1
|
Pang L, Huang Y, Li R, Guo L, Man C, Yang X, Jiang Y. Effects of postbiotics produced by Lactobacillus plantarum JM015 isolated from traditional fermented dairy products on Salmonella-induced intestinal inflammation: A preventive strategy. Food Chem 2025; 469:142549. [PMID: 39708644 DOI: 10.1016/j.foodchem.2024.142549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 12/03/2024] [Accepted: 12/15/2024] [Indexed: 12/23/2024]
Affiliation(s)
- Lidong Pang
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Yan Huang
- Sanmenxia Polytechnic, Sanmenxia, 472000, China
| | - Runze Li
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Ling Guo
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Chaoxin Man
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Xinyan Yang
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin 150030, China.
| | - Yujun Jiang
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin 150030, China.
| |
Collapse
|
2
|
Yao Z, Li Y, Mai H, Wang Z, Zhang H, Cai D, Wang X. Comprehensive multiomics analysis identifies PYCARD as a key pyroptosis-related gene in osteoarthritis synovial macrophages. Front Immunol 2025; 16:1558139. [PMID: 40196125 PMCID: PMC11973068 DOI: 10.3389/fimmu.2025.1558139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2025] [Accepted: 03/10/2025] [Indexed: 04/09/2025] Open
Abstract
Background Osteoarthritis (OA) is a chronic joint disease that significantly impairs quality of life. Synovitis plays a pivotal role in OA progression, and pyroptosis, a form of programmed cell death associated with innate immune inflammation, may contribute to the pathogenesis of OA synovitis. Nevertheless, the precise role of pyroptosis in OA pathogenesis remains poorly understood. Methods We performed an analysis of bulk RNA sequencing data to examine the expression profiles of pyroptosis-related genes in the OA synovium. A LASSO-Cox regression model was employed to identify pivotal genes. Single-cell RNA sequencing data were used to validate the expression of these genes in specific synovial cell clusters. Differentially expressed genes (DEGs) in macrophages with high or low expression levels of core genes were subjected to enrichment analysis. A protein-protein interaction (PPI) network was constructed to identify hub genes, and potential therapeutic compounds were predicted. Consensus clustering analysis was performed to examine the correlations between hub genes and disease status. After identifying PYCARD as the core pyroptosis gene in OA macrophages, we assessed the expression levels of PYCARD in the OA synovium and validated the expression of PYCARD and its related core genes in M1 macrophages. Results A total of twenty pyroptosis-related DEGs were identified, and six core genes were selected through LASSO regression. PYCARD was identified as the key pyroptosis gene in macrophages. Furthermore, 57 therapeutic compounds targeting these genes were predicted. Validation confirmed the upregulation of PYCARD in the OA synovium and M1 macrophages. Conclusion PYCARD was identified as the core pyroptosis gene in OA macrophages, and 57 potential therapeutic compounds were identified. This study offers valuable insights into potential treatment targets for OA.
