1
|
Kim YW, Tebbutt SJ, Singh A. Gene Expression Trend Pattern Analysis in Peripheral Blood From Patients With Preclinical Systemic Sclerosis. Int J Rheum Dis 2025; 28:e70039. [PMID: 39740063 DOI: 10.1111/1756-185x.70039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 12/11/2024] [Accepted: 12/19/2024] [Indexed: 01/02/2025]
Affiliation(s)
- Young Woong Kim
- Department of Anesthesiology, Pharmacology & Therapeutics, The University of British Columbia, Vancouver, Canada
- Centre for Heart Lung Innovation, St. Paul's Hospital, Vancouver, Canada
- Prevention of Organ Failure Centre of Excellence, Providence Research, Vancouver, Canada
| | - Scott J Tebbutt
- Centre for Heart Lung Innovation, St. Paul's Hospital, Vancouver, Canada
- Prevention of Organ Failure Centre of Excellence, Providence Research, Vancouver, Canada
- Department of Medicine, The University of British Columbia, Vancouver, Canada
| | - Amrit Singh
- Department of Anesthesiology, Pharmacology & Therapeutics, The University of British Columbia, Vancouver, Canada
- Centre for Heart Lung Innovation, St. Paul's Hospital, Vancouver, Canada
| |
Collapse
|
2
|
de Carvalho DC, Fonseca FAH, Izar MCDO, Silveira ALPA, Tuleta ID, do Amaral JB, Neves LM, Bachi ALL, França CN. Monocytes presenting a pro-inflammatory profile persist in patients submitted to a long-term pharmacological treatment after acute myocardial infarction. Front Physiol 2023; 13:1056466. [PMID: 36741809 PMCID: PMC9895791 DOI: 10.3389/fphys.2022.1056466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Accepted: 12/29/2022] [Indexed: 01/22/2023] Open
Abstract
Introduction: Although it is broadly known that monocyte recruitment is involved in atherosclerosis development and that, in accordance with the microenvironment, these cells can be modulated into three well-known subpopulations: Classical (CD14++CD16-), intermediate (CD14++CD16+), and non-classical (CD14+CD16++), the effects of treatment with different pharmacological strategies (based on lipid-lowering and antiplatelets) after acute myocardial infarction upon the monocytes modulation and the role of the chemokine receptors CCR2, CCR5 and CX3CR1 in this context, are poorly understood. Methods: In this study, patients [n = 148, both men (n = 105, 71%) and women (n = 43, 29%)] submitted to treatment with a 2×2 factorial design, in which they received rosuvastatin 20 mg or simvastatin 40 mg plus ezetimibe 10 mg, as well as ticagrelor 90 mg or clopidogrel 75 mg were enrolled. Monocyte subsets were analyzed by flow cytometry at baseline (BL), and after one (1-M) and 6 months (6-M) of treatment. Results: Firstly, our results showed that, regardless of the treatment received, higher percentages of classical monocytes and lower of non-classical monocytes were found at the 6-M time point than BL values, whilst the percentage of intermediate monocytes was higher in all time points assessed than the other subsets. There were reductions in the CCR2 expression by non-classical and intermediate monocytes, without differences for the classical subtype. Concerning the CCR5 expression, there were reductions in the three monocyte subtypes, whereas the CX3CR1 expression increased both in intermediate and classical monocytes, without differences for non-classical monocytes. In relation to the treatment received, a higher percentage of intermediate monocytes at the 6-M time point than the values BL was observed in the group treated with simvastatin + ezetimibe + clopidogrel. No significant differences were found concerning non-classical, intermediate, and classical monocytes, for CCR2, CCR5, and CX3CR1 in the four treatment arms. Conclusion: Taken together, our results demonstrated that even under lipid-lowering and antiplatelet therapy for 6 months, the inflammatory phenotype of monocytes still persisted in the patients enrolled in this study.
