1
|
Hamid Z, Akbar A, Kamran K, Achakzai JK, Wong LS, Sadiq MB. Unlocking the Therapeutic and Antimicrobial Potential of Prunus armeniaca L. Seed Kernel Oil. INTERNATIONAL JOURNAL OF FOOD SCIENCE 2024; 2024:5589506. [PMID: 39544277 PMCID: PMC11563713 DOI: 10.1155/2024/5589506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 08/27/2024] [Accepted: 10/09/2024] [Indexed: 11/17/2024]
Abstract
The Prunus armeniaca L. (bitter apricot) is an apricot fruit tree categorized on the basis of the bitter taste of its seed kernel. In this study, the functional, medicinal, and therapeutic potential of bitter apricot seed kernel oil (BASKO) was evaluated. The qualitative screening of BASKO was performed using standard methodologies. The chemical profile of the oil was analyzed with the help of Fourier transform infrared (FTIR) and gas chromatography and mass spectrometry (GC-MS). Results revealed the presence of different phytochemical constituents comprising steroids, flavonoids, terpenoids, alkaloids, and cardiac glycosides. The antioxidant activity of the oil was determined by a 2,2,diphenyl-1picrylhydrazyl (DPPH) radical inhibition essay. Total phenolic and flavonoid contents were 10.6 ± 1.32 mg GAE/g and 4.75 ± 0.11 mg QE/g, respectively. DPPH inhibition of 89.5% was achieved at 1000 μg/mL of BASKO, with IC50 = 90.44 μg/mL (83.47-96.67 μg/mL with 95% CI). The antimicrobial potential of the BASKO revealed the inhibition of Escherichia coli (20.3 ± 2.08 mm), Salmonella typhi (19.3 ± 2.51 mm), Klebsiella pneumoniae (16.6 ± 1.52 mm), Pseudomonas aeruginosa (17 ± 2 mm), and Staphylococcus aureus (25 ± 1.01 mm). The minimum inhibitory concentration (MIC) value was 250 μL/mL for K. pneumoniae, S. typhi, P. aeruginosa, and S. aureus, whereas 62.5 μL/mL for E. coli. Moreover, BASKO showed antifungal potential against Trichophyton tonsurans (77.3 ± 2.08%), Epidermophyton floccosum (69.6 ± 3.51%), Aspergillus niger (74.3 ± 2.56%), Aspergillus flavus (90 ± 3%), and Mucor mucedo (78.3 ± 2.51%). Antileishmanial activity of oil was evaluated against Leishmania major by MTT assay, and an IC50 value of 89.75 μg/mL was observed. The study revealed that BASKO is a good source of biologically active compounds to be used as functional, therapeutical, and antimicrobial agents in food and pharmaceutical products.
Collapse
Affiliation(s)
- Zeenat Hamid
- Department of Microbiology, University of Balochistan, Quetta, Pakistan
| | - Ali Akbar
- Department of Microbiology, University of Balochistan, Quetta, Pakistan
- Centre for Biotechnology and Microbiology, University of Swat, Charbagh 19120, Khyber Pakhtunkhwa, Pakistan
- Faculty of Health and Life Sciences, INTI International University, Nilai, Negeri Sembilan 11 71800, Malaysia
| | - Kashif Kamran
- Department of Zoology, University of Balochistan, Quetta, Pakistan
| | - Jahangir Khan Achakzai
- Discipline of Biochemistry, Department of Natural and Basic Sciences, University of Turbat, Kech 92600, Balochistan, Pakistan
| | - Ling Shing Wong
- Faculty of Health and Life Sciences, INTI International University, Nilai, Negeri Sembilan 11 71800, Malaysia
| | - Muhammad Bilal Sadiq
- School of Life Sciences, Forman Christian College (A Chartered University), Lahore, Pakistan
| |
Collapse
|
2
|
Kim HJ, Hong JH. Multiplicative Effects of Essential Oils and Other Active Components on Skin Tissue and Skin Cancers. Int J Mol Sci 2024; 25:5397. [PMID: 38791435 PMCID: PMC11121510 DOI: 10.3390/ijms25105397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Revised: 05/12/2024] [Accepted: 05/13/2024] [Indexed: 05/26/2024] Open
Abstract
Naturally derived essential oils and their active components are known to possess various properties, ranging from anti-oxidant, anti-inflammatory, anti-bacterial, anti-fungal, and anti-cancer activities. Numerous types of essential oils and active components have been discovered, and their permissive roles have been addressed in various fields. In this comprehensive review, we focused on the roles of essential oils and active components in skin diseases and cancers as discovered over the past three decades. In particular, we opted to highlight the effectiveness of essential oils and their active components in developing strategies against various skin diseases and skin cancers and to describe the effects of the identified essential-oil-derived major components from physiological and pathological perspectives. Overall, this review provides a basis for the development of novel therapies for skin diseases and cancers, especially melanoma.
