1
|
Jiang M, Xie Y, Wang P, Du M, Wang Y, Yan S. Research Progress of Triptolide Against Fibrosis. Drug Des Devel Ther 2024; 18:3255-3266. [PMID: 39081704 PMCID: PMC11287200 DOI: 10.2147/dddt.s467929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 07/01/2024] [Indexed: 08/02/2024] Open
Abstract
Fibrosis leads to organ failure and death, which is the final stage of many chronic diseases. Triptolide (TPL) is a terpenoid extracted from the traditional Chinese medicine Tripterygium wilfordii Hook. F (TwHF). Triptolide and its derivatives (Omtriptolide, Minnelide, (5R)-5-hydroxytriptolide) have been proven to have a variety of pharmacological effects. This study comprehensively reviewed the antifibrotic mechanism of TPL and its derivatives, and discussed the application of advanced nanoparticles (NPs) drug delivery system in the treatment of fibrotic diseases by TPL. The results show that TPL can inhibit immune inflammatory response, relieve oxidative stress and endoplasmic reticulum stress (ERS), regulate collagen deposition and inhibit myofibroblast production to play an anti-fibrosis effect and reduce organ injury. A low dose of TPL has no obvious toxicity. Under pathological conditions, a toxic dose of TPL has a protective effect on organs. The emergence of TPL derivatives (especially Minnelide) and NPs drug delivery systems promotes the anti-fibrosis effect of TPL and reduces its toxicity, which may be the main direction of anti-fibrosis research in the future.
Collapse
Affiliation(s)
- Minmin Jiang
- Department of Endocrinology, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, People’s Republic of China
| | - Yongxia Xie
- Department of Respiratory Diseases, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, People’s Republic of China
| | - Ping Wang
- Department of Endocrinology, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, People’s Republic of China
| | - Mengyu Du
- The First Clinical Medical College, Henan University of Chinese Medicine, Zhengzhou, People’s Republic of China
| | - Ying Wang
- Department of International Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, People’s Republic of China
| | - Shuxun Yan
- Department of Endocrinology, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, People’s Republic of China
| |
Collapse
|
2
|
Song H, Ren W, Liu T, Zou S, Yin D, Yu J. Effects of Eucommia ulmoides leaf extract on xanthine oxidase and chronic kidney disease induced by adenine in rats. Nat Prod Res 2024:1-6. [PMID: 39049541 DOI: 10.1080/14786419.2024.2383993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 06/11/2024] [Accepted: 07/15/2024] [Indexed: 07/27/2024]
Abstract
The aim of this study was to explore the uric acid-lowering effect and renal protective effect of Eucommia ulmoides leaf extract (EULE). The results of xanthine oxidase inhibition assay showed EULE exhibited a high inhibition rate similar to that of allopurinol, with an IC50 value of 1.53 mg/mL. A chronic kidney disease (CKD) model was established in adenine-induced rats to investigate the therapeutic effect of EULE on CKD. The results demonstrated EULE could reduce blood pressure and improve renal index. Additionally, EULE could regulate serum and urine indicators of renal function injury, and restore renal tissue morphology. Mechanistically, EULE was found to downregulate levels of malondialdehyde (MDA), tumour necrosis factor-α (TNF-α), and interleukin-1β (IL-1β), while upregulating total antioxidant capacity (T-AOC), thereby alleviating inflammatory response in rats, leading to a reduction in renal damage. the Our findings provide potential applications of EULE as a natural product for the improvement of renal injury.
Collapse
Affiliation(s)
- Haochong Song
- College of Special Education, Beijing Union University, Beijing, China
| | - Wenping Ren
- College of Life Sciences, Qingdao University, Qingdao, China
| | - Tingting Liu
- Qingdao Chenlan Pharmaceutical Co., Ltd, Qingdao, China
| | - Shengcan Zou
- Qingdao Chenlan Pharmaceutical Co., Ltd, Qingdao, China
| | - Dongli Yin
- Qingdao Chenlan Pharmaceutical Co., Ltd, Qingdao, China
| | - Jia Yu
- College of Life Sciences, Qingdao University, Qingdao, China
| |
Collapse
|
3
|
Lu Y, Xie XN, Xin QQ, Yuan R, Miao Y, Cong WH, Chen KJ. Advance on Chinese Medicine for Hypertensive Renal Damage: Focus on the Complex Molecular Mechanisms. Chin J Integr Med 2024:10.1007/s11655-024-3662-3. [PMID: 38958884 DOI: 10.1007/s11655-024-3662-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/21/2024] [Indexed: 07/04/2024]
Abstract
Hypertensive renal damage (HRD) is a major cause of end-stage renal disease. Among the causes of end-stage renal disease, HRD accounts for nearly 34% of the total number of cases. Antihypertensive treatment is primarily drug-based, but therapeutic efficacy is less effective and can have serious side effects. Chinese medicine (CM) has significant advantages in the treatment of HRD. CM is rich in various active ingredients and has the property of targeting multiple targets and channels. Therefore, the regulatory network of CM on disease is complex. A large number of CM have been employed to treat HRD, either as single applications or as part of compound formulations. The key possible mechanisms of CM for HRD include regulation of the renin-angiotensin-aldosterone system, antioxidation, anti-inflammation, rescue of endothelial function, regulation of vasoactive substance secretion and obesity-related factors, etc. This review summarized and discussed the recent advance in the basic research mechanisms of CM interventions for HRD and pointed out the challenges and future prospects.