Collapse
Affiliation(s)
- Zihao Yao
- Department of Joint Surgery, Center for Orthopaedic Surgery, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
- Department of Orthopedics, Orthopedic Hospital of Guangdong Province, Academy of Orthopedics·Guangdong Province, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
- The Third School of Clinical Medicine, Southern Medical University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, Guangzhou, China
| | - Yuexin Li
- Department of Joint Surgery, Center for Orthopaedic Surgery, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
- Department of Orthopedics, Orthopedic Hospital of Guangdong Province, Academy of Orthopedics·Guangdong Province, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
- The Third School of Clinical Medicine, Southern Medical University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, Guangzhou, China
| | - Hanwen Mai
- Department of Joint Surgery, Center for Orthopaedic Surgery, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
- Department of Orthopedics, Orthopedic Hospital of Guangdong Province, Academy of Orthopedics·Guangdong Province, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
- The Third School of Clinical Medicine, Southern Medical University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, Guangzhou, China
| | - Zhuolun Wang
- Department of Joint Surgery, Center for Orthopaedic Surgery, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
- Department of Orthopedics, Orthopedic Hospital of Guangdong Province, Academy of Orthopedics·Guangdong Province, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
- The Third School of Clinical Medicine, Southern Medical University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, Guangzhou, China
| | - Haiyan Zhang
- Department of Joint Surgery, Center for Orthopaedic Surgery, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
- Department of Orthopedics, Orthopedic Hospital of Guangdong Province, Academy of Orthopedics·Guangdong Province, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
- The Third School of Clinical Medicine, Southern Medical University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, Guangzhou, China
| | - Daozhang Cai
- Department of Joint Surgery, Center for Orthopaedic Surgery, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
- Department of Orthopedics, Orthopedic Hospital of Guangdong Province, Academy of Orthopedics·Guangdong Province, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
- The Third School of Clinical Medicine, Southern Medical University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, Guangzhou, China
| | - Xiangjiang Wang
- Department of Orthopedics, The Affiliated Qingyuan Hospital (Qingyuan People’s Hospital), Guangzhou Medical University, Qingyuan, China
| |
Collapse
|
3
|
Chang LC, Yeh EL, Chuang YC, Wu CH, Kuo CW, Lii CK, Yang YC, Chen HW, Li CC. Luteolin Inhibits Indoxyl Sulfate-Induced ICAM-1 and MCP-1 Expression by Inducing HO-1 Expression in EA.hy926 Human Endothelial Cells. ENVIRONMENTAL TOXICOLOGY 2024; 39:5112-5123. [PMID: 39105397 DOI: 10.1002/tox.24380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 05/31/2024] [Accepted: 07/03/2024] [Indexed: 08/07/2024]
Abstract
In patients with chronic kidney disease, the uremic toxin indoxyl sulfate (IS) accelerates kidney damage and the progression of cardiovascular disease. IS may contribute to vascular diseases by inducing inflammation in endothelial cells. Luteolin has documented antioxidant and anti-inflammatory properties. This study aimed to investigate the effect of luteolin on IS-mediated reactive oxygen species (ROS) production and intercellular adhesion molecule (ICAM-1) and monocyte chemoattractant protein (MCP-1) expression in EA.hy926 cells and the possible mechanisms involved. IS significantly induced ROS production (by 6.03-fold, p < 0.05), ICAM-1 (by 2.19-fold, p < 0.05) and MCP-1 protein expression (by 2.18-fold, p < 0.05), and HL-60 cell adhesion (by 31%, p < 0.05), whereas, luteolin significantly decreased IS-induced ROS production, ICAM-1 and MCP-1 protein expression, and HL-60 cell adhesion. Moreover, luteolin attenuated IS-induced nuclear accumulation of p65 and c-jun. Luteolin dose-dependently increased heme oxygenase-1 (HO-1) expression and the maximum fold induction of HO-1 by luteolin was 3.68-fold (p < 0.05), whereas, HO-1 knockdown abolished the suppression of ICAM-1 and MCP-1 expression by luteolin. Luteolin may protect against IS-induced vessel damage by inducing HO-1 expression in vascular endothelial cells, which suppresses nuclear factor kappa B (NF-κB) and activator protein 1 (AP-1) mediated ICAM-1 and MCP-1 expression.