Collapse
Affiliation(s)
| | - Jeong Hee Hong
- Department of Physiology, College of Medicine, Gachon University, Lee Gil Ya Cancer and Diabetes Institute, 155 Getbeolro, Yeonsu-gu, Incheon 21999, Republic of Korea;
| |
Collapse
|
3
|
Tang S, Wang M, Peng Y, Liang Y, Lei J, Tao Q, Ming T, Shen Y, Zhang C, Guo J, Xu H. Armeniacae semen amarum: a review on its botany, phytochemistry, pharmacology, clinical application, toxicology and pharmacokinetics. Front Pharmacol 2024; 15:1290888. [PMID: 38323080 PMCID: PMC10844384 DOI: 10.3389/fphar.2024.1290888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 01/10/2024] [Indexed: 02/08/2024] Open
Abstract
Armeniacae semen amarum-seeds of Prunus armeniaca L. (Rosaceae) (ASA), also known as Kuxingren in Chinese, is a traditional Chinese herbal drug commonly used for lung disease and intestinal disorders. It has long been used to treat coughs and asthma, as well as to lubricate the colon and reduce constipation. ASA refers to the dried ripe seed of diverse species of Rosaceae and contains a variety of phytochemical components, including glycosides, organic acids, amino acids, flavonoids, terpenes, phytosterols, phenylpropanoids, and other components. Extensive data shows that ASA exhibits various pharmacological activities, such as anticancer activity, anti-oxidation, antimicrobial activity, anti-inflammation, protection of cardiovascular, neural, respiratory and digestive systems, antidiabetic effects, and protection of the liver and kidney, and other activities. In clinical practice, ASA can be used as a single drug or in combination with other traditional Chinese medicines, forming ASA-containing formulas, to treat various afflictions. However, it is important to consider the potential adverse reactions and pharmacokinetic properties of ASA during its clinical use. Overall, with various bioactive components, diversified pharmacological actions and potent efficacies, ASA is a promising drug that merits in-depth study on its functional mechanisms to facilitate its clinical application.
Collapse
Affiliation(s)
- Shun Tang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Department of Pharmacology, School of Pharmaceutical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Minmin Wang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Department of Pharmacology, School of Pharmaceutical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yuhui Peng
- State Key Laboratory of Southwestern Chinese Medicine Resources, Department of Pharmacology, School of Pharmaceutical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yuanjing Liang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Department of Pharmacology, School of Pharmaceutical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jiarong Lei
- State Key Laboratory of Southwestern Chinese Medicine Resources, Department of Pharmacology, School of Pharmaceutical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Qiu Tao
- State Key Laboratory of Southwestern Chinese Medicine Resources, Department of Pharmacology, School of Pharmaceutical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Tianqi Ming
- State Key Laboratory of Southwestern Chinese Medicine Resources, Department of Pharmacology, School of Pharmaceutical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yanqiao Shen
- State Key Laboratory of Southwestern Chinese Medicine Resources, Department of Pharmacology, School of Pharmaceutical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Chuantao Zhang
- Department of Respiratory Medicine, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jinlin Guo
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Haibo Xu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Department of Pharmacology, School of Pharmaceutical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
4
|
