cytokines indicated a reduced lymphocytic response and a downregulation of interferon-induced gene program. Consistent with reduced Th1 response, there was a downregulation of the mRNA and protein expression of the anti-fibrotic chemokine CXCL10, which has been linked to IPF. In human IPF patient samples we also established a strong negative correlation in the mRNA expression levels of gremlin-1 and CXCL10. Our results suggest that in addition to regulation of epithelial-mesenchymal crosstalk during tissue injury, gremlin-1 modulates inflammatory cell recruitment and anti-fibrotic chemokine production in the lung.
Collapse
Affiliation(s)
- Katri Koli
- Research Programs Unit, Translational Cancer Biology, University of Helsinki, Helsinki, Finland
- Transplantation Laboratory, Haartman Institute, University of Helsinki, Helsinki, Finland
- * E-mail:
| | - Eva Sutinen
- Transplantation Laboratory, Haartman Institute, University of Helsinki, Helsinki, Finland
- University of Helsinki and Helsinki University Hospital, Heart and Lung Center, Department of Pulmonary Medicine, Helsinki, Finland
| | - Mikko Rönty
- Department of Pathology, University of Helsinki and Fimlab laboratories, Pathology, Tampere, Finland
| | - Pia Rantakari
- MediCity Research Laboratory, University of Turku, Turku, Finland
| | - Vittorio Fortino
- Unit of Systems Toxicology and Nanosafety Centre, Finnish Institute of Occupational Health (FIOH), Helsinki, Finland
| | - Ville Pulkkinen
- University of Helsinki and Helsinki University Hospital, Heart and Lung Center, Department of Pulmonary Medicine, Helsinki, Finland
| | - Dario Greco
- Unit of Systems Toxicology and Nanosafety Centre, Finnish Institute of Occupational Health (FIOH), Helsinki, Finland
| | - Petra Sipilä
- Department of Physiology, Institute of Biomedicine and Turku Center for Disease Modeling, University of Turku, Turku, Finland
| | - Marjukka Myllärniemi
- Transplantation Laboratory, Haartman Institute, University of Helsinki, Helsinki, Finland
- University of Helsinki and Helsinki University Hospital, Heart and Lung Center, Department of Pulmonary Medicine, Helsinki, Finland
| |
Collapse
|
15
|
Collins SL, Chan-Li Y, Oh M, Vigeland CL, Limjunyawong N, Mitzner W, Powell JD, Horton MR. Vaccinia vaccine-based immunotherapy arrests and reverses established pulmonary fibrosis. JCI Insight 2016; 1:e83116. [PMID: 27158671 DOI: 10.1172/jci.insight.83116] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a fatal disease without any cure. Both human disease and animal models demonstrate dysregulated wound healing and unregulated fibrogenesis in a background of low-grade chronic T lymphocyte infiltration. Tissue-resident memory T cells (Trm) are emerging as important regulators of the immune microenvironment in response to pathogens, and we hypothesized that they might play a role in regulating the unremitting inflammation that promotes lung fibrosis. Herein, we demonstrate that lung-directed immunotherapy, in the form of i.n. vaccination, induces an antifibrotic T cell response capable of arresting and reversing lung fibrosis. In mice with established lung fibrosis, lung-specific T cell responses were able to reverse established pathology - as measured by decreased lung collagen, fibrocytes, and histologic injury - and improve physiologic function. Mechanistically, we demonstrate that this effect is mediated by vaccine-induced lung Trm. These data not only have implications for the development of immunotherapeutic regimens to treat IPF, but also suggest a role for targeting tissue-resident memory T cells to treat other tissue-specific inflammatory/autoimmune disorders.
Collapse
Affiliation(s)
- Samuel L Collins
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Yee Chan-Li
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - MinHee Oh
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Christine L Vigeland
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Nathachit Limjunyawong
- Department of Environmental Health Sciences, Program in Respiratory Biology and Lung Diseases, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Wayne Mitzner
- Department of Environmental Health Sciences, Program in Respiratory Biology and Lung Diseases, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Jonathan D Powell
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Maureen R Horton
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
16
|
Rangarajan S, Locy ML, Luckhardt TR, Thannickal VJ. Targeted Therapy for Idiopathic Pulmonary Fibrosis: Where To Now? Drugs 2016; 76:291-300. [PMID: 26729185 PMCID: PMC4939080 DOI: 10.1007/s40265-015-0523-6] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Idiopathic pulmonary fibrosis (IPF) is an aging-associated, recalcitrant lung disease with historically limited therapeutic options. The recent approval of two drugs, pirfenidone and nintedanib, by the US Food and Drug Administration in 2014 has heralded a new era in its management. Both drugs have demonstrated efficacy in phase III clinical trials by retarding the rate of progression of IPF; neither drug appears to be able to completely arrest disease progression. Advances in the understanding of IPF pathobiology have led to an unprecedented expansion in the number of potential therapeutic targets. Drugs targeting several of these are under investigation in various stages of clinical development. Here, we provide a brief overview of the drugs that are currently approved and others in phase II clinical trials. Future therapeutic opportunities that target novel pathways, including some that are associated with the biology of aging, are examined. A multi-targeted approach, potentially with combination therapies, and identification of individual patients (or subsets of patients) who may respond more favourably to specific agents are likely to be more effective.
