1
|
Cucchiarini A, Dobrovolná M, Brázda V, Mergny JL. Analysis of quadruplex propensity of aptamer sequences. Nucleic Acids Res 2025; 53:gkaf424. [PMID: 40377215 DOI: 10.1093/nar/gkaf424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 04/11/2025] [Accepted: 05/06/2025] [Indexed: 05/18/2025] Open
Abstract
Aptamers are short DNA or RNA sequences that can fold into unique three-dimensional structures, enabling them to bind specifically to target molecules with high affinity, similar to antibodies. A distinctive feature of many aptamers is their ability to adopt a G-quadruplex (G4) fold, a four-stranded structure formed by guanine-rich sequences. While G4 formation has been proposed or demonstrated for some aptamers, we aimed to investigate how frequently quadruplex-prone motifs emerge from the SELEX process. To achieve this, we examined quadruplex candidate sequences from the UTexas Aptamer Database, which contains over 1400 aptamer sequences extracted from 400 publications spanning several decades. We analyzed the G4 and i-motif propensity of these sequences. While no likely i-motif forming candidates were found, nearly 1/4 of DNA aptamers and 1/6 of RNA aptamers were predicted to form G4 structures. Interestingly, many motifs capable of forming G4 structures were not previously reported or suspected. Out of 311 sequences containing a potential stable G4 motif, only 53 of them (17%) reported the word "quadruplex" in the corresponding article. We experimentally tested G4 formation for 30 aptamer sequences and were able to confirm G4 formation for all the sequences with a G4Hunter score of 1.31 or more. These observations suggest the need to reevaluate G4 propensity among aptamer sequences.
Collapse
Affiliation(s)
- Anne Cucchiarini
- Laboratoire d'Optique et Biosciences, Ecole Polytechnique, CNRS, INSERM, Institut Polytechnique de Paris, 91120 Palaiseau, France
| | - Michaela Dobrovolná
- Institute of Biophysics, Czech Academy of Sciences, Královopolská 135, 61200 Brno, Czech Republic
- Faculty of Chemistry, Brno University of Technology, Purkyňova 118, 61200 Brno, Czech Republic
| | - Václav Brázda
- Institute of Biophysics, Czech Academy of Sciences, Královopolská 135, 61200 Brno, Czech Republic
- Faculty of Chemistry, Brno University of Technology, Purkyňova 118, 61200 Brno, Czech Republic
| | - Jean-Louis Mergny
- Laboratoire d'Optique et Biosciences, Ecole Polytechnique, CNRS, INSERM, Institut Polytechnique de Paris, 91120 Palaiseau, France
- Institute of Biophysics, Czech Academy of Sciences, Královopolská 135, 61200 Brno, Czech Republic
| |
Collapse
|
2
|
Farkona S, Pastrello C, Konvalinka A. Proteomics: Its Promise and Pitfalls in Shaping Precision Medicine in Solid Organ Transplantation. Transplantation 2023; 107:2126-2142. [PMID: 36808112 DOI: 10.1097/tp.0000000000004539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2023]
Abstract
Solid organ transplantation is an established treatment of choice for end-stage organ failure. However, all transplant patients are at risk of developing complications, including allograft rejection and death. Histological analysis of graft biopsy is still the gold standard for evaluation of allograft injury, but it is an invasive procedure and prone to sampling errors. The past decade has seen an increased number of efforts to develop minimally invasive procedures for monitoring allograft injury. Despite the recent progress, limitations such as the complexity of proteomics-based technology, the lack of standardization, and the heterogeneity of populations that have been included in different studies have hindered proteomic tools from reaching clinical transplantation. This review focuses on the role of proteomics-based platforms in biomarker discovery and validation in solid organ transplantation. We also emphasize the value of biomarkers that provide potential mechanistic insights into the pathophysiology of allograft injury, dysfunction, or rejection. Additionally, we forecast that the growth of publicly available data sets, combined with computational methods that effectively integrate them, will facilitate a generation of more informed hypotheses for potential subsequent evaluation in preclinical and clinical studies. Finally, we illustrate the value of combining data sets through the integration of 2 independent data sets that pinpointed hub proteins in antibody-mediated rejection.