Collapse
Affiliation(s)
- Li-Chien Chang
- Division of Nephrology, Department of Internal Medicine, Armed Forces Taichung General Hospital, Taichung, Taiwan
- National Defense Medical Center, Graduate Institute of Medical Sciences, Taipei, Taiwan
- Department of Nutrition, Chung Shan Medical University, Taichung, Taiwan
- Central Taiwan University of Science and Technology, Taichung, Taiwan
| | - En-Ling Yeh
- Department of Nutrition, College of Medical and Health Care, Hung-Kuang University, Taichung, Taiwan
| | - Ya-Chi Chuang
- Department of Nutrition, Chung Shan Medical University, Taichung, Taiwan
| | - Chia-Hsuan Wu
- Department of Nutrition, Chung Shan Medical University, Taichung, Taiwan
| | - Chia-Wen Kuo
- Division of Nephrology, Department of Internal Medicine, Armed Forces Taichung General Hospital, Taichung, Taiwan
- National Defense Medical Center, Graduate Institute of Medical Sciences, Taipei, Taiwan
- Central Taiwan University of Science and Technology, Taichung, Taiwan
| | - Chong-Kuei Lii
- Department of Nutrition, China Medical University, Taichung, Taiwan
| | - Ya-Chen Yang
- Department of Food Nutrition and Health Biotechnology, Asia University, Taichung, Taiwan
| | - Haw-Wen Chen
- Department of Nutrition, China Medical University, Taichung, Taiwan
| | - Chien-Chun Li
- Department of Nutrition, Chung Shan Medical University, Taichung, Taiwan
- Department of Nutrition, Chung Shan Medical University Hospital, Taichung, Taiwan
| |
Collapse
|
4
|
Srivastava M, Shanker K. Duranta erecta Linn: A critical review on phytochemistry, traditional uses, pharmacology, and toxicity from phytopharmaceutical perspective. JOURNAL OF ETHNOPHARMACOLOGY 2022; 293:115274. [PMID: 35405253 DOI: 10.1016/j.jep.2022.115274] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Revised: 03/30/2022] [Accepted: 04/05/2022] [Indexed: 05/24/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Duranta erecta Linn. belonging to the Verbenaceae family is widely used in the traditional systems of medicines practiced in Bangladesh, India, Nigeria, the Philippines, and Brazil. The ethnomedicinal application as vermifuge, febrifuge, diuretic, anti-parasitic, and anti-malarial are well documented. D. erecta is also a significant source of phenylethanoid glycoside known as acteoside-a drug in clinical trials for IgA nephropathy patients. AIM OF THIS REVIEW This review aims to critically highlight the existing studies on D. erecta, including its botanical authentication, geographical distribution, ethnomedicinal uses, phytochemistry, and pharmacological properties. Critical discussion is focused on the overview and gap in knowledge for future research. Additionally, the clinical significance of its major secondary metabolite, i.e., acteoside, has also been discussed with emphasis on biosynthesis, distribution, pre-clinical, and clinical outcomes. MATERIALS AND METHODS Professional research data from 1963 to 2021 appeared in scholarly journals, and books were retrieved from scientific database platforms viz. Sci-Finder, PubMed, CNKI, Science Direct, Web of Science, Wiley, Google Scholar, Taylor and Francis, Springer, and Scopus. The chemical structures for all the phytomolecules were validated using Sci-finder and first-hand references. While plant name and synonyms were corroborated by "The Plant List" (www.theplantlist.org). RESULTS D. erecta and its key metabolite acteoside display various biological actions like antimalarial, antimicrobial, antioxidant, anticancer, antinephritic, hepatoprotective, neuroprotective, and antiviral properties. Acteoside literature analysis shows its presence in different stages of clinical trials for anti-nephritic, hepatoprotective, and osteoarthritic activity. The phytochemical review of D. erecta exhibited 64 compounds that have been isolated and identified from D. erecta, such as iridoid glycosides, phenylethanoid glycosides, flavonoids, steroids, phenolics, terpenoids, and saponins. The other significant secondary metabolites responsible for its medicinal properties are acteoside, durantol, pectolinaringenin, repenins, scutellarein, and repennoside. CONCLUSION Duranta erecta is one of the Verbenaceae plants, widely used in ethnomedicines having various phytochemicals with understandable pharmacological actions mainly confined at the crude extract level. However, further bioactivity-guided or fingerprint-assisted studies are required to validate the ethnomedicinal uses, concerning cellular and molecular mechanisms, quality standardization, and safety with respect to its bioactive constituent(s). Therefore, the present review identified the gap in the research on scientific validation of Duranta based ethnomedicines and may provide critical information for the development of phytopharmaceuticals/Phyto-cosmeceuticals.
