1
|
Song S, Wang C, Chen Y, Zhou X, Han Y, Zhang H. Dynamic roles of tumor-infiltrating B lymphocytes in cancer immunotherapy. Cancer Immunol Immunother 2025; 74:92. [PMID: 39891668 PMCID: PMC11787113 DOI: 10.1007/s00262-024-03936-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Accepted: 12/27/2024] [Indexed: 02/03/2025]
Abstract
The amazing diversity of B cells within the tumor microenvironment is the basis for the diverse development of B cell-based immunotherapies. Here, we focus on elucidating the mechanisms of tumor intervention mediated by four tumor-infiltrating B lymphocytes. Naive B cells present the initial antigen, germinal center B cell subsets enhance antibody affinity, and immunoglobulin subtypes exert multiple immune effects, while regulatory B cells establish immune tolerance. Together they reflect the complexity of the changing dynamics of cancer immunity. Additionally, we have investigated the dynamic effects of tumor-infiltrating B lymphocytes in immunotherapy and their relationship to prognosis, providing new insights into potential treatment strategies for patients.
Collapse
Affiliation(s)
- Shishengnan Song
- Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Nantong, 226001, Jiangsu, China
| | - Chong Wang
- Department of Thoracic Surgery, Beijing Chest Hospital Affiliated to Capital Medical University (Beijing Tuberculosis and Thoracic Tumor Research Institute), 9 Beiguan Street, Tongzhou, 101149, Beijing, China
| | - Yangchao Chen
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong, 999077, NT, China
| | - Xiaorong Zhou
- Department of Immunology, Medical School of Nantong University, 19 Qixiu Road, Nantong, 226001, Jiangsu, China.
| | - Yi Han
- Department of Thoracic Surgery, Beijing Chest Hospital Affiliated to Capital Medical University (Beijing Tuberculosis and Thoracic Tumor Research Institute), 9 Beiguan Street, Tongzhou, 101149, Beijing, China.
| | - Haijian Zhang
- Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Nantong, 226001, Jiangsu, China.
| |
Collapse
|
2
|
Wu X, Zou W, Liu Z. The relationship between immune cells and prostate cancer, and the mediating role of metabolites: a Mendelian randomization study. Sci Rep 2024; 14:26217. [PMID: 39482407 PMCID: PMC11528075 DOI: 10.1038/s41598-024-78085-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Accepted: 10/28/2024] [Indexed: 11/03/2024] Open
Abstract
Research has demonstrated the significant involvement of immune cells in the development and progression of prostate cancer (PCa). However, the precise causal relationship between immune cells and PCa remains unclear. This study utilized bidirectional Mendelian randomization (MR) analysis to investigate the causal link between immune cells and PCa. Additionally, employed mediation MR design to ascertain the potential mediating role of metabolites in the connection between immune cells and PCa outcomes. Unswitched memory B cell % lymphocyte and CD24 + CD27 + B cell % lymphocyte were positively related to PCa risk, while CD62L - monocyte absolute count and CD62L - monocyte % monocyte were negatively associated with PCa risk. Sensitivity analysis was conducted to validate these results. The mediation MR results indicate that 3-carboxy-4-methyl-5-propyl-2-furanpropanoate (CMPF) levels may be an independent risk factor for PCa, while the succinate to acetoacetate ratio (SA ratio) was found to be a mediator for the effect of CD62L - monocyte % monocyte on PCa, with a mediation proportion of 16.6% (mediation percentage: 16.6%, 95%CI - 163% - 196%). The research validates the genetic causality between particular immune cells and PCa, and has emphasized the potential intermediary function of SA ratio. These noteworthy discoveries provide fresh perspectives for the clinical management of PCa.