Collapse
Affiliation(s)
- Yan Lu
- Laboratory of Cardiovascular Diseases, Xiyuan Hospital of China Academy of Chinese Medical Sciences, Beijing, 100091, China
| | - Xue-Na Xie
- School of Pharmacy, Macau University of Science and Technology, Taipa, Macau, 999078, China
| | - Qi-Qi Xin
- Laboratory of Cardiovascular Diseases, Xiyuan Hospital of China Academy of Chinese Medical Sciences, Beijing, 100091, China
- National Clinical Research Center for Chinese Medicine Cardiology, Beijing, 100091, China
| | - Rong Yuan
- Laboratory of Cardiovascular Diseases, Xiyuan Hospital of China Academy of Chinese Medical Sciences, Beijing, 100091, China
- National Clinical Research Center for Chinese Medicine Cardiology, Beijing, 100091, China
| | - Yu Miao
- Laboratory of Cardiovascular Diseases, Xiyuan Hospital of China Academy of Chinese Medical Sciences, Beijing, 100091, China
- National Clinical Research Center for Chinese Medicine Cardiology, Beijing, 100091, China
| | - Wei-Hong Cong
- Laboratory of Cardiovascular Diseases, Xiyuan Hospital of China Academy of Chinese Medical Sciences, Beijing, 100091, China.
- National Clinical Research Center for Chinese Medicine Cardiology, Beijing, 100091, China.
| | - Ke-Ji Chen
- Laboratory of Cardiovascular Diseases, Xiyuan Hospital of China Academy of Chinese Medical Sciences, Beijing, 100091, China
- National Clinical Research Center for Chinese Medicine Cardiology, Beijing, 100091, China
| |
Collapse
|
4
|
Tang YW, Jiang MY, Cao JW, Wan F. Triptolide decreases podocytes permeability by regulating TET2-mediated hydroxymethylation of ZO-1. Exp Biol Med (Maywood) 2024; 249:10051. [PMID: 38881848 PMCID: PMC11176508 DOI: 10.3389/ebm.2024.10051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 05/07/2024] [Indexed: 06/18/2024] Open
Abstract
Podocyte injury or dysfunction can lead to proteinuria and glomerulosclerosis. Zonula occludens 1 (ZO-1) is a tight junction protein which connects slit diaphragm (SD) proteins to the actin cytoskeleton. Previous studies have shown that the expression of ZO-1 is decreased in chronic kidney disease (CKD). Thus, elucidation of the regulation mechanism of ZO-1 has considerable clinical importance. Triptolide (TP) has been reported to exert a strong antiproteinuric effect by inhibiting podocyte epithelial mesenchymal transition (EMT) and inflammatory response. However, the underlying mechanisms are still unclear. We found that TP upregulates ZO-1 expression and increases the fluorescence intensity of ZO-1 in a puromycin aminonucleoside (PAN)-induced podocyte injury model. Permeablity assay showed TP decreases podocyte permeability in PAN-treated podocyte. TP also upregulates the DNA demethylase TET2. Our results showed that treatment with the DNA methyltransferase inhibitors 5-azacytidine (5-AzaC) and RG108 significantly increased ZO-1 expression in PAN-treated podocytes. Methylated DNA immunoprecipitation (MeDIP) and hydroxymethylated DNA immunoprecipitation (hMeDIP) results showed that TP regulates the methylation status of the ZO-1 promoter. Knockdown of TET2 decreased ZO-1 expression and increased methylation of its promoter, resulting in the increase of podocyte permeability. Altogether, these results indicate that TP upregulates the expression of ZO-1 and decreases podocyte permeability through TET2-mediated 5 mC demethylation. These findings suggest that TP may alleviate podocyte permeability through TET2-mediated hydroxymethylation of ZO-1.
