1
|
Ma J, Wang J, Deng K, Gao Y, Xiao W, Hou J, Jiang C, Li J, Yu B. The Effect of MaxiK Channel on Regulating the Activation of NLRP3 Inflammasome in Rats of Blast-induced Traumatic Brain Injury. Neuroscience 2021; 482:132-142. [PMID: 34923036 DOI: 10.1016/j.neuroscience.2021.12.019] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Revised: 12/12/2021] [Accepted: 12/13/2021] [Indexed: 10/19/2022]
Abstract
Abundant findings including our previous work proved that the NOD-like receptor family, pyrin domain-containing 3 (NLRP3) inflammasome exerts a key role in the process of neuroinflammation following blast-induced traumatic brain injury (bTBI). The opening of potassium channels leads to low K+ environment in cells, which appears to be an essential requirement for NLRP3 inflammasome activation. Notably, MaxiK (BK) channel is significant for K+ transport. The present study is aim to investigate the potential role of MaxiK in the activation of NLRP3 and to evaluate whether MaxiK channel blocker paxilline could confer beneficial effects on attenuating the severity of bTBI in rats. Rats were randomly assigned into five groups (n = 8). MaxiK channel expression was measured in bTBI rats. The effect of paxilline on the expression of NLRP3 inflammasome, the level of inflammatory cytokines, brain injury biomarkers in serum and brain edema were also evaluated in bTBI rats. The results showed that the expression of MaxiK was elevated significantly in the cerebral cortex of bTBI rats. The treatment of MaxiK channel blocker paxilline suppressed the NLRP3 inflammasome expression substantially. In addition, paxilline could also decrease the level of pro-inflammatory cytokines and the biomarkers of brain injury and alleviate brain edema of bTBI rats. Our findings have revealed that MaxiK channel might be involved in the process of neuroinflammation of bTBI. Paxilline could depress neuro-inflammation response and alleviate brain injury by blocking MaxiK channel and subsequently inhibition of NLRP3 inflammasome activation.
Collapse
Affiliation(s)
- Jie Ma
- Department of Pharmacy, The General Hospital of Western Theater Command, Chengdu, Sichuan, PR China.
| | - Junrui Wang
- Department of Orthopaedics, Chengdu Second People's Hospital, Chengdu, Sichuan, PR China; Savaid Medical School, University of Chinese Academy of Sciences, Beijing, PR China
| | - Kaiwen Deng
- Department of Pharmacy, The General Hospital of Western Theater Command, Chengdu, Sichuan, PR China
| | - Yu Gao
- Department of Pharmacy, Chengdu Women's and Children's Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan, PR China
| | - Wenjing Xiao
- Department of Pharmacy, The General Hospital of Western Theater Command, Chengdu, Sichuan, PR China
| | - Jun Hou
- Department of Pharmacy, The General Hospital of Western Theater Command, Chengdu, Sichuan, PR China
| | - Changqing Jiang
- Department of Pharmacy, The General Hospital of Western Theater Command, Chengdu, Sichuan, PR China
| | - Jing Li
- Department of Pharmacy, The General Hospital of Western Theater Command, Chengdu, Sichuan, PR China
| | - Botao Yu
- Department of Pharmacy, The General Hospital of Western Theater Command, Chengdu, Sichuan, PR China.
| |
Collapse
|
2
|
Velusamy RK, Tamizhselvi R. Protective effect of methylsulfonylmethane in caerulein-induced acute pancreatitis and associated lung injury in mice. J Pharm Pharmacol 2018; 70:1188-1199. [DOI: 10.1111/jphp.12946] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2017] [Accepted: 05/19/2018] [Indexed: 12/17/2022]
Abstract
Abstract
Objectives
In the present study, we have elaborated the anti-inflammatory mechanism of MSM through homing of CD34+ stem cells towards an inflamed region by regulating hydrogen sulfide (H2S) in an in vivo model of caerulein-induced acute pancreatitis (AP) and associated lung injury.
Methods
Male Swiss mice were treated with hourly intraperitoneal injections of caerulein (50 μg/kg) for 6 h. MSM (500 mg/kg) was administered intraperitoneally 1 h after the first caerulein injection (therapeutic). The serum amylase activity and myeloperoxidase (MPO) activity in lung and pancreas were measured. The levels of H2S and interleukin (IL)-1β, cystathionine-γ-lyase (CSE) and CD34+ expressions in pancreas and lungs were determined by RT-PCR and ELISA.
Key Findings
Methylsulfonylmethane significantly ameliorated pancreas and lung histopathological changes, decreased serum amylase, MPO activity and inhibited caerulein-induced IL-1β expression. Furthermore, MSM reduced caerulein-induced H2S levels by alleviating the expression of CSE in pancreas and lungs and increased CD34 expression and inhibited nuclear factor (NF)-κB translocation in caerulein-induced AP and associated lung injury.