Collapse
Affiliation(s)
- Xipeng Wu
- Department of Urology, Zhuzhou Hospital Affiliated to Xiangya School of Medicine, Central South University, ZhuZhou, People's Republic of China
| | - Wenda Zou
- Department of Reproductive Medicine Center, Zhuzhou Hospital Affiliated to Xiangya School of Medicine, Central South University, ZhuZhou, People's Republic of China
| | - Ziwei Liu
- Department of Urology, Zhuzhou Hospital Affiliated to Xiangya School of Medicine, Central South University, ZhuZhou, People's Republic of China.
| |
Collapse
|
3
|
Li Z, Lin A, Gao Z, Jiang A, Xiong M, Song J, Liu Z, Cheng Q, Zhang J, Luo P. B-cell performance in chemotherapy: Unravelling the mystery of B-cell therapeutic potential. Clin Transl Med 2024; 14:e1761. [PMID: 38997802 PMCID: PMC11245406 DOI: 10.1002/ctm2.1761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 06/02/2024] [Accepted: 06/30/2024] [Indexed: 07/14/2024] Open
Abstract
BACKGROUND AND MAIN BODY The anti-tumour and tumour-promoting roles of B cells in the tumour microenvironment (TME) have gained considerable attention in recent years. As essential orchestrators of humoral immunity, B cells potentially play a crucial role in anti-tumour therapies. Chemotherapy, a mainstay in cancer treatment, influences the proliferation and function of diverse B-cell subsets and their crosstalk with the TME. Modulating B-cell function by targeting B cells or their associated cells may enhance chemotherapy efficacy, presenting a promising avenue for future targeted therapy investigations. CONCLUSION This review explores the intricate interplay between chemotherapy and B cells, underscoring the pivotal role of B cells in chemotherapy treatment. We summarise promising B-cell-related therapeutic targets, illustrating the immense potential of B cells in anti-tumour therapy. Our work lays a theoretical foundation for harnessing B cells in chemotherapy and combination strategies for cancer treatment. KEY POINTS Chemotherapy can inhibit B-cell proliferation and alter subset distributions and functions, including factor secretion, receptor signalling, and costimulation. Chemotherapy can modulate complex B-cell-T-cell interactions with variable effects on anti-tumour immunity. Targeting B-cell surface markers or signalling improves chemotherapy responses, blocks immune evasion and inhibits tumour growth. Critical knowledge gaps remain regarding B-cell interactions in TME, B-cell chemoresistance mechanisms, TLS biology, heterogeneity, spatial distributions, chemotherapy drug selection and B-cell targets that future studies should address.
Collapse
Affiliation(s)
- Zizhuo Li
- Department of Oncology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
- The First School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong, China
| | - Anqi Lin
- Department of Oncology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Zhifei Gao
- Department of Oncology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Aimin Jiang
- Department of Urology, Changhai Hospital, Naval Medical University (Second Military Medical University), Shanghai, China
| | - Minying Xiong
- Department of Oncology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Jiapeng Song
- School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Zaoqu Liu
- Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Quan Cheng
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Jian Zhang
- Department of Oncology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Peng Luo
- Department of Oncology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| |
Collapse
|
4
|
Zhang S, Wang Z, Fan S, Liu T, Yoshida S, Yang S, Liu L, Hou W, Cao L, Wang J, Song Z, Li S, Zhang S, Wang H, Li J, Zheng H, Shen Z. Capecitabine Can Induce T Cell Apoptosis: A Potential Immunosuppressive Agent With Anti-Cancer Effect. Front Immunol 2021; 12:737849. [PMID: 34557199 PMCID: PMC8452994 DOI: 10.3389/fimmu.2021.737849] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Accepted: 08/23/2021] [Indexed: 12/12/2022] Open
Abstract
Capecitabine (CAP) is now widely used in the comprehensive treatment of digestive system tumors. Some clinical observations have shown that CAP may have immunosuppressive effects, but there is still a lack of clear experimental verification. In this study, different doses of CAP were administered to normal mice by gavage. Our results confirmed that CAP did not cause myelosuppression in bone marrow tissue; CAP selectively reduced the proportion of T cells and the concentration of related pro-inflammatory cytokines, while it increased the concentration of anti-inflammatory cytokines. Thymidylate phosphorylase (TP) is the key enzyme for the transformation of CAP in vivo; this study confirmed that T cells express TP, but the bone marrow tissue lacks TP expression, which explains the selectivity in pharmacodynamic effects of CAP. In addition, it was confirmed that CAP can induce T cell apoptosis in vivo and in vitro. In vitro experiments showed that CAP-induced T cell apoptosis was related to TP expression, endoplasmic reticulum stress (ERS) induction, reactive oxygen species (ROS) production, and mitochondria-mediated apoptosis activation. Therefore, this study confirmed that the differential expression of TP in cells and tissues explains why CAP avoids the toxic effects of myelosuppression while inducing T cell apoptosis to exert the immunosuppressive effect. Therefore, CAP may become an immunosuppressive agent with a simultaneous anti-cancer effect, which is worthy of further studies.