Collapse
Affiliation(s)
- Yue-Wen Tang
- Department of Nephrology, Hangzhou TCM Hospital Affiliated to Zhejiang Chinese Medical University, Hangzhou, China
- Key Laboratory of Kidney Disease Prevention and Control Technology, Hangzhou, China
| | - Meng-Ya Jiang
- Department of Nephrology, Hangzhou TCM Hospital Affiliated to Zhejiang Chinese Medical University, Hangzhou, China
| | - Jia-Wei Cao
- Department of Nephrology, Hangzhou TCM Hospital Affiliated to Zhejiang Chinese Medical University, Hangzhou, China
| | - Feng Wan
- Department of Nephrology, Hangzhou TCM Hospital Affiliated to Zhejiang Chinese Medical University, Hangzhou, China
- Key Laboratory of Kidney Disease Prevention and Control Technology, Hangzhou, China
| |
Collapse
|
5
|
Attiq A, Afzal S, Ahmad W, Kandeel M. Hegemony of inflammation in atherosclerosis and coronary artery disease. Eur J Pharmacol 2024; 966:176338. [PMID: 38242225 DOI: 10.1016/j.ejphar.2024.176338] [Citation(s) in RCA: 50] [Impact Index Per Article: 50.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 12/30/2023] [Accepted: 01/16/2024] [Indexed: 01/21/2024]
Abstract
Inflammation drives coronary artery disease and atherosclerosis implications. Lipoprotein entry, retention, and oxidative modification cause endothelial damage, triggering innate and adaptive immune responses. Recruited immune cells orchestrate the early atherosclerotic lesions by releasing proinflammatory cytokines, expediting the foam cell formation, intraplaque haemorrhage, secretion of matrix-degrading enzymes, and lesion progression, eventually promoting coronary artery syndrome via various inflammatory cascades. In addition, soluble mediators disrupt the dynamic anti- and prothrombotic balance maintained by endothelial cells and pave the way for coronary artery disease such as angina pectoris. Recent studies have established a relationship between elevated levels of inflammatory markers, including C-reactive protein (CRP), interleukins (IL-6, IL-1β), and tumour necrosis factor-alpha (TNF-α) with the severity of CAD and the possibility of future cardiovascular events. High-sensitivity C-reactive protein (hs-CRP) is a marker for assessing systemic inflammation and predicting the risk of developing CAD based on its peak plasma levels. Hence, understanding cross-talk interactions of inflammation, atherogenesis, and CAD is highly warranted to recalculate the risk factors that activate and propagate arterial lesions and devise therapeutic strategies accordingly. Cholesterol-inflammation lowering agents (statins), monoclonal antibodies targeting IL-1 and IL-6 (canakinumab and tocilizumab), disease-modifying antirheumatic drugs (methotrexate), sodium-glucose transport protein-2 (SGLT2) inhibitors, colchicine and xanthene oxidase inhibitor (allopurinol) have shown promising results in reducing inflammation, regressing atherogenic plaque and modifying the course of CAD. Here, we review the complex interplay between inflammatory, endothelial, smooth muscle and foam cells. Moreover, the putative role of inflammation in atherosclerotic CAD, underlying mechanisms and potential therapeutic implications are also discussed herein.
Collapse
Affiliation(s)
- Ali Attiq
- Discipline of Pharmacology, School of Pharmaceutical Sciences, Universiti Sains Malaysia, Gelugor, 11800, Penang, Malaysia.
| | - Sheryar Afzal
- Department of Biomedical Sciences, College of Veterinary Medicine, King Faisal University, 31982, Al Ahsa, Saudi Arabia.
| | - Waqas Ahmad
- Discipline of Pharmaceutical Chemistry, School of Pharmaceutical Sciences, Universiti Sains Malaysia, Gelugor, 11800, Penang, Malaysia
| | - Mahmoud Kandeel
- Department of Biomedical Sciences, College of Veterinary Medicine, King Faisal University, 31982, Al Ahsa, Saudi Arabia
| |
Collapse
|
6
|
He Z, Botchway BOA, Zhang Y, Liu X. Triptolide activates the Nrf2 signaling pathway and inhibits the NF-κB signaling pathway to improve Alzheimer disease. Metab Brain Dis 2024; 39:173-182. [PMID: 37624431 DOI: 10.1007/s11011-023-01278-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 08/17/2023] [Indexed: 08/26/2023]
Abstract
Alzheimer disease (AD) is a common neurodegenerative disease with pathological features of accumulated amyloid plaques, neurofibrillary tangles, and the significant inflammatory environment. These features modify the living microenvironment for nerve cells, causing the damage, dysfunction, and death. Progressive neuronal loss directly leads to cognitive decline in AD patients and is closely related to brain inflammation. Therefore, impairing inflammation via signaling pathways may facilitate either the prevention or delay of the degenerative process. Triptolide has been evidenced to possess potent anti-inflammatory effect. In this review, we elaborate on two signaling pathways (the NF-κB and Nrf2 signaling pathways) that are involved in the anti-inflammatory effect of triptolide.
Collapse
Affiliation(s)
- Zuoting He
- Department of Histology and Embryology, School of Medicine, Shaoxing University, Zhejiang, Zhejiang Province, 312000, China
| | - Benson O A Botchway
- Institute of Neuroscience, Zhejiang University School of Medicine, Hangzhou, China
- Bupa Cromwell Hospital, Kensington, London, UK
| | - Yong Zhang
- Department of Histology and Embryology, School of Medicine, Shaoxing University, Zhejiang, Zhejiang Province, 312000, China
| | - Xuehong Liu
- Department of Histology and Embryology, School of Medicine, Shaoxing University, Zhejiang, Zhejiang Province, 312000, China.
| |
Collapse
|
7
|
Sun Z, Wang W, Liu J, Zou S, Yin D, Lyu C, Yu J, Wei Y. Bioactive Peptides from Ruditapes philippinarum Attenuate Hypertension and Cardiorenal Damage in Deoxycorticosterone Acetate-Salt Hypertensive Rats