1
|
The Pharmacokinetics in Mice and Cell Uptake of Thymus Immunosuppressive Pentapeptide Using LC-MS/MS Analysis. Molecules 2022; 27:molecules27134256. [PMID: 35807500 PMCID: PMC9268305 DOI: 10.3390/molecules27134256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 06/24/2022] [Accepted: 06/26/2022] [Indexed: 11/17/2022] Open
Abstract
Thymus immunosuppressive pentapeptide (TIPP) is a novel anti-inflammatory peptide with high efficacy and low toxicity. This study aims to establish a selective LC-MS/MS method for analyzing the analyte TIPP in biological samples, laying the foundation for further PK and PD studies of TIPP. Protein precipitation was conducted in acetonitrile supplemented with 2% formic acid and 25 mg/mL dithiothreitol as a stabilizer, which was followed by backwashing the organic phase using dichloromethane. The chromatographic separation of TIPP was achieved on a C18 column with a gradient elution method. During positive electrospray ionization, TIPP was analyzed via multiple-reaction monitoring. The linear relationships between the concentration of TIPP and peak area in murine plasma cell lysates, supernatants, and the final cell rinse PBS were established within the ranges of 20−5000 ng/mL, 1−200 ng/mL, 10−200 μg/mL, and 0.1−20 ng/mL, respectively (r2 > 0.99). Validated according to U.S. FDA guidelines, the proposed method was proved to be acceptable. Such a method had been successfully applied to investigate the pharmacokinetics of TIPP in mice via subcutaneous injection. The plasma half-life in mice was 5.987 ± 1.824 min, suggesting that TIPP is swiftly eliminated in vivo. The amount of TIPP uptake by RBL-2H3 cells was determined using this method, which was also visually verified by confocal. Furthermore, the effective intracellular concentration of TIPP was deduced by comparing the intracellular concentration of TIPP and degrees of inflammation, enlightening further investigation on the intracellular target and mechanism of TIPP.
Collapse
|
2
|
Ijaz M, Shahbaz M, Jiang W, Shi Y, Guo X, Wang F. Thymic Immunosuppressive Pentapeptide (TIPP) Showed Anticancer Activity in Breast Cancer and Chronic Myeloid Leukemia Both In Vitro and In Vivo. Protein Pept Lett 2021; 28:1148-1156. [PMID: 34161204 DOI: 10.2174/0929866528666210622150500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 03/15/2021] [Accepted: 03/23/2021] [Indexed: 12/24/2022]
Abstract
AIM Being the common cause and major burden of deaths globally, timely management of cancer is crucial. BACKGROUND Thymic immunosuppressive pentapeptide (TIPP) is a novel pentapeptide originally obtained from calf thymic immunosuppressive extract. Previously, TIPP has been proved to suppress the allergic and inflammatory responses in allergic mice via blocking MAP kinases/NF-κB signaling pathways. OBJECTIVE In this study, in vitro anticancer activity of TIPP was tested on two different types of cancers using MCF-7 and K562 cell lines. METHODS Tumor xenograft models for breast cancer and chronic myeloid leukemia were designed. In vivo anticancer activity of TIPP was investigated on both cancer types. The liver and tumor tissues of the mice were preserved for immunohistochemistry analysis. RESULTS In vitro anticancer activity of TIPP showed significant inhibition on cell viability of both breast cancer and chronic myeloid leukemia. In vivo anticancer effect of TIPP in both types of cancer models further proved the potent anticancer nature of TIPP. Immunohistochemistry analysis assured that TIPP is a safe drug for normal organs such as the liver. CONCLUSION Our present study revealed that TIPP is a potent anticancer drug and an important treatment option for various diseases. Further work is needed to test the flexible and proficient activity of the novel peptide.