Collapse
Affiliation(s)
- Madhumita Srivastava
- Analytical Chemistry Department, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow, 226015, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| | - Karuna Shanker
- Analytical Chemistry Department, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow, 226015, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| |
Collapse
|
5
|
Magkrioti C, Antonopoulou G, Fanidis D, Pliaka V, Sakellaropoulos T, Alexopoulos LG, Ullmer C, Aidinis V. Lysophosphatidic Acid Is a Proinflammatory Stimulus of Renal Tubular Epithelial Cells. Int J Mol Sci 2022; 23:ijms23137452. [PMID: 35806457 PMCID: PMC9267536 DOI: 10.3390/ijms23137452] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 06/28/2022] [Accepted: 07/02/2022] [Indexed: 02/01/2023] Open
Abstract
Chronic kidney disease (CKD) refers to a spectrum of diseases defined by renal fibrosis, permanent alterations in kidney structure, and low glomerular-filtration rate. Prolonged epithelial-tubular damage involves a series of changes that eventually lead to CKD, highlighting the importance of tubular epithelial cells in this process. Lysophosphatidic acid (LPA) is a bioactive lipid that signals mainly through its six cognate LPA receptors and is implicated in several chronic inflammatory pathological conditions. In this report, we have stimulated human proximal tubular epithelial cells (HKC-8) with LPA and 175 other possibly pathological stimuli, and simultaneously detected the levels of 27 intracellular phosphoproteins and 32 extracellular secreted molecules with multiplex ELISA. This quantification revealed a large amount of information concerning the signaling and the physiology of HKC-8 cells that can be extrapolated to other proximal tubular epithelial cells. LPA responses clustered with pro-inflammatory stimuli such as TNF and IL-1, promoting the phosphorylation of important inflammatory signaling hubs, including CREB1, ERK1, JUN, IκΒα, and MEK1, as well as the secretion of inflammatory factors of clinical relevance, including CCL2, CCL3, CXCL10, ICAM1, IL-6, and IL-8, most of them shown for the first time in proximal tubular epithelial cells. The identified LPA-induced signal-transduction pathways, which were pharmacologically validated, and the secretion of the inflammatory factors offer novel insights into the possible role of LPA in CKD pathogenesis.
Collapse
Affiliation(s)
- Christiana Magkrioti
- Institute for Fundamental Biomedical Research, Biomedical Sciences Research Center Alexander Fleming, 16672 Athens, Greece; (C.M.); (G.A.); (D.F.)
| | - Georgia Antonopoulou
- Institute for Fundamental Biomedical Research, Biomedical Sciences Research Center Alexander Fleming, 16672 Athens, Greece; (C.M.); (G.A.); (D.F.)
| | - Dionysios Fanidis
- Institute for Fundamental Biomedical Research, Biomedical Sciences Research Center Alexander Fleming, 16672 Athens, Greece; (C.M.); (G.A.); (D.F.)
| | - Vaia Pliaka
- ProtATonce Ltd., 15343 Athens, Greece; (V.P.); (T.S.); (L.G.A.)
| | | | - Leonidas G. Alexopoulos
- ProtATonce Ltd., 15343 Athens, Greece; (V.P.); (T.S.); (L.G.A.)
- School of Mechanical Engineering, National Technical University of Athens, 15780 Zografou, Greece
| | - Christoph Ullmer
- Roche Pharmaceutical Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., 4070 Basel, Switzerland;
| | - Vassilis Aidinis
- Institute for Fundamental Biomedical Research, Biomedical Sciences Research Center Alexander Fleming, 16672 Athens, Greece; (C.M.); (G.A.); (D.F.)