Vyas PJ, Wagh SS, Kalaskar MG, Patil KR, Sharma AK, Kazmi I, Al-Abbasi FA, Alzarea SI, Afzal O, Altamimi ASA, Gupta G, Patil CR. Volatile Oil Containing Plants as Phytopharmaceuticals to Treat Psoriasis: A Review. Curr Pharm Biotechnol 2024; 25:313-339. [PMID: 37287299 DOI: 10.2174/1389201024666230607140404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Revised: 03/09/2023] [Accepted: 03/20/2023] [Indexed: 06/09/2023]
Abstract
INTRODUCTION Psoriasis is a chronic skin condition caused by an autoimmune response that accelerates the life cycle of skin cells, resulting in the characteristic symptoms of scaling, inflammation, and itching. METHODS Palliative treatment options for psoriasis often prioritize the use of volatile oils. These oils contain monoterpenes, sesquiterpenes, and phenylpropanoids that are intricately linked to the molecular cascades involved in the pathogenesis and symptoms of psoriasis. To evaluate the antipsoriatic efficacy of volatile oils and their components, we conducted a systematic review of scientific studies. Our literature search encompassed various online databases, including PubMed, BIREME, SCIELO, Open Grey, Scopus, and ScienceDirect. The selected studies included experimental in vitro/in vivo assessments as well as clinical studies that examined the potential of volatile oils and their extracts as antipsoriatic agents. We excluded conference proceedings, case reports, editorials, and abstracts. Ultimately, we identified and evaluated a total of 12 studies for inclusion in our analysis. RESULTS The data collected, compiled, and analyzed strongly support the interaction between volatile oils and their constituents with the key molecular pathways involved in the pathogenesis of psoriasis and the development of its symptoms. Volatile oils play a significant role in the palliative treatment of psoriasis, while their chemical constituents have the potential to reduce the symptoms and recurrence of this condition. CONCLUSION The current review highlights that the constituents found in volatile oils offer distinct chemical frameworks that can be regarded as promising starting points for the exploration and development of innovative antipsoriatic agents.
Collapse
Affiliation(s)
- Priyanka J Vyas
- R. C. Patel Institute of Pharmaceutical Education and Research, Shirpur, District-Dhule, 425405, India
| | - Shivani S Wagh
- R. C. Patel Institute of Pharmaceutical Education and Research, Shirpur, District-Dhule, 425405, India
| | - Mohan G Kalaskar
- R. C. Patel Institute of Pharmaceutical Education and Research, Shirpur, District-Dhule, 425405, India
| | - Kalpesh R Patil
- R. C. Patel Institute of Pharmaceutical Education and Research, Shirpur, District-Dhule, 425405, India
| | - Ajay K Sharma
- Department of Pharmacognosy, School of Pharmaceutical Sciences, Delhi Pharmaceutical Sciences & Research University, New Delhi, 110017, India
| | - Imran Kazmi
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Fahad A Al-Abbasi
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Sami I Alzarea
- Department of Pharmacology, College of Pharmacy, Jouf University, Sakaka, Al-Jouf, Saudi Arabia
| | - Obaid Afzal
- Department of Pharmaceutical Chemistry, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al Kharj, 11942, Saudi Arabia
| | - Abdulmalik S A Altamimi
- Department of Pharmaceutical Chemistry, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al Kharj, 11942, Saudi Arabia
| | - Gaurav Gupta
- Department of Pharmacology, School of Pharmacy, Suresh Gyan Vihar University, Mahal Road, Jagatputa, Jaipur, India
- Department of Pharmacology, Saveetha Dental College, Saveetha University, Chennai, India
- Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Dehradun, India
| | - Chandragouda R Patil
- Department of Pharmacognosy, School of Pharmaceutical Sciences, Delhi Pharmaceutical Sciences & Research University, New Delhi, 110017, India
| |
Collapse
|
5
|