Collapse
Affiliation(s)
- Muhammad Ijaz
- Key Laboratory of Chemical Biology (Ministry of Education), Institute of Biochemical and Biotechnological Drug, School of Pharmaceutical Sciences, Shandong University, No.44 Wenhuaxi Road, Jinan 250012, China
| | - Muhammad Shahbaz
- Department of General Surgery, Qilu Hospital affiliated to Shandong University, No.107 Wenhuaxi Road, Jinan 250012, P.R.China. . Research Center for Sectional and Imaging Anatomy, Digital Human Institute, School of Basic Medical Sciences, Shandong University, 250012, Jinan, Shandong, China
| | - Wenjie Jiang
- Department of Chemistry, University of Florida, Gainesville, FL 32611, United States
| | - Yikang Shi
- Department of Pharmacology, Shandong University, No.44 Wenhuaxi Road, Jinan 250012, China
| | - Xiuli Guo
- Department of Pharmacology, Shandong University, No.44 Wenhuaxi Road, Jinan 250012, China
| | - Fengshan Wang
- Key Laboratory of Chemical Biology (Ministry of Education), Institute of Biochemical and Biotechnological Drug, School of Pharmaceutical Sciences, Shandong University, No.44 Wenhuaxi Road, Jinan 250012, China
| |
Collapse
|
3
|
Park JW, Kim SM, Min JH, Kim MG, Kwon OK, Hwang D, Oh JH, Park MW, Chun W, Lee HJ, Kim DY, Kim JH, Hwang J, Kim MO, Oh SR, Ahn KS, Lee JW. 3,4,5-Trihydroxycinnamic acid exerts anti-asthmatic effects in vitro and in vivo. Int Immunopharmacol 2020; 88:107002. [PMID: 33182035 DOI: 10.1016/j.intimp.2020.107002] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2020] [Revised: 09/09/2020] [Accepted: 09/09/2020] [Indexed: 12/29/2022]
Abstract
3,4,5-Trihydroxycinnamic acid (THCA) has been reported to possess anti-inflammatory activity. However, the effect of THCA for treating allergic asthma was unknown. Therefore, in the present study, the anti-asthmatic effects of THCA were studied in both in vitro and in vivo studies. In phorbol 12-myristate 13-acetate (PMA)-stimulated A549 airway epithelial cells, THCA pretreatment decreased the mRNA expression and secretion of interleukin (IL)-8, monocyte chemoattractant protein-1 (MCP-1), and intercellular adhesion molecules 1 (ICAM-1), and reduced the mRNA expression of matrix metalloproteinase 9 (MMP-9). THCA also inhibited PMA-induced protein kinase B (AKT), mitogen-activated protein kinase (MAPK) and nuclear factor kappa B (NF-κB) activation in A549 cells. In lipopolysaccharide (LPS)-stimulated RAW264.7 macrophages, THCA pretreatment suppressed the mRNA expression of ICAM-1 and MMP-9. In addition, THCA suppressed the adhesion of EOL and A549 cells. In ovalbumin (OVA)-administered asthmatic mice, THCA exerted inhibitory activity on IL-5, IL-13, and MCP-1 in bronchoalveolar lavage fluid (BALF) and on OVA-specific immunoglobulin E (IgE) in serum. THCA attenuated the numbers of inflammatory cells in BALF and the influx of inflammatory cell in lung tissues. Furthermore, THCA downregulated the levels of inducible nitric oxide (iNOS), cyclooxygenase-2 (COX-2), and leukotriene B4 (LTB4) expression, mucus production and CREB phosphorylation as well as Penh value. These effects were accompanied by suppression of AKT, extracellular signal-regulated kinase (ERK), c-Jun N-terminal kinase (JNK), and NF-κB activation. Therefore, the results of the current study suggest that THCA may be a valuable adjuvant or therapeutic in the prevention or treatment of allergic asthma.
Collapse
Affiliation(s)
- Ji-Won Park
- Natural Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Chungbuk 28116, Republic of Korea
| | - Seong-Man Kim
- Natural Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Chungbuk 28116, Republic of Korea; College of Pharmacy, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Republic of Korea
| | - Jae-Hong Min
- Natural Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Chungbuk 28116, Republic of Korea; College of Pharmacy, Chungbuk National University, Cheongju-si, Chungcheongbuk-do 28160, Republic of Korea
| | - Min-Gu Kim
- Natural Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Chungbuk 28116, Republic of Korea; College of Pharmacy, Chungbuk National University, Cheongju-si, Chungcheongbuk-do 28160, Republic of Korea
| | - Ok-Kyoung Kwon
- Natural Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Chungbuk 28116, Republic of Korea
| | - Daseul Hwang
- Natural Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Chungbuk 28116, Republic of Korea; College of Pharmacy, Chungbuk National University, Cheongju-si, Chungcheongbuk-do 28160, Republic of Korea
| | - Jae-Hoon Oh
- Natural Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Chungbuk 28116, Republic of Korea; College of Pharmacy, Chungbuk National University, Cheongju-si, Chungcheongbuk-do 28160, Republic of Korea
| | - Min-Woo Park
- SciTech Korea Inc., Seoul 01138, Republic of Korea
| | - Wanjoo Chun
- Department of Pharmacology, College of Medicine, Kangwon National University, Chuncheon, Kangwon 24341, Republic of Korea
| | - Hee Jae Lee
- Department of Pharmacology, College of Medicine, Kangwon National University, Chuncheon, Kangwon 24341, Republic of Korea
| | - Doo-Young Kim
- Natural Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Chungbuk 28116, Republic of Korea
| | - Jung Hee Kim
- Natural Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Chungbuk 28116, Republic of Korea
| | - Joonsung Hwang
- Anticancer Agent Research Center, Korea Research Institute of Bioscience and Biotechnology, (KRIBB), Chungbuk 28116, Republic of Korea
| | - Mun Ock Kim
- Natural Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Chungbuk 28116, Republic of Korea
| | - Sei-Ryang Oh
- Natural Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Chungbuk 28116, Republic of Korea
| | - Kyung-Seop Ahn
- Natural Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Chungbuk 28116, Republic of Korea.