- Correspondence:
| |
Collapse
|
6
|
Abbaszadeh F, Fakhri S, Khan H. Targeting apoptosis and autophagy following spinal cord injury: Therapeutic approaches to polyphenols and candidate phytochemicals. Pharmacol Res 2020; 160:105069. [PMID: 32652198 DOI: 10.1016/j.phrs.2020.105069] [Citation(s) in RCA: 98] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 06/28/2020] [Accepted: 07/03/2020] [Indexed: 12/11/2022]
Abstract
Spinal cord injury (SCI) is a neurological disorder associated with the loss of sensory and motor function. Understanding the precise dysregulated signaling pathways, especially apoptosis and autophagy following SCI, is of vital importance in developing innovative therapeutic targets and treatments. The present study lies in the fact that it reveals the precise dysregulated signaling mediators of apoptotic and autophagic pathways following SCI and also examines the effects of polyphenols and other candidate phytochemicals. It provides new insights to develop new treatments for post-SCI complications. Accordingly, a comprehensive review was conducted using electronic databases including, Scopus, Web of Science, PubMed, and Medline, along with the authors' expertise in apoptosis and autophagy as well as their knowledge about the effects of polyphenols and other phytochemicals on SCI pathogenesis. The primary mechanical injury to spinal cord is followed by a secondary cascade of apoptosis and autophagy that play critical roles during SCI. In terms of pharmacological mechanisms, caspases, Bax/Bcl-2, TNF-α, and JAK/STAT in apoptosis along with LC3 and Beclin-1 in autophagy have shown a close interconnection with the inflammatory pathways mainly glutamatergic, PI3K/Akt/mTOR, ERK/MAPK, and other cross-linked mediators. Besides, apoptotic pathways have been shown to regulate autophagy mediators and vice versa. Prevailing evidence has highlighted the importance of modulating these signaling mediators/pathways by polyphenols and other candidate phytochemicals post-SCI. The present review provides dysregulated signaling mediators and therapeutic targets of apoptotic and autophagic pathways following SCI, focusing on the modulatory effects of polyphenols and other potential phytochemical candidates.
Collapse
Affiliation(s)
- Fatemeh Abbaszadeh
- Department of Neuroscience, Faculty of Advanced Technologies in Medical Sciences, Iran University of Medical Sciences, Tehran, Iran; Neurobiology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sajad Fakhri
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah 6734667149, Iran.
| | - Haroon Khan
- Department of Pharmacy, Abdul Wali Khan University Mardan, 23200, Pakistan.
| |
Collapse
|
7
|
Lim Y, Sung J, Yang J, Jeong HS, Lee J. Butein inhibits adipocyte differentiation by modulating the AMPK pathway in 3T3-L1 cells. J Food Biochem 2017. [DOI: 10.1111/jfbc.12441] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Yongrae Lim
- Division of Food and Animal Sciences; Chungbuk National University; Cheongju Chungbuk Korea
| | - Jeehye Sung
- Division of Food and Animal Sciences; Chungbuk National University; Cheongju Chungbuk Korea
| | - Jinwoo Yang
- Division of Food and Animal Sciences; Chungbuk National University; Cheongju Chungbuk Korea
| | - Heon Sang Jeong
- Division of Food and Animal Sciences; Chungbuk National University; Cheongju Chungbuk Korea
| | - Junsoo Lee
- Division of Food and Animal Sciences; Chungbuk National University; Cheongju Chungbuk Korea
| |
Collapse
|
8
|
Pandey MK, Gupta SC, Nabavizadeh A, Aggarwal BB. Regulation of cell signaling pathways by dietary agents for cancer prevention and treatment. Semin Cancer Biol 2017; 46:158-181. [PMID: 28823533 DOI: 10.1016/j.semcancer.2017.07.002] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Revised: 07/05/2017] [Accepted: 07/12/2017] [Indexed: 12/17/2022]
Abstract
Although it is widely accepted that better food habits do play important role in cancer prevention and treatment, how dietary agents mediate their effects remains poorly understood. More than thousand different polyphenols have been identified from dietary plants. In this review, we discuss the underlying mechanism by which dietary agents can modulate a variety of cell-signaling pathways linked to cancer, including transcription factors, nuclear factor κB (NF-κB), signal transducer and activator of transcription 3 (STAT3), activator protein-1 (AP-1), β-catenin/Wnt, peroxisome proliferator activator receptor- gamma (PPAR-γ), Sonic Hedgehog, and nuclear factor erythroid 2 (Nrf2); growth factors receptors (EGFR, VEGFR, IGF1-R); protein Kinases (Ras/Raf, mTOR, PI3K, Bcr-abl and AMPK); and pro-inflammatory mediators (TNF-α, interleukins, COX-2, 5-LOX). In addition, modulation of proteasome and epigenetic changes by the dietary agents also play a major role in their ability to control cancer. Both in vitro and animal based studies support the role of dietary agents in cancer. The efficacy of dietary agents by clinical trials has also been reported. Importantly, natural agents are already in clinical trials against different kinds of cancer. Overall both in vitro and in vivo studies performed with dietary agents strongly support their role in cancer prevention. Thus, the famous quote "Let food be thy medicine and medicine be thy food" made by Hippocrates 25 centuries ago still holds good.