The potential of apricot seed and oil as functional food: Composition, biological properties, health benefits & safety. FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2022.102336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
6
|
Farag MA, Bahaa Eldin A, Khalifa I. Valorization and extraction optimization of Prunus seeds for food and functional food applications: A review with further perspectives. Food Chem 2022; 388:132955. [DOI: 10.1016/j.foodchem.2022.132955] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 04/08/2022] [Accepted: 04/10/2022] [Indexed: 01/06/2023]
|
7
|
Kitic D, Miladinovic B, Randjelovic M, Szopa A, Sharifi-Rad J, Calina D, Seidel V. Anticancer Potential and Other Pharmacological Properties of Prunus armeniaca L.: An Updated Overview. PLANTS (BASEL, SWITZERLAND) 2022; 11:1885. [PMID: 35890519 PMCID: PMC9325146 DOI: 10.3390/plants11141885] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 07/14/2022] [Accepted: 07/19/2022] [Indexed: 05/02/2023]
Abstract
Prunus armeniaca L. (Rosaceae)-syn. Amygdalus armeniaca (L.) Dumort., Armeniaca armeniaca (L.) Huth, Armeniaca vulgaris Lam is commonly known as the apricot tree. The plant is thought to originate from the northern, north-western, and north-eastern provinces of China, although some data show that it may also come from Korea or Japan. The apricot fruit is used medicinally to treat a variety of ailments, including use as an antipyretic, antiseptic, anti-inflammatory, emetic, and ophthalmic remedy. The Chinese and Korean pharmacopeias describe the apricot seed as an herbal medicinal product. Various parts of the apricot plant are used worldwide for their anticancer properties, either as a primary remedy in traditional medicine or as a complementary or alternative medicine. The purpose of this review was to provide comprehensive and up-to-date information on ethnobotanical data, bioactive phytochemicals, anticancer potential, pharmacological applications, and toxicology of the genus Prunus armeniaca, thus providing new perspectives on future research directions. Included data were obtained from online databases such as PubMed/Medline, Google Scholar, Science direct, and Wiley Online Library. Multiple anticancer mechanisms have been identified in in vitro and in vivo studies, the most important mechanisms being apoptosis, antiproliferation, and cytotoxicity. The anticancer properties are probably mediated by the contained bioactive compounds, which can activate various anticancer mechanisms and signaling pathways such as tumor suppressor proteins that reduce the proliferation of tumor cells. Other pharmacological properties resulting from the analysis of experimental studies include neuroprotective, cardioprotective, antioxidant, immunostimulatory, antihyperlipidemic, antibacterial, and antifungal effects. In addition, data were provided on the toxicity of amygdalin, a compound found in apricot kernel seeds, which limits the long-term use of complementary/alternative products derived from P. armeniaca. This updated review showed that bioactive compounds derived from P. armeniaca are promising compounds for future research due to their important pharmacological properties, especially anticancer. A detailed analysis of the chemical structure of these compounds and their cytotoxicity should be carried out in future research. In addition, translational pharmacological studies are required for the correct determination of pharmacologically active doses in humans.
Collapse
Affiliation(s)
- Dusanka Kitic
- Department of Pharmacy, Faculty of Medicine, University of Niš, Ave. Zorana Djindjica 81, 18000 Nis, Serbia; (D.K.); (B.M.); (M.R.)
| | - Bojana Miladinovic
- Department of Pharmacy, Faculty of Medicine, University of Niš, Ave. Zorana Djindjica 81, 18000 Nis, Serbia; (D.K.); (B.M.); (M.R.)
| | - Milica Randjelovic
- Department of Pharmacy, Faculty of Medicine, University of Niš, Ave. Zorana Djindjica 81, 18000 Nis, Serbia; (D.K.); (B.M.); (M.R.)