Conclusions
These findings indicate that MSM can effectively reduce inflammatory responses and induce the homing of CD34+ cells to the injured tissues.
Collapse
Affiliation(s)
| | - Ramasamy Tamizhselvi
- School of Biosciences and Technology, VIT University, Vellore, Tamil Nadu, India
| |
Collapse
|
3
|
Jin Y, Liu L, Chen B, Bai Y, Zhang F, Li Q, Lv C, Sun H, Li J, Rubby S, Yang L, Andersson R, Zhou M. Involvement of the PI3K/Akt/NF- κB Signaling Pathway in the Attenuation of Severe Acute Pancreatitis-Associated Acute Lung Injury by Sedum sarmentosum Bunge Extract. BIOMED RESEARCH INTERNATIONAL 2017; 2017:9698410. [PMID: 29359164 PMCID: PMC5735615 DOI: 10.1155/2017/9698410] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Revised: 09/19/2017] [Accepted: 10/22/2017] [Indexed: 01/22/2023]
Abstract
Sedum sarmentosum Bunge possesses excellent anti-inflammatory properties and was used in the treatment of inflammatory diseases. The aim of the present study was to investigate the efficiency of Sedum sarmentosum Bunge extract (SSBE) on severe acute pancreatitis-associated (SAP-associated) acute lung injury (ALI) in rats and to explore the underlying mechanisms. Here, we used a sodium taurocholate-induced SAP rat model to determine the role of SSBE in ALI. During the course of pancreatitis, the expressions of phosphorylated phosphoinositide 3-kinases (PI3K)/protein kinase B (Akt) and nuclear factor-kappa B (NF-κB) p65 in the lungs were upregulated. Meanwhile, a parallel increase in the levels of interleukin-1β (IL-1β), interleukin-6 (IL-6), and tumor necrosis factor-α (TNF-α) in the lungs was observed after the induction of SAP. Treatment with SSBE significantly reduced the expression of p-Akt and p-p65 in the lungs and attenuated the severity of SAP-associated ALI compared to the SAP group at 12 h and 24 h. In summary, this study showed that SSBE has beneficial effects on SAP-associated ALI, probably through the PI3-K/Akt signaling pathways by suppressing the NF-κB activities.
Collapse
Affiliation(s)
- Yuepeng Jin
- Department of Surgery, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Lewei Liu
- YueQing Affiliated Hospital of Wenzhou Medical University, YueQing People's Hospital, Yueqing, Zhejiang Province, China
| | - Bicheng Chen
- Zhejiang Provincial Top Key Discipline in Surgery, Wenzhou Key Laboratory of Surgery, Department of Surgery, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Yongyu Bai
- Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Fan Zhang
- Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Qiang Li
- Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Chongqing Lv
- Shengli Oilfield Central Hospital, Dongying, Shandong Province, China
| | - Hongwei Sun
- Department of Surgery, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Junjian Li
- Department of Surgery, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Sadman Rubby
- Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Lihong Yang
- Department of Surgery, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Roland Andersson
- Department of Surgery, Clinical Sciences Lund, Lund University and Lund University Hospital, Sweden
| | - Mengtao Zhou
- Department of Surgery, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| |
Collapse
|
4
|
Morinda citrifolia lipid transfer protein 1 exhibits anti-inflammatory activity by modulation of pro- and anti-inflammatory cytokines. Int J Biol Macromol 2017; 103:1121-1129. [DOI: 10.1016/j.ijbiomac.2017.05.148] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Accepted: 05/24/2017] [Indexed: 01/15/2023]
|
5
|
Ohya S, Kito H, Hatano N, Muraki K. Recent advances in therapeutic strategies that focus on the regulation of ion channel expression. Pharmacol Ther 2016; 160:11-43. [PMID: 26896566 DOI: 10.1016/j.pharmthera.2016.02.001] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
A number of different ion channel types are involved in cell signaling networks, and homeostatic regulatory mechanisms contribute to the control of ion channel expression. Profiling of global gene expression using microarray technology has recently provided novel insights into the molecular mechanisms underlying the homeostatic and pathological control of ion channel expression. It has demonstrated that the dysregulation of ion channel expression is associated with the pathogenesis of neural, cardiovascular, and immune diseases as well as cancers. In addition to the transcriptional, translational, and post-translational regulation of ion channels, potentially important evidence on the mechanisms controlling ion channel expression has recently been accumulated. The regulation of alternative pre-mRNA splicing is therefore a novel therapeutic strategy for the treatment of dominant-negative splicing disorders. Epigenetic modification plays a key role in various pathological conditions through the regulation of pluripotency genes. Inhibitors of pre-mRNA splicing and histone deacetyalase/methyltransferase have potential as potent therapeutic drugs for cancers and autoimmune and inflammatory diseases. Moreover, membrane-anchoring proteins, lysosomal and proteasomal degradation-related molecules, auxiliary subunits, and pharmacological agents alter the protein folding, membrane trafficking, and post-translational modifications of ion channels, and are linked to expression-defect channelopathies. In this review, we focused on recent insights into the transcriptional, spliceosomal, epigenetic, and proteasomal regulation of ion channel expression: Ca(2+) channels (TRPC/TRPV/TRPM/TRPA/Orai), K(+) channels (voltage-gated, KV/Ca(2+)-activated, KCa/two-pore domain, K2P/inward-rectifier, Kir), and Ca(2+)-activated Cl(-) channels (TMEM16A/TMEM16B). Furthermore, this review highlights expression of these ion channels in expression-defect channelopathies.