Collapse
Affiliation(s)
- Manoj K Pandey
- Department of Biomedical Sciences, Cooper Medical School of Rowan University, Camden, NJ, USA.
| | - Subash C Gupta
- Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi, India
| | - Ali Nabavizadeh
- Department of Biomedical Sciences, Cooper Medical School of Rowan University, Camden, NJ, USA
| | | |
Collapse
|
9
|
Padmavathi G, Roy NK, Bordoloi D, Arfuso F, Mishra S, Sethi G, Bishayee A, Kunnumakkara AB. Butein in health and disease: A comprehensive review. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2017; 25:118-127. [PMID: 28190465 DOI: 10.1016/j.phymed.2016.12.002] [Citation(s) in RCA: 107] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Revised: 12/03/2016] [Accepted: 12/11/2016] [Indexed: 06/06/2023]
Abstract
BACKGROUND The risk of suffering from many chronic diseases seems to have made no improvement despite the advancement in medications available in the modern world. Moreover, the use of synthetic chemicals as medications has proved to worsen the scenario due to the various adverse side effects associated with them. PURPOSE Extensive research on natural medicines provides ample evidence on the safety and efficacy of phytochemicals and nutraceuticals against diverse chronic ailments. Therefore, it is advisable to use natural products in the management of such diseases. This article aims to present a comprehensive and critical review of known pharmacological and biological effects of butein, an important chalcone polyphenol first isolated from Rhus verniciflua Stokes, implicated in the prevention and treatment of various chronic disease conditions. METHODS An extensive literature search was conducted using PubMed, ScienceDirect, Scopus and Web of ScienceTM core collections using key words followed by evaluation of the bibliographies of relevant articles. RESULTS Butein has been preclinically proven to be effective against several chronic diseases because it possesses a wide range of biological properties, including antioxidant, anti-inflammatory, anticancer, antidiabetic, hypotensive and neuroprotective effects. Furthermore, it has been shown to affect multiple molecular targets, including the master transcription factor nuclear factor-κB and its downstream molecules. Moreover, since it acts on multiple pathways, the chances of non-responsiveness and resistance development is reduced, supporting the use of butein as a preferred treatment option. CONCLUSION Based on numerous preclinical studies, butein shows significant therapeutic potential against various diseases. Nevertheless, well-designed clinical studies are urgently needed to validate the preclinical findings.
Collapse
Affiliation(s)
- Ganesan Padmavathi
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology, Guwahati, Assam 781 039, India
| | - Nand Kishor Roy
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology, Guwahati, Assam 781 039, India
| | - Devivasha Bordoloi
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology, Guwahati, Assam 781 039, India
| | - Frank Arfuso
- Stem Cell and Cancer Biology Laboratory, School of Biomedical Sciences, Curtin Health Innovation Research Institute, Curtin University, Perth, West Australia 6009, Australia
| | - Srishti Mishra
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117600, Singapore
| | - Gautam Sethi
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117600, Singapore; School of Biomedical Sciences, Curtin Health Innovation Research Institute, Biosciences Research Precinct, Curtin University, Western Australia 6009, Australia.
| | - Anupam Bishayee
- Department of Pharmaceutical Sciences, College of Pharmacy, Larkin Health Sciences Institute, Miami, FL 33169, USA.
| | - Ajaikumar B Kunnumakkara
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology, Guwahati, Assam 781 039, India.