Collapse
Affiliation(s)
- Sai Zhang
- School of Medicine, Nankai University, Tianjin, China
| | - Zhenglu Wang
- Organ Transplant Department, Tianjin First Central Hospital, School of Medicine, Nankai University, Tianjin, China
- Key Laboratory of Transplant Medicine, Chinese Academy of Medical Sciences, Tianjin, China
| | - Shunli Fan
- First Central Clinical Institute, Tianjin Medical University, Tianjin, China
| | - Tao Liu
- National Health Commission’s Key Laboratory for Critical Care Medicine, Tianjin First Central Hospital, School of Medicine, Nankai University, Tianjin, China
| | - Sei Yoshida
- Research Institute of Transplant Medicine, Nankai University, Tianjin, China
| | - Shuang Yang
- School of Medicine, Nankai University, Tianjin, China
- Research Institute of Transplant Medicine, Nankai University, Tianjin, China
| | - Lei Liu
- Organ Transplant Department, Tianjin First Central Hospital, School of Medicine, Nankai University, Tianjin, China
| | - Wen Hou
- National Health Commission’s Key Laboratory for Critical Care Medicine, Tianjin First Central Hospital, School of Medicine, Nankai University, Tianjin, China
| | - Lei Cao
- Key Laboratory of Transplant Medicine, Chinese Academy of Medical Sciences, Tianjin, China
| | - Jianxi Wang
- Key Laboratory of Transplant Medicine, Chinese Academy of Medical Sciences, Tianjin, China
| | - Zhuolun Song
- Organ Transplant Department, Tianjin First Central Hospital, School of Medicine, Nankai University, Tianjin, China
| | - Shanni Li
- Organ Transplant Department, Tianjin First Central Hospital, School of Medicine, Nankai University, Tianjin, China
| | - Sirui Zhang
- First Central Clinical Institute, Tianjin Medical University, Tianjin, China
| | - Hao Wang
- First Central Clinical Institute, Tianjin Medical University, Tianjin, China
| | - Jianghong Li
- First Central Clinical Institute, Tianjin Medical University, Tianjin, China
| | - Hong Zheng
- Organ Transplant Department, Tianjin First Central Hospital, School of Medicine, Nankai University, Tianjin, China
- Key Laboratory of Transplant Medicine, Chinese Academy of Medical Sciences, Tianjin, China
- Research Institute of Transplant Medicine, Nankai University, Tianjin, China
- Tianjin Key Laboratory for Organ Transplantation, Tianjin First Central Hospital, School of Medicine, Nankai University, Tianjin, China
| | - Zhongyang Shen
- Organ Transplant Department, Tianjin First Central Hospital, School of Medicine, Nankai University, Tianjin, China
- Key Laboratory of Transplant Medicine, Chinese Academy of Medical Sciences, Tianjin, China
- National Health Commission’s Key Laboratory for Critical Care Medicine, Tianjin First Central Hospital, School of Medicine, Nankai University, Tianjin, China
- Research Institute of Transplant Medicine, Nankai University, Tianjin, China
- Tianjin Key Laboratory for Organ Transplantation, Tianjin First Central Hospital, School of Medicine, Nankai University, Tianjin, China
| |
Collapse
|
5
|
Wang L, Fu Y, Yu B, Jiang X, Liu H, Liu J, Zha B, Chu Y. HSP70, a Novel Regulatory Molecule in B Cell-Mediated Suppression of Autoimmune Diseases. J Mol Biol 2020; 433:166634. [PMID: 32860772 DOI: 10.1016/j.jmb.2020.08.019] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 08/12/2020] [Accepted: 08/21/2020] [Indexed: 12/12/2022]
Abstract