Collapse
Affiliation(s)
- Sunad Rangarajan
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, 1900 University Blvd THT 422, Birmingham, AL, 35294-2180, USA
| | - Morgan L Locy
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, 1900 University Blvd THT 422, Birmingham, AL, 35294-2180, USA
| | - Tracy R Luckhardt
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, 1900 University Blvd THT 422, Birmingham, AL, 35294-2180, USA
| | - Victor J Thannickal
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, 1900 University Blvd THT 422, Birmingham, AL, 35294-2180, USA.
| |
Collapse
|
17
|
Role of human pulmonary fibroblast-derived MCP-1 in cell activation and migration in experimental silicosis. Toxicol Appl Pharmacol 2015; 288:152-60. [DOI: 10.1016/j.taap.2015.07.002] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2015] [Revised: 06/28/2015] [Accepted: 07/02/2015] [Indexed: 01/12/2023]
|
18
|
Cui W, Li L, Li D, Mo X, Zhou W, Zhang Z, Xu L, Zhao P, Qi L, Li P, Gao J. Total glycosides of Yupingfeng protects against bleomycin-induced pulmonary fibrosis in rats associated with reduced high mobility group box 1 activation and epithelial-mesenchymal transition. Inflamm Res 2015; 64:953-61. [PMID: 26411348 DOI: 10.1007/s00011-015-0878-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2015] [Revised: 09/11/2015] [Accepted: 09/14/2015] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Pulmonary fibrosis (PF) is a fatal inflammatory disease with limited effective strategies. Epithelial-mesenchymal transition (EMT) is a pivotal origin of myofibroblasts that secrete extracellular matrix (ECM) in the development of PF. High mobility group box 1 (HMGB1), one of the mediators of inflammation, has been proved abnormal activation in the pathogenesis of PF. AIM The present study was aimed to investigate the potential effects of total glycoside of Yupingfeng (YPF-G), the natural compound extracted from Yupingfeng san, on HMGB1 activation and EMT in bleomycin-induced PF, which was a serious disease of respiratory system. METHODS The Sprague-Dawley (SD) rat model of PF was duplicated by intratracheal instillation of bleomycin (5 mg kg(-1)). After that, YPF-G (5, 10 mg kg(-1)) and prednisone (5 mg kg(-1)) were separately administered intragastrically, and then the rats were killed at days 14 and 28, respectively. Hematoxylin and eosin and Masson's trichrome staining were performed to assess the histopathologic level of lung tissues, western blotting and the common kits were utilized to investigate the hallmarks molecule expression of ECM and EMT, and the level of HMGB1 in lung tissues and serum. RESULTS We found that both dose of YPF-G markedly reduced bleomycin-induced alveolitis and PF in rats. Besides, the levels of HMGB1, laminin, hyaluronic acid, and hydroxyproline were effectively reduced. Meanwhile, the increased protein expression of HMGB1 and the mesenchymal markers including vimentin and alpha-smooth muscle actin, and the decreased protein expression of epithelial marker E-cadherin were dramatically inhibited after YPF-G treatment. CONCLUSION Our results demonstrated that YPF-G could ameliorate bleomycin-induced PF by reducing HMGB1 activation and reversing EMT.
Collapse
Affiliation(s)
- Wenhui Cui
- School of Pharmacy, Anhui Medical University, 81 Meishan Road, Hefei, 230032, Anhui, China.,The First Affiliated Hospital of Anhui Medical University, 218 Jixi Road, Hefei, 230022, Anhui, China
| | - Liucheng Li
- Department of Pharmacy, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, 3 East Qingchun Road, Hangzhou, 310016, Zhejiang, China
| | - Delin Li
- School of Pharmacy, Anhui University of Chinese Medicine, 103 Meishan Road, Hefei, 230038, Anhui, China
| | - Xiaoting Mo
- School of Pharmacy, Anhui Medical University, 81 Meishan Road, Hefei, 230032, Anhui, China.,The First Affiliated Hospital of Anhui Medical University, 218 Jixi Road, Hefei, 230022, Anhui, China
| | - Wencheng Zhou
- School of Pharmacy, Anhui Medical University, 81 Meishan Road, Hefei, 230032, Anhui, China.,The First Affiliated Hospital of Anhui Medical University, 218 Jixi Road, Hefei, 230022, Anhui, China
| | - Zhihui Zhang
- The First Affiliated Hospital of Anhui Medical University, 218 Jixi Road, Hefei, 230022, Anhui, China
| | - Liang Xu
- School of Pharmacy, Anhui University of Chinese Medicine, 103 Meishan Road, Hefei, 230038, Anhui, China
| | - Ping Zhao
- School of Pharmacy, Anhui University of Chinese Medicine, 103 Meishan Road, Hefei, 230038, Anhui, China
| | - Lianwen Qi
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, 24 Tongjia Xiang, Jiangsu, 210009, Nanjing, China
| | - Ping Li
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, 24 Tongjia Xiang, Jiangsu, 210009, Nanjing, China
| | - Jian Gao
- School of Pharmacy, Anhui Medical University, 81 Meishan Road, Hefei, 230032, Anhui, China. .,The First Affiliated Hospital of Anhui Medical University, 218 Jixi Road, Hefei, 230022, Anhui, China.
| |
Collapse
|