| |
Collapse
|
10
|
Han X, Wang Y, Chen H, Zhang J, Xu C, Li J, Li M. Enhancement of ICAM-1 via the JAK2/STAT3 signaling pathway in a rat model of severe acute pancreatitis-associated lung injury. Exp Ther Med 2016; 11:788-796. [PMID: 26997994 PMCID: PMC4774378 DOI: 10.3892/etm.2016.2988] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2015] [Accepted: 10/09/2015] [Indexed: 12/14/2022] Open
Abstract
Acute lung injury (ALI), which is associated with severe acute pancreatitis (SAP), results from damage to the pulmonary microvascular endothelial cells (PMVECs), which in turn leads to high levels of inflammatory cytokines that destroy PMVECs. However, the molecular mechanisms underlying SAP-associated ALI (SAP-ALI) are currently not well understood. Intercellular adhesion molecule-1 (ICAM-1) has been implicated in the persistent migration and accumulation of neutrophils and macrophages, which in turn has been associated with the increased permeability of microvascular endothelial cells. Signal transduction via the Janus kinase-2 (JAK2)/signal transducer and activator of transcription-3 (STAT3) transcription factors has been shown to be involved in inflammation. The present study aimed to investigate the expression levels of ICAM-1 and JAK2/STAT3 signaling components in a rat model of SAP-ALI. SAP was induced in the rat model, and dexamethasone (DEX) was administered to the treatment group. Subsequently, ICAM-1, interleukin (IL)-6, IL-8, tumor necrosis factor (TNF)-α, JAK2, STAT3 and nuclear factor (NF)-κB mRNA expression levels were determined using reverse transcription-polymerase chain reaction; ICAM-1 protein expression levels were determined using western blotting; and IL-6, IL-8 and TNF-α levels were measured via an enzyme-linked immunosorbent assay. In addition, an immunohistochemical analysis of ICAM-1, NF-κB, JAK2 and STAT3 was conducted, and the protein expression and cell morphology of the lungs in all rats was analyzed. ICAM-1 mRNA and protein expression levels were significantly increased following induction of SAP, and were significantly decreased in the DEX-treated group. Furthermore, treatment with DEX significantly reduced serum expression levels of IL-6, IL-8 and TNF-α and decreased expression levels of NF-κB, JAK2 and STAT3 in the lung tissue, as compared with the untreated SAP group. The present study demonstrated that DEX treatment was able to suppress ICAM-1 mRNA and protein expression in a rat model of SAP-ALI via the inhibition of IL-6 and TNF-α-induced JAK2/STAT3 activation; thus suggesting that DEX treatment may be considered a potential strategy in the treatment of patients with SAP-ALI.
Collapse
Affiliation(s)
- Xiao Han
- Department of General Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116011, P.R. China
| | - Yuxi Wang
- Department of General Surgery, The Second Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116023, P.R. China
| | - Hailong Chen
- Department of General Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116011, P.R. China
| | - Jingwen Zhang
- Department of General Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116011, P.R. China
| | - Caiming Xu
- Department of General Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116011, P.R. China
| | - Jian Li
- Department of General Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116011, P.R. China
| | - Mingyue Li
- Department of General Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116011, P.R. China
| |
Collapse
|
11
|
Abstract
Natural compounds isolated from various plant sources have been used for therapeutic purpose for centuries. These compounds have been routinely used for the management of various chronic ailments and have gained considerable attention because of their significant efficacy and comparatively low side effects. Butein, a chacolnoid compound that has been isolated from various medicinal plants has exhibited a wide range of beneficial pharmacological effects, such as anti-inflammatory, anticancer, antioxidant, and anti-angiogenic in diverse disease models. This article briefly summarizes the past published literature related to the therapeutic and protective effects of butein, as demonstrated in various models of human chronic diseases. Further analysis of its important cellular targets, toxicity, and pharmacokinetic profile may further significantly expand its therapeutic application.