B cells have recently emerged as playing regulatory role in autoimmune diseases. We have previously demonstrated that human peripheral blood CD19+CD24hiCD27+ B cells have regulatory function both in healthy donors and in patients with autoimmune disease. However, the mechanism of this regulation is still not fully understood. In this study, microarrays were utilized to compare gene expression of CD19+CD24hiCD27+ B cells (regulatory B cells, Bregs) with CD19+CD24loCD27- B cells (non-Bregs) in human peripheral blood. We found that heat shock protein 70 (HSP70) expression was significantly upregulated in Bregs. In vitro studies explored that HSP70 inhibition impaired the regulatory function of peripheral blood Bregs. In mouse models of autoimmune disease, using HSP70-deficient mice or HSP70 inhibitors, Bregs suppressed effector cells and rescued disease-associated phenotypes that were dependent on HSP70. Mechanistically, Bregs secreted HSP70, directly suppressing effector cells, such as T effect cells. These findings reveal that HSP70 is a novel factor that modulates Breg function and suggest that enhancing Breg-mediated production of HSP70 could be a viable therapy for autoimmune disease.
Collapse
Affiliation(s)
- Luman Wang
- Department of Immunology, School of Basic Medical Sciences, and Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China; Department of Endocrinology and Metabolism, Shanghai Fifth People's Hospital, Fudan University, Shanghai, China; Biotherapy Research Center, Fudan University, Shanghai 200032, China
| | - Ying Fu
- Department of Immunology, School of Basic Medical Sciences, and Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China
| | - Baichao Yu
- Department of Immunology, School of Basic Medical Sciences, and Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China
| | - Xuechao Jiang
- Department of Immunology, School of Basic Medical Sciences, and Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China
| | - Hongchun Liu
- Department of Gastroenterology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Jun Liu
- Department of Endocrinology and Metabolism, Shanghai Fifth People's Hospital, Fudan University, Shanghai, China
| | - Bingbing Zha
- Department of Endocrinology and Metabolism, Shanghai Fifth People's Hospital, Fudan University, Shanghai, China.
| | - Yiwei Chu
- Department of Immunology, School of Basic Medical Sciences, and Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China; Biotherapy Research Center, Fudan University, Shanghai 200032, China.
| |
Collapse
|
6
|
Abstract
B cells are typically characterized by their ability to produce antibodies, function as secondary antigen-present cells, and produce various immunoregulatory cytokines. The regulatory B (Breg)-cell population is now widely accepted as an important modulatory component of the immune system that suppresses inflammation. Recent studies indicate that Breg-cell populations are small under physiological conditions but expand substantially in both human patients and murine models of chronic inflammatory diseases, autoimmune diseases, infection, transplantation, and cancer. Almost all B-cell subsets can be induced to form Breg cells. In addition, there are unique Breg-cell subsets such as B10 and Tim-1+ B cells. Immunoregulatory function may be mediated by production of cytokines such as IL-10 and TGF-β and ensuing suppression of T cells, by direct cell-cell interactions, and (or) by altering the immune microenvironment. In this chapter, we describe in detail the discovery of Breg cells, their phenotypes, differentiation, function, contributions to disease, and therapeutic potential.