Collapse
Affiliation(s)
| | | | | | | | - Izabela Dorota Tuleta
- Department of Medicine-Cardiology, Albert Einstein College of Medicine, New York, NY, United States
| | - Jônatas Bussador do Amaral
- ENT Research Laboratory, Otorhinolaryngology-Head and Neck Surgery Department, Federal University of Sao Paulo, Sao Paulo, Brazil
| | - Lucas Melo Neves
- Post Graduation Program in Health Sciences, Santo Amaro University, Sao Paulo, Brazil
| | | | - Carolina Nunes França
- Post Graduation Program in Health Sciences, Santo Amaro University, Sao Paulo, Brazil,*Correspondence: Carolina Nunes França,
| |
Collapse
|
3
|
Leonetti S, Tricò D, Nesti L, Baldi S, Kozakova M, Goncalves I, Nilsson J, Shore A, Khan F, Natali A. Soluble CD40 receptor is a biomarker of the burden of carotid artery atherosclerosis in subjects at high cardiovascular risk. Atherosclerosis 2022; 343:1-9. [DOI: 10.1016/j.atherosclerosis.2022.01.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 11/25/2021] [Accepted: 01/13/2022] [Indexed: 11/02/2022]
|
4
|
Erzina D, Capecchi A, Javor S, Reymond J. An Immunomodulatory Peptide Dendrimer Inspired from Glatiramer Acetate. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202113562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Dina Erzina
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences University of Bern Freiestrasse 3 3012 Bern Switzerland
| | - Alice Capecchi
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences University of Bern Freiestrasse 3 3012 Bern Switzerland
| | - Sacha Javor
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences University of Bern Freiestrasse 3 3012 Bern Switzerland
| | - Jean‐Louis Reymond
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences University of Bern Freiestrasse 3 3012 Bern Switzerland
| |
Collapse
|
5
|
Erzina D, Capecchi A, Javor S, Reymond J. An Immunomodulatory Peptide Dendrimer Inspired from Glatiramer Acetate. Angew Chem Int Ed Engl 2021; 60:26403-26408. [PMID: 34618395 PMCID: PMC9298260 DOI: 10.1002/anie.202113562] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Indexed: 01/15/2023]
Abstract
Glatiramer acetate (GA) is a random polypeptide drug used to treat multiple sclerosis (MS), a chronic autoimmune disease. With the aim of identifying a precisely defined alternative to GA, we synthesized a library of peptide dendrimers with an amino acid composition similar to GA. We then challenged the dendrimers to trigger the release of the anti-inflammatory cytokine interleukin-1 receptor antagonist (IL-1Ra) from human monocytes, which is one of the effects of GA on immune cells. Several of the largest dendrimers tested were as active as GA. Detailed profiling of the best hit showed that this dendrimer induces the differentiation of monocytes towards an M2 (anti-inflammatory) state as GA does, however with a distinct immune marker profile. Our peptide dendrimer might serve as starting point to develop a well-defined immunomodulatory analog of GA.
Collapse
Affiliation(s)
- Dina Erzina
- Department of Chemistry, Biochemistry and Pharmaceutical SciencesUniversity of BernFreiestrasse 33012BernSwitzerland
| | - Alice Capecchi
- Department of Chemistry, Biochemistry and Pharmaceutical SciencesUniversity of BernFreiestrasse 33012BernSwitzerland
| | - Sacha Javor
- Department of Chemistry, Biochemistry and Pharmaceutical SciencesUniversity of BernFreiestrasse 33012BernSwitzerland
| | - Jean‐Louis Reymond
- Department of Chemistry, Biochemistry and Pharmaceutical SciencesUniversity of BernFreiestrasse 33012BernSwitzerland
| |
Collapse
|
6
|
Dahou S, Smahi MCE, Nouari W, Dahmani Z, Benmansour S, Ysmail-Dahlouk L, Miliani M, Yebdri F, Fakir N, Laoufi MY, Chaib-Draa M, Tourabi A, Aribi M. L-Threoascorbic acid treatment promotes S. aureus-infected primary human endothelial cells survival and function, as well as intracellular bacterial killing, and immunomodulates the release of IL-1β and soluble ICAM-1. Int Immunopharmacol 2021; 95:107476. [PMID: 33676147 DOI: 10.1016/j.intimp.2021.107476] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 02/02/2021] [Accepted: 02/03/2021] [Indexed: 12/16/2022]
Abstract