Collapse
Affiliation(s)
- Susumu Ohya
- Department of Pharmacology, Division of Pathological Sciences, Kyoto Pharmaceutical University, Kyoto 607-8414, Japan.
| | - Hiroaki Kito
- Department of Pharmacology, Division of Pathological Sciences, Kyoto Pharmaceutical University, Kyoto 607-8414, Japan
| | - Noriyuki Hatano
- Laboratory of Cellular Pharmacology, School of Pharmacy, Aichi-Gakuin University, Nagoya 464-8650, Japan
| | - Katsuhiko Muraki
- Laboratory of Cellular Pharmacology, School of Pharmacy, Aichi-Gakuin University, Nagoya 464-8650, Japan.
| |
Collapse
|
6
|
Patel K, Durgampudi C, Noel P, Trivedi RN, de Oliveira C, Singh VP. Fatty Acid Ethyl Esters Are Less Toxic Than Their Parent Fatty Acids Generated during Acute Pancreatitis. THE AMERICAN JOURNAL OF PATHOLOGY 2016; 186:874-84. [PMID: 26878214 DOI: 10.1016/j.ajpath.2015.11.022] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2015] [Revised: 10/19/2015] [Accepted: 11/19/2015] [Indexed: 12/18/2022]
Abstract
Although ethanol causes acute pancreatitis (AP) and lipolytic fatty acid (FA) generation worsens AP, the contribution of ethanol metabolites of FAs, ie, FA ethyl esters (FAEEs), to AP outcomes is unclear. Previously, pancreata of dying alcoholics and pancreatic necrosis in severe AP, respectively, showed high FAEEs and FAs, with oleic acid (OA) and its ethyl esters being the most abundant. We thus compared the toxicities of FAEEs and their parent FAs in severe AP. Pancreatic acini and peripheral blood mononuclear cells were exposed to FAs or FAEEs in vitro. The triglyceride of OA (i.e., glyceryl tri-oleate) or OAEE was injected into the pancreatic ducts of rats, and local and systemic severities were studied. Unsaturated FAs at equimolar concentrations to FAEEs induced a larger increase in cytosolic calcium, mitochondrial depolarization, and necro-apoptotic cell death. Glyceryl tri-oleate but not OAEE resulted in 70% mortality with increased serum OA, a severe inflammatory response, worse pancreatic necrosis, and multisystem organ failure. Our data show that FAs are more likely to worsen AP than FAEEs. Our observations correlate well with the high pancreatic FAEE concentrations in alcoholics without pancreatitis and high FA concentrations in pancreatic necrosis. Thus, conversion of FAs to FAEE may ameliorate AP in alcoholics.
Collapse
Affiliation(s)
- Krutika Patel
- Division of Gastroenterology and Hepatology, Department of Medicine, Mayo Clinic, Scottsdale, Arizona
| | - Chandra Durgampudi
- Department of Medicine, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania
| | - Pawan Noel
- Division of Gastroenterology and Hepatology, Department of Medicine, Mayo Clinic, Scottsdale, Arizona
| | - Ram N Trivedi
- Division of Gastroenterology and Hepatology, Department of Medicine, Mayo Clinic, Scottsdale, Arizona
| | - Cristiane de Oliveira
- Division of Gastroenterology and Hepatology, Department of Medicine, Mayo Clinic, Scottsdale, Arizona
| | - Vijay P Singh
- Division of Gastroenterology and Hepatology, Department of Medicine, Mayo Clinic, Scottsdale, Arizona.