Collapse
Affiliation(s)
- Luman Wang
- Department of Immunology, School of Basic Medical Sciences, and Institutes of Biomedical Sciences, Fudan University, No. 138, Yi Xue Yuan Rd, 226, Shanghai, 200032, China
| | - Ying Fu
- Department of Immunology, School of Basic Medical Sciences, and Institutes of Biomedical Sciences, Fudan University, No. 138, Yi Xue Yuan Rd, 226, Shanghai, 200032, China
| | - Yiwei Chu
- Department of Immunology, School of Basic Medical Sciences, and Institutes of Biomedical Sciences, Fudan University, No. 138, Yi Xue Yuan Rd, 226, Shanghai, 200032, China.
| |
Collapse
|
7
|
Mao Y, Wang Y, Dong L, Zhang Q, Wang C, Zhang Y, Li X, Fu Z. Circulating exosomes from esophageal squamous cell carcinoma mediate the generation of B10 and PD-1 high Breg cells. Cancer Sci 2019; 110:2700-2710. [PMID: 31276257 PMCID: PMC6726703 DOI: 10.1111/cas.14122] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Revised: 06/29/2019] [Accepted: 07/03/2019] [Indexed: 12/15/2022] Open
Abstract
As one of the most frequently diagnosed cancers, esophageal squamous cell carcinoma (ESCC) remains the leading cause of malignancy‐related death worldwide. Many studies have focused on the potential role of cancer cells in educating B cells during cancer progression. Here, we aim to explore the role of circulating exosomes from ESCC in the generation of two main regulatory B (Breg) subsets, including interleukin‐10+ Bregs (B10) and programmed cell death (PD)‐1high Bregs. Firstly, we observed an elevated percentage of B10 cells in peripheral blood of ESCC patients compared with healthy controls. Then we isolated and characterized exosomes from the peripheral blood of ESCC patients and an ESCC cell line. Exosomes from ESCC patients and the ESCC cell line suppressed the proliferation of B cells and induced the augmentation of B10 and PD‐1high Breg cells. By comparing the long non‐coding RNA and mRNA expression profiles in exosomes from ESCC patients or healthy controls, we identified a series of differentially expressed genes. Finally, we undertook gene annotation and pathway enrichment analyses on differentially expressed genes to explore the potential mechanism underlying the modulatory role of cancer exosomes in B cells. Our findings contribute to the study on B cell‐mediated ESCC immunosuppression and shed light on the possible application of exosomes in anticancer therapies.
Collapse
Affiliation(s)
- Yu Mao
- Department of Oncology, First Hospital of Qinhuangdao, Qinhuangdao, China
| | - Yimin Wang
- Department of General Surgery, First Hospital of Qinhuangdao, Hebei Medical University, Qinhuangdao, China
| | - Lixin Dong
- Department of Oncology, First Hospital of Qinhuangdao, Qinhuangdao, China
| | - Qiang Zhang
- Department of Oncology, First Hospital of Qinhuangdao, Qinhuangdao, China
| | - Chao Wang
- Department of Thoracic Surgery, First Hospital of Qinhuangdao, Qinhuangdao, China
| | - Yanqiu Zhang
- Department of Oncology, First Hospital of Qinhuangdao, Qinhuangdao, China
| | - Xin Li
- Department of Oncology, First Hospital of Qinhuangdao, Qinhuangdao, China
| | - Zhanzhao Fu
- Department of Oncology, First Hospital of Qinhuangdao, Qinhuangdao, China
| |
Collapse
|
8
|
Lei CJ, Liu JN, Wu R, Long ZX, Zhang JZ, Tao D, Liu YP. Change of the peripheral blood immune pattern and its correlation with prognosis in patients with liver cancer treated by sorafenib. ASIAN PAC J TROP MED 2016; 9:592-6. [DOI: 10.1016/j.apjtm.2016.04.019] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Revised: 03/16/2016] [Indexed: 11/28/2022] Open
|