BACKGROUND Vitamin C (ascorbic acid, AscH2) has been shown to enhance immunity. Here, we studied its immunomodulatory effect on human endothelial cells (ECs) during S. aureus infection. MATERIALS AND METHODS The ex vivo effects of AscH2 were performed on primary human umbilical vein endothelial cells (HUVECs) infected or not with S. aureus. RESULTS AscH2 treatment induced a marked downregulation of nitric oxide (NO) production and a moderate upregulation of arginase activity in S. aureus-infected HUVECs (respectively, p < 0.05 and p > 0.05). Although the upregulated release levels of soluble intercellular adhesion molecular 1 (sICAM-1/sCD54) and sE-selectin (sCD62E) molecules were not significantly different between treated and untreated S. aureus-infected HUVECs, AscH2 treatment induced reversing effect on sICAM-1 release when comparing to uninfected control HUVECs. Moreover, AscH2 treatment appears to have a significant effect on preventing HUVEC necrosis induced by S. aureus infection (p < 0.05). Furthermore, AscH2 treatment induced a significant upregulation of cell protective redox biomarker in S. aureus-infected, as shown by superoxide dismutase (SOD) activity (p < 0.05), but not by catalase activity (p > 0.05). Additionally, S. aureus infection markedly downregulated total bound calcium ions (bCa2+) levels as compared to control HUVECs, whereas, AscH2 treatment induced a slight upregulation of bCa2+ levels in infected HUVECs as compared to infected and untreated HUVECs (p > 0.05). On the other hand, AscH2 treatment downregulated increased total cellular cholesterol content (tccCHOL) levels in HUVECs induced by S. aureus infection (p < 0.05). In addition, AscH2 treatment markedly reversed S. aureus effect on upregulation of intracellular glucose (iGLU) levels within infected HUVECs (p < 0.05). Moreover, AscH2 treatment significantly downregulated S. aureus growth (p < 0.05), and significantly upregulated bacterial internalization and intracellular killing by HUVECs (p < 0.05), as well as their cell cycle activation (p < 0.01). Finally, AscH2 treatment has a slight effect on the production of interleukin 6 (IL-6), but induced a marked downregulation of that of IL-1β in S. aureus-infected HUVECs (respectively, p > 0.05, and p < 0.05). CONCLUSIONS Our outcomes demonstrated that, during S. aureus infection, AscH2 treatment promotes human ECs survival and function, as well as prevents inflammatory response exacerbation, while inducing bactericidal activity.
Collapse
Affiliation(s)
- Sara Dahou
- Laboratory of Applied Molecular Biology and Immunology, W0414100, University of Tlemcen, 13000 Tlemcen, Algeria
| | - Mohammed Chems-Eddine Smahi
- Laboratory of Applied Molecular Biology and Immunology, W0414100, University of Tlemcen, 13000 Tlemcen, Algeria; Neonatal Department of Specialized Maternal and Child Hospital of Tlemcen, 13000, Tlemcen, Algeria
| | - Wafa Nouari
- Laboratory of Applied Molecular Biology and Immunology, W0414100, University of Tlemcen, 13000 Tlemcen, Algeria
| | - Zoheir Dahmani
- Laboratory of Applied Molecular Biology and Immunology, W0414100, University of Tlemcen, 13000 Tlemcen, Algeria
| | - Souheila Benmansour
- Laboratory of Applied Molecular Biology and Immunology, W0414100, University of Tlemcen, 13000 Tlemcen, Algeria; Neonatal Department of Specialized Maternal and Child Hospital of Tlemcen, 13000, Tlemcen, Algeria
| | - Lamia Ysmail-Dahlouk
- Laboratory of Applied Molecular Biology and Immunology, W0414100, University of Tlemcen, 13000 Tlemcen, Algeria
| | - Maroua Miliani
- Laboratory of Applied Molecular Biology and Immunology, W0414100, University of Tlemcen, 13000 Tlemcen, Algeria
| | - Fadela Yebdri
- Laboratory of Applied Molecular Biology and Immunology, W0414100, University of Tlemcen, 13000 Tlemcen, Algeria
| | - Nassima Fakir
- Laboratory of Applied Molecular Biology and Immunology, W0414100, University of Tlemcen, 13000 Tlemcen, Algeria
| | - Mohammed Yassine Laoufi
- Laboratory of Applied Molecular Biology and Immunology, W0414100, University of Tlemcen, 13000 Tlemcen, Algeria; Neonatal Department of Specialized Maternal and Child Hospital of Tlemcen, 13000, Tlemcen, Algeria
| | - Mouad Chaib-Draa
- Laboratory of Applied Molecular Biology and Immunology, W0414100, University of Tlemcen, 13000 Tlemcen, Algeria
| | - Amina Tourabi
- Laboratory of Applied Molecular Biology and Immunology, W0414100, University of Tlemcen, 13000 Tlemcen, Algeria
| | - Mourad Aribi
- Laboratory of Applied Molecular Biology and Immunology, W0414100, University of Tlemcen, 13000 Tlemcen, Algeria.
| |
Collapse
|