Collapse
|
12
|
Padmavathi G, Rathnakaram SR, Monisha J, Bordoloi D, Roy NK, Kunnumakkara AB. Potential of butein, a tetrahydroxychalcone to obliterate cancer. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2015; 22:1163-1171. [PMID: 26598915 DOI: 10.1016/j.phymed.2015.08.015] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2015] [Revised: 08/15/2015] [Accepted: 08/23/2015] [Indexed: 06/05/2023]
Abstract
BACKGROUND Despite the major advances made in the field of cancer biology, it still remains one of the most fatal diseases in the world. It is now well established that natural products are safe and efficacious and have high potential in the prevention and treatment of different diseases including cancer. Butein is one such compound which is now found to have anti-cancer properties against various malignancies. PURPOSE To thoroughly review the literature available on the anti-cancer properties of butein against different cancers and its molecular targets. METHODS A thorough literature search has been done in PubMed for butein, its biological activities especially cancer and its molecular targets. RESULTS Our search retrieved several reports on the various biological activities of butein in which around 43 articles reported that butein shows potential anti-proliferative effect against a wide range of neoplasms and the molecular target varies with cancer types. Most often it targets NF-κB and its downstream pathways. In addition, butein induces the expression of genes which mediate the cell death and apoptosis in cancer cells. It also inhibits tumor angiogenesis, invasion and metastasis in prostate, liver and bladder cancers through the inhibition of MMPs, VEGF etc. Moreover, it inhibits the overexpression of several proteins and enzymes such as STAT3, ERK, CXCR4, COX-2, Akt, EGFR, Ras etc. involved in tumorigenesis. CONCLUSION Collectively, all these findings suggest the enormous potential and efficacy of butein as a multitargeted chemotherapeutic, chemopreventive and chemosensitizing agent against a wide range of cancers with minimal or no adverse side effects.
Collapse
Affiliation(s)
- Ganesan Padmavathi
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Assam 781039, India
| | - Sivakumar Raju Rathnakaram
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Assam 781039, India
| | - Javadi Monisha
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Assam 781039, India
| | - Devivasha Bordoloi
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Assam 781039, India
| | - Nand Kishor Roy
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Assam 781039, India
| | - Ajaikumar B Kunnumakkara
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Assam 781039, India .
| |
Collapse
|
13
|
Bai X, Ma Y, Zhang G. Butein suppresses cervical cancer growth through the PI3K/AKT/mTOR pathway. Oncol Rep 2015; 33:3085-92. [PMID: 25962638 DOI: 10.3892/or.2015.3922] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2014] [Accepted: 04/02/2015] [Indexed: 11/05/2022] Open
Abstract
Cervical cancer is the second most common women carcinoma worldwide and the fourth leading cause of cancer-associated mortality in women. Butein, a bioactive flavonoid isolated from numerous native plants, has been shown to induce apoptosis and inhibits migration and invasion in numerous human cancer cells. However, to the best of our knowledge, the effect of butein on human cervical cancer cells has not been reported. The present study aimed to determine the effect of butein on cell growth, apoptosis, migration and invasion and identify the associated molecular mechanism involved using HeLa human cervical cancer cells in vitro, and on tumor growth in a nude mouse model. It was found that butein notably inhibited cell viability, colony formation, migration and invasion, induced cell cycle at the G2/M stage and cell apoptosis, as well as enhanced caspase-3, -8 and -9 activity in HeLa cells in a dose-dependent manner. When administered intraperitoneally, butein inhibited the tumor growth of human cervical cancer xenograft tumors in the nude mouse model. Additionally, treatment with butein significantly increased reactive oxygen species (ROS) generation and reduced the phosphorylation of PI3K, AKT and mTOR expression, which contributes to the inhibition of the tumor growth of cervical cancer and reduction of oxidative stress. These findings suggested that butein serves as a potential therapeutic agent for the treatment of cervical cancer.
Collapse
Affiliation(s)
- Xue Bai
- No. 202 Hospital of PLA, Heping, Shenyang, Liaoning 110112, P.R. China
| | - Yaxin Ma
- Shenyang Military General Hospital, Shenyang, Liaoning 110115, P.R. China
| | - Guobin Zhang
- No. 202 Hospital of PLA, Heping, Shenyang, Liaoning 110112, P.R. China
| |
Collapse
|