| | - Jae-Won Lee
- Natural Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Chungbuk 28116, Republic of Korea.
| |
Collapse
|
4
|
Kim MG, Kim SM, Min JH, Kwon OK, Park MH, Park JW, Ahn HI, Hwang JY, Oh SR, Lee JW, Ahn KS. Anti-inflammatory effects of linalool on ovalbumin-induced pulmonary inflammation. Int Immunopharmacol 2019; 74:105706. [PMID: 31254955 DOI: 10.1016/j.intimp.2019.105706] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Revised: 06/13/2019] [Accepted: 06/14/2019] [Indexed: 12/21/2022]
Abstract
Linalool is a natural product present in fruits and aromatic plants with biological activities. Researchers have reported that the inhalation of linalool exerts anti-inflammatory activities. In this study, we examined the therapeutic effects of linalool on airway inflammation and mucus overproduction in mice with allergic asthma. Oral administration of linalool significantly inhibited the levels of eosinophil numbers, Th2 cytokines and immunoglobulin E (IgE) caused by ovalbumin (OVA) exposure. Linalool exerted preventive effects against the influx of inflammatory cells and mucus hypersecretion in the lung tissues. Linalool also dose-dependently decreased the levels of inducible nitric oxide synthase (iNOS) expression and protein kinase B (AKT) activation in the lung tissues. Linalool effectively downregulated the activation of mitogen-activated protein kinases (MAPKs) and nuclear factor-κB (NF-κB) caused by OVA exposure. Furthermore, linalool exerted inhibitory effect on OVA-induced airway hyperresponsiveness (AHR). In the in vitro study, the increased secretion of MCP-1 was attenuated with linalool treatment in lipopolysaccharide (LPS)-stimulated H292 airway epithelial cells. In conclusion, linalool effectively exerts a protective role in OVA-induced airway inflammation and mucus hypersecretion, and its protective effects are closely related to the downregulation of inflammatory mediators and MAPKs/NF-κB signaling.
Collapse
Affiliation(s)
- Min-Gu Kim
- Natural Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju-si, Chungcheongbuk-do 28116, Republic of Korea; College of Pharmacy, Chungbuk National University, Cheongju-si, Chungcheongbuk-do 28160, Republic of Korea
| | - Seong-Man Kim
- Natural Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju-si, Chungcheongbuk-do 28116, Republic of Korea; College of Pharmacy, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon, 305-764, Republic of Korea
| | - Jae-Hong Min
- Natural Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju-si, Chungcheongbuk-do 28116, Republic of Korea
| | - Ok-Kyoung Kwon
- Natural Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju-si, Chungcheongbuk-do 28116, Republic of Korea
| | - Mi-Hyeong Park
- Laboratory Animal Resources Division, Toxicological Evaluation and Research Department, National Institute of Food and Drug Safety Evaluation, Ministry of Food and Drug Safety, Osong Health Technology Administration Complex, Cheongju, Chungcheongbuk 28159, Republic of Korea
| | - Ji-Won Park
- Natural Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju-si, Chungcheongbuk-do 28116, Republic of Korea
| | - Hye In Ahn
- Natural Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju-si, Chungcheongbuk-do 28116, Republic of Korea
| | - Jeong-Yeon Hwang
- Natural Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju-si, Chungcheongbuk-do 28116, Republic of Korea; College of Pharmacy, Chungbuk National University, Cheongju-si, Chungcheongbuk-do 28160, Republic of Korea
| | - Sei-Raying Oh
- Natural Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju-si, Chungcheongbuk-do 28116, Republic of Korea
| | - Jae-Won Lee
- Natural Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju-si, Chungcheongbuk-do 28116, Republic of Korea.