| | - Agnieszka Szopa
- Chair and Department of Pharmaceutical Botany, Jagiellonian University, Medical College, Medyczna 9, 30-688 Krakow, Poland;
| | | | - Daniela Calina
- Department of Clinical Pharmacy, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania
| | - Veronique Seidel
- Natural Products Research Laboratory, Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow G1 1XQ, UK
| |
Collapse
|
8
|
Chandra S, Qureshi S, Chopra D, Dwivedi A, Ray RS. Involvement of Type-I & Type-II Photodynamic Reactions in Photosensitization of Fragrance Ingredient 2-acetonaphthone. Photochem Photobiol 2022; 98:1050-1058. [PMID: 35038766 DOI: 10.1111/php.13593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 12/28/2021] [Accepted: 01/13/2022] [Indexed: 11/28/2022]
Abstract
2-acetonaphthone (2-ACN) is a synthetic fragrance material used in various cosmetics, as an adulterant. Due to its frequent use, we have conducted an in-depth study to understand the photosensitizing potential of 2-ACN. Results of this study illustrate that 2-ACN showed photodegradation in 4 hrs under ambient UVR (UV radiations) and sunlight exposure. It generated (1-25µg/ml) superoxide anion radical (O2 ·- ) and singlet oxygen (1 O2 ) in the presence of UVR/sunlight through in-chemico and in-vitro test systems. 2-ACN (10 µg/ml) showed 43.9 % and 57.4 % reduction in cell viability under UVA and sunlight, respectively. Photosensitized 2-ACN generated intracellular ROS (6 folds in UVA; 8 folds in sunlight), which compromises the endoplasmic reticulum and mitochondrial membrane potential leading to cell death. Acridine orange/ethidium bromide dual staining and annexin-V/PI uptake showed cell death caused via 2-ACN under UVR exposure. The above findings signify the role of ROS via Type-I & Type-II photodynamic pathways in photosensitization of 2-ACN that ultimately promotes photodamage of important cellular organelles leading to cell death. The study advocates that solar radiation should be avoided by the users after the application of cosmetic products contain 2-ACN.
Collapse
Affiliation(s)
- Sonam Chandra
- Systems Toxicology and Health Risk Assessment Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow-226001, Uttar Pradesh, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Saba Qureshi
- Systems Toxicology and Health Risk Assessment Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow-226001, Uttar Pradesh, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Deepti Chopra
- Systems Toxicology and Health Risk Assessment Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow-226001, Uttar Pradesh, India
| | - Ashish Dwivedi
- Systems Toxicology and Health Risk Assessment Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow-226001, Uttar Pradesh, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Ratan Singh Ray
- Systems Toxicology and Health Risk Assessment Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow-226001, Uttar Pradesh, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| |
Collapse
|
9
|
The content of carotenoids and tocochromanols in bitter, semi-sweet and sweet apricots depending on different harvest times and geographical regions. Eur Food Res Technol 2021. [DOI: 10.1007/s00217-021-03688-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
10
|
Wang D, Dong Y, Chen X, Liu Y, Wang J, Wang X, Wang C, Song H. Incorporation of apricot (Prunus armeniaca) kernel essential oil into chitosan films displaying antimicrobial effect against Listeria monocytogenes and improving quality indices of spiced beef. Int J Biol Macromol 2020; 162:838-844. [DOI: 10.1016/j.ijbiomac.2020.06.220] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 05/29/2020] [Accepted: 06/23/2020] [Indexed: 12/18/2022]
|
11
|
Bitter apricot ethanolic extract induces apoptosis through increasing expression of Bax/Bcl-2 ratio and caspase-3 in PANC-1 pancreatic cancer cells. Mol Biol Rep 2020; 47:1895-1904. [PMID: 32026321 DOI: 10.1007/s11033-020-05286-w] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2019] [Accepted: 01/27/2020] [Indexed: 10/25/2022]
Abstract
Pancreatic cancer is the fourth common cause of cancer death. Surgery and chemotherapy are the common treatment strategies for pancreatic cancer patients; however, the response rate is less than 20% at advanced stages. In recent years, growing interest has been dedicated to natural products. Bitter apricot seeds possess a number of pharmacological properties including antitumor activity and amygdalin from bitter apricot seeds can induce apoptosis. In this study, we investigated the cyto/genotoxic effects of bitter apricot ethanolic extract (BAEE) and amygdalin on human pancreatic cancer PANC-1 and normal epithelial 293/KDR cells. BAEE was assessed using high-performance liquid chromatography for the confirmation of the structure. The biological impacts of BAEE and amygdalin on PANC-1 and 293/KDR cells were evaluated by MTT assay, DAPI staining, AnnexinV/PI and Real-time qPCR analysis. BAEE and amygdalin inhibited cancer cell growth in a dose- and time-dependent manner. DAPI staining and flow cytometric analysis revealed fragmented nuclei and elevated numbers of early and late apoptotic cells, respectively. Also, increased Bax/Bcl-2 ratio and upregulation of caspase-3 further confirmed the occurrence of apoptosis in PANC-1 cells, but not in non-cancerous 293/KDR cells. These results indicate that BAEE could mediate apoptosis induction in cancer cells through a mitochondria dependent pathway. These findings suggest that BAEE functions as a potent pro-apoptotic factor for human pancreatic cancer cells without a significant effect on 293/KDR cells. Though, the potent anti-cancer components of BAEE should be further identified. Moreover, in vivo investigations are required to confirm bitter apricot ethanolic extract's clinical value as an anti-tumor drug.