Collapse
Affiliation(s)
- Sofia Farkona
- Toronto General Hospital Research Institute, University Health Network, Toronto, ON, Canada
- Soham and Shaila Ajmera Family Transplant Centre, University Health Network, Toronto, ON, Canada
| | - Chiara Pastrello
- Osteoarthritis Research Program, Division of Orthopedic Surgery, Schroeder Arthritis Institute University Health Network, Toronto, ON, Canada
- Data Science Discovery Centre for Chronic Diseases, Krembil Research Institute, Toronto Western Hospital, University Health Network, Toronto, ON, Canada
| | - Ana Konvalinka
- Toronto General Hospital Research Institute, University Health Network, Toronto, ON, Canada
- Soham and Shaila Ajmera Family Transplant Centre, University Health Network, Toronto, ON, Canada
- Department of Medicine, Division of Nephrology, University Health Network, Toronto, ON, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada
- Canadian Donation and Transplantation Research Program, Edmonton, AB, Canada
| |
Collapse
|
3
|
Maru B, Nadeau L, McKeague M. Enhancing CAR-T Cell Therapy with Functional Nucleic Acids. ACS Pharmacol Transl Sci 2021; 4:1716-1727. [PMID: 34927006 DOI: 10.1021/acsptsci.1c00188] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Indexed: 02/07/2023]
Abstract
Chimeric antigen receptor (CAR) T cell therapy is a relatively new form of immunotherapy that has had success in treating patients with hematologic malignancies, leading to three recent United States Food and Drug Administration approvals. However, several challenges hinder the widespread use of CAR-T therapy. Here, we review the application of functional nucleic acids such as aptamers and ribozymes as novel tools to improve a variety of steps in CAR-T cell therapy development. We critically examine key studies that highlight the benefits of functional nucleic acids at different stages of cell-based therapy and discuss the feasibility of their practical clinical application. Finally, we offer insights into potential opportunities where chemists can significantly contribute to the innovative incorporation of functional nucleic acids to overcome challenges associated with this cutting-edge immunotherapy.
Collapse
Affiliation(s)
- Bruktawit Maru
- Pharmacology and Therapeutics, Faculty of Medicine, McGill University, 3655 Promenade Sir William Osler, Montreal, QC H3G 1Y6, Canada
| | - Lea Nadeau
- Pharmacology and Therapeutics, Faculty of Medicine, McGill University, 3655 Promenade Sir William Osler, Montreal, QC H3G 1Y6, Canada
| | - Maureen McKeague
- Pharmacology and Therapeutics, Faculty of Medicine, McGill University, 3655 Promenade Sir William Osler, Montreal, QC H3G 1Y6, Canada.,Department of Chemistry, Faculty of Science, McGill University, 801 Sherbrooke Street West, Montreal, QC H3A 0B8, Canada
| |
Collapse
|
4
|
Lovato N, Santiago Padilla L. Therapeutics and prospects of Interleukin 2. BIONATURA 2019. [DOI: 10.21931/rb/2019.04.04.13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Interleukin-2 was discovered back in 1983 as an autocrine growth factor for cultured T cells and was the first biological product created through the use of recombinant DNA. IL-2 tumor immunotherapy performed the first historical clinical demonstration of the possibility to cause an effective anticancer immune reaction, mediated by cytotoxic lymphocytes activated from IL-2 stimulation. The Interleukin 2 receptor is a heterotrimeric protein that is composed of three peptide chains: the alpha chain, the beta chain and the gamma chain of the common cytokine receptor. There are 3 majors’ ways of interfering with the IL-2/IL-2R to use it as treatments: Antibodies, Aptamers, and punctual mutagenesis. Recent studies have shown, that Il-2 therapies for cancer, specifically targets restoring the individual’s natural antitumor immune response. HIV directed treatments have demonstrated the necessity of introducing the IL-2 complemented with the patient’s antiretroviral therapy.
Collapse
Affiliation(s)
- Nicole Lovato
- Yachay University of Experimental Technological Research. Ecuador
| | | |
Collapse
|