| | - Kyung-Seop Ahn
- Natural Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju-si, Chungcheongbuk-do 28116, Republic of Korea.
| |
Collapse
|
5
|
Park HA, Kwon OK, Ryu HW, Min JH, Park MW, Park MH, Paik JH, Choi S, Paryanto I, Yuniato P, Oh SR, Ahn KS, Lee JW. Physalis peruviana L. inhibits ovalbumin‑induced airway inflammation by attenuating the activation of NF‑κB and inflammatory molecules. Int J Mol Med 2019; 43:1830-1838. [PMID: 30816433 PMCID: PMC6414162 DOI: 10.3892/ijmm.2019.4110] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Accepted: 02/22/2019] [Indexed: 12/25/2022] Open
Abstract
Physalis peruviana L. (PP) is well known for its various properties, including its antioxidant property. In our previous study, the protective effects of PP against cigarette smoke‑induced airway inflammation were confirmed. The purpose of the present study was to evaluate the anti‑inflammatory effect of PP against ovalbumin (OVA)‑induced airway inflammation. Treatment with PP inhibited the numbers of eosinophils and the levels of inflammatory cytokines, including interleukin (IL)‑4, IL‑5 and IL‑13, in the bronchoalveolar lavage fluid (BALF) of animal models with OVA‑induced allergic asthma. PP also significantly decreased the production of total immunoglobulin E in the serum. Lung sections stained with hematoxylin and eosin revealed that the influx of inflammatory cells was decreased in the lungs of mice treated with PP compared with cells in the OVA group. The increased expression levels of monocyte chemoattractant protein‑1 (MCP‑1) and T cell marker KEN‑5 were also reduced following PP treatment in the lung tissues compared with those in the OVA group. The PAS staining results showed that PP attenuated the overproduction of mucus in the lung. Additionally, western blot analysis revealed that PP significantly downregulated the activation of nuclear factor‑κB/p38 mitogen‑activated protein kinase/c‑Jun N‑terminal kinase, and upregulated the expression of heme oxgenase‑1 in the lungs. In an in vitro experiment, PP effectively reduced the levels of LPS‑stimulated MCP‑1 in a concentration‑dependent manner. Taken together, these results indicate that PP has considerable potential in the treatment of allergic asthma.
Collapse
Affiliation(s)
- Hyun Ah Park
- Natural Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju, Chungcheongbuk 28160, Republic of Korea
| | - Ok-Kyoung Kwon
- Natural Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju, Chungcheongbuk 28160, Republic of Korea
| | - Hyung Won Ryu
- Natural Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju, Chungcheongbuk 28160, Republic of Korea
| | - Jae-Hong Min
- Natural Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju, Chungcheongbuk 28160, Republic of Korea
| | - Min-Woo Park
- SciTech Korea Inc., Seoul 01138, Republic of Korea
| | - Mi-Hyeong Park
- Laboratory Animal Resources Division, Toxicological Evaluation and Research Department, National Institute of Food and Drug Safety Evaluation, Ministry of Food and Drug Safety, Osong Health Technology Administration Complex, Cheongju, Chungcheongbuk 28159, Republic of Korea
| | - Jin-Hyub Paik
- International Biological Material Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Republic of Korea
| | - Sangho Choi
- International Biological Material Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Republic of Korea
| | - Imam Paryanto
- Center for Pharmaceutical and Medical Technology, the Agency for the Assessment and Application of Technology, Tangerang, Banten 15314, Indonesia
| | - Prasetyawan Yuniato
- Center for Pharmaceutical and Medical Technology, the Agency for the Assessment and Application of Technology, Tangerang, Banten 15314, Indonesia
| | - Sei-Ryang Oh
- Natural Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju, Chungcheongbuk 28160, Republic of Korea
| | - Kyung-Seop Ahn
- Natural Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju, Chungcheongbuk 28160, Republic of Korea
| | - Jae-Won Lee
- Natural Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju, Chungcheongbuk 28160, Republic of Korea
| |
Collapse
|