Collapse
|
12
|
Transglutaminase induced gels using bitter apricot kernel protein: Chemical, textural and release properties. FOOD BIOSCI 2018. [DOI: 10.1016/j.fbio.2018.09.002] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
13
|
Pavithra PS, Mehta A, Verma RS. Essential oils: from prevention to treatment of skin cancer. Drug Discov Today 2018; 24:644-655. [PMID: 30508640 DOI: 10.1016/j.drudis.2018.11.020] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 10/24/2018] [Accepted: 11/27/2018] [Indexed: 12/16/2022]
Abstract
The increasing incidence of cutaneous malignancies signifies the need for multiple treatment options. Several available reviews have emphasized the potential role of various botanical extracts and naturally occurring compounds as anti-skin-cancer agents. Few studies relate to the role of chemoprevention and therapeutic activity of essential oils (EOs) and EO components. The present review summarizes an overview of chemopreventive, anti-melanoma and anti-nonmelanoma activities of EOs from various plants and EO components in in vitro and in vivo models with special emphasis on skin cancer. Also, the mechanisms by which EOs and EO components exert their effects to induce cell death are presented.
Collapse
Affiliation(s)
- P S Pavithra
- School of BioSciences and Technology, Vellore Institute of Technology, Vellore 632 014, India
| | - Alka Mehta
- School of BioSciences and Technology, Vellore Institute of Technology, Vellore 632 014, India
| | - Rama S Verma
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai 600 036, India.
| |
Collapse
|
14
|
Lee SY, Nam S, Hong IK, Kim H, Yang H, Cho HJ. Antiproliferation of keratinocytes and alleviation of psoriasis by the ethanol extract of Artemisia capillaris. Phytother Res 2018; 32:923-932. [PMID: 29377339 DOI: 10.1002/ptr.6032] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2017] [Revised: 12/16/2017] [Accepted: 12/18/2017] [Indexed: 01/03/2023]
Abstract
The therapeutic potentials of the ethanol extract of Artemisia capillaris (ACE) for psoriasis were verified in HaCaT cells (as an immortalized human keratinocyte cell line) and imiquimod (IMQ)-induced psoriasis-like mouse models. In HaCaT cells, IC50 value of ACE was 37.5 μg/ml after incubating for 72 hr. The antiproliferation activity of ACE in HaCaT cells was further verified by apoptosis assays. The percentage of apoptotic population in ACE-treated group was significantly higher than that of control group (p < .05). The result of cell cycle arrest assay also supported the observed antiproliferation efficacy of ACE in HaCaT cells. In IMQ-induced psoriasis-like mouse models, the Psoriasis Area and Severity Index score of ACE (50 mg/ml; ACE50)-treated group was significantly lower than that of IMQ group on Day 4 (p < .05). After topical application of ACE on psoriasis-like lesion for 4 days, the epidermal thickness of (IMQ + ACE50) group was significantly lower than that of IMQ group (p < .05). The expression levels of Ki-67 and intracellular adhesion molecule-1 in excised skin tissues of (IMQ + ACE50) group were also lower than those of IMQ group. All these findings suggest that ACE can be used as a promising antipsoriatic agent.