| |
Collapse
|
7
|
Yang ZW, Weng CZ, Wang J, Xu P. The role of Card9 overexpression in peripheral blood mononuclear cells from patients with aseptic acute pancreatitis. J Cell Mol Med 2015; 20:441-9. [PMID: 26893103 PMCID: PMC4759462 DOI: 10.1111/jcmm.12738] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2015] [Accepted: 10/18/2015] [Indexed: 01/04/2023] Open
Abstract
Activated mononuclear cells are an early event in the course of severe acute pancreatitis (SAP). To date, the molecular mechanism triggering peripheral blood mononuclear cells (PBMCs) is poorly understood. The aim of this paper was to determine the potential role of Card9 in SAP. We collected data from 72 subjects between January 2013 and June 2014. Subsequently, PBMCs were isolated on day 1, 3 and 5 of pancreatitis. Immunofluorescence staining, quantitative real‐time PCR, Western blotting, immunoprecipitation and ELISA were used to determine the role of Card9 in SAP. Microbial culture showed that SAP patients at the early period did not develop any bacteria and fungi infection. Card9 expression in SAP patients was higher than that in mild acute pancreatitis and volunteer healthy controls, up to the peak on day 1. The monocyte‐derived cytokines interleukin (IL)‐17, IL‐1β, IL‐6 and tumour necrosis factor‐α mediated by the induction of Card9 markedly increased in SAP patients compared with the control group. Furthermore, the inducible formation of Card9‐Bcl10 complex was found in PBMCs, which may be involved in nuclear factor kappa B (NF‐κB) and p38 activation in SAP. Receiver operating characteristic curve indicated that Card9 levels had a high sensitivity of 87.5% and specificity of 67.7%, showing the close correlation with SAP patients. Card9 overexpression was firstly found in aseptic SAP, which may be played an important role in NF‐κB and p38 activation in PBMCs. It also provided the new insights into therapeutic interventions by targeting monocytes activation in SAP patients.
Collapse
Affiliation(s)
- Zhi-wen Yang
- Department of Pharmacy, Songjiang Hospital Affiliated Shanghai First People's Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Cheng-zhao Weng
- Department of Digestive, Shanghai Songjiang Hospital Affiliated to Nanjing Medical University, Nanjing, China
| | - Jing Wang
- Department of Digestive, Songjiang Hospital Affiliated Shanghai First People's Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Ping Xu
- Department of Digestive, Shanghai Songjiang Hospital Affiliated to Nanjing Medical University, Nanjing, China.,Department of Digestive, Songjiang Hospital Affiliated Shanghai First People's Hospital, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
8
|
Shamoon M, Deng Y, Chen YQ, Bhatia M, Sun J. Therapeutic implications of innate immune system in acute pancreatitis. Expert Opin Ther Targets 2015; 20:73-87. [PMID: 26565751 DOI: 10.1517/14728222.2015.1077227] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
INTRODUCTION Acute pancreatitis (AP) is an inflammatory disorder of the pancreas encompassing a cascade of cellular and molecular events. It starts from premature activation of zymogens with the involvement of innate immune system to a potential systemic inflammatory response and multiple organ failure. Leukocytes are the major cell population that participate in the propagation of the disease. Current understanding of the course of AP is still far from complete, limiting treatment options mostly to conservative supportive care. Emerging evidence has pointed to modulation of the immune system for strategic therapeutic development, by mitigating the inflammatory response and severity of AP. In the current review, we have focused on the role of innate immunity in the condition and highlighted therapeutics targeting it for treatment of this challenging disease. AREAS COVERED The current review has aimed to elaborate in-depth understanding of specific roles of innate immune cells, derived mediators and inflammatory pathways that are involved in AP. Summarizing the recent therapeutics and approaches applied experimentally that target immune responses to attenuate AP. EXPERT OPINION The current state of knowledge on AP, limitations of presently available therapeutic approaches and the promise of therapeutic implications of innate immune system in AP are discussed.
Collapse
Affiliation(s)
- Muhammad Shamoon
- a 1 Jiangnan University, School of Food Science and Technology, The Synergetic Innovation Center of Food Safety and Nutrition, State Key Laboratory of Food Science and Technology , Wuxi, Jiangsu, China
| | - Yuanyuan Deng
- a 1 Jiangnan University, School of Food Science and Technology, The Synergetic Innovation Center of Food Safety and Nutrition, State Key Laboratory of Food Science and Technology , Wuxi, Jiangsu, China
| | - Yong Q Chen
- a 1 Jiangnan University, School of Food Science and Technology, The Synergetic Innovation Center of Food Safety and Nutrition, State Key Laboratory of Food Science and Technology , Wuxi, Jiangsu, China
| | - Madhav Bhatia
- b 2 University of Otago, Inflammation Research Group, Department of Pathology , Christchurch, 2 Riccarton Avenue, P.O. Box 4345, Christchurch 8140, New Zealand
| | - Jia Sun
- a 1 Jiangnan University, School of Food Science and Technology, The Synergetic Innovation Center of Food Safety and Nutrition, State Key Laboratory of Food Science and Technology , Wuxi, Jiangsu, China
| |
Collapse
|