Collapse
Affiliation(s)
- Song Yi Lee
- College of Pharmacy, Kangwon National University, Chuncheon, Gangwon, 24341, Republic of Korea
| | - Suyeong Nam
- College of Pharmacy, Kangwon National University, Chuncheon, Gangwon, 24341, Republic of Korea
| | - In Kee Hong
- R&D Center, Radiant Ltd., Chuncheon, Gangwon, 24398, Republic of Korea
| | - Hill Kim
- R&D Center, Radiant Ltd., Chuncheon, Gangwon, 24398, Republic of Korea
| | - Heejung Yang
- College of Pharmacy, Kangwon National University, Chuncheon, Gangwon, 24341, Republic of Korea
| | - Hyun-Jong Cho
- College of Pharmacy, Kangwon National University, Chuncheon, Gangwon, 24341, Republic of Korea
| |
Collapse
|
15
|
Lin TK, Zhong L, Santiago JL. Anti-Inflammatory and Skin Barrier Repair Effects of Topical Application of Some Plant Oils. Int J Mol Sci 2017; 19:E70. [PMID: 29280987 PMCID: PMC5796020 DOI: 10.3390/ijms19010070] [Citation(s) in RCA: 255] [Impact Index Per Article: 31.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Revised: 12/14/2017] [Accepted: 12/20/2017] [Indexed: 01/19/2023] Open
Abstract
Plant oils have been utilized for a variety of purposes throughout history, with their integration into foods, cosmetics, and pharmaceutical products. They are now being increasingly recognized for their effects on both skin diseases and the restoration of cutaneous homeostasis. This article briefly reviews the available data on biological influences of topical skin applications of some plant oils (olive oil, olive pomace oil, sunflower seed oil, coconut oil, safflower seed oil, argan oil, soybean oil, peanut oil, sesame oil, avocado oil, borage oil, jojoba oil, oat oil, pomegranate seed oil, almond oil, bitter apricot oil, rose hip oil, German chamomile oil, and shea butter). Thus, it focuses on the therapeutic benefits of these plant oils according to their anti-inflammatory and antioxidant effects on the skin, promotion of wound healing and repair of skin barrier.
Collapse
Affiliation(s)
- Tzu-Kai Lin
- Department of Dermatology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 83301, Taiwan.
| | - Lily Zhong
- California State University, Los Angeles, School of Nursing, 5151 State University Dr, Los Angeles, CA 90032, USA.
| | - Juan Luis Santiago
- Dermatology Service & Translational Research Unit (UIT), Hospital General Universitario de Ciudad Real, 13005 Ciudad Real, Spain.
| |
Collapse
|
16
|
Chai Y, Zhao M. iTRAQ-Based Quantitative Proteomic Analysis of the Inhibitory Effects of Polysaccharides from Viscum coloratum (Kom.) Nakai on HepG2 Cells. Sci Rep 2017; 7:4596. [PMID: 28676664 PMCID: PMC5496916 DOI: 10.1038/s41598-017-04417-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Accepted: 05/03/2017] [Indexed: 01/02/2023] Open
Abstract
Viscum coloratum (Kom.) Nakai is one of active medicinal plants, and its active components, especially polysaccharides, have been shown to exhibit bioactivity. In this study, we examined the effects of three polysaccharide fractions from Viscum coloratum (Kom.) Nakai on HepG2 cell growth in a dose-dependent manner by using a CCK-8 assay kit. Flow cytometry analysis showed that VCP2 treatment delayed the cell cycle in the G1 phase and induced apoptosis in HepG2 cells, a result possibly due to the increased expression of p21Wafl/Cip1 and Cyclin D and the decreased expression of Cyclin E and CDK4. The increased expression of Bad, Smac and Caspase-3 and the decreased expression of Bcl-XL and XIAP may be some of the reasons for the induction of apoptosis in VCP2-treated HepG2 cells. Through iTRAQ and 2D-LC-MSMS, 113 and 198 differentially expressed proteins were identified in normal and VCP2-treated HepG2 and Caco2 cells. The mRNA and protein levels of Histone H3.1, Cytoskeletal 9 and Vitronectin agreed with iTRAQ proteomic results. GO, pathways and the PPI of differentially expressed proteins were further analyzed. These findings broaden the understanding of the anti-tumor mechanisms of mistletoe polysaccharides and provide new clues for screening proteins that are responsive to polysaccharides.
Collapse
Affiliation(s)
| | - Min Zhao
- Northeast Forestry University, Harbin, PR China.
| |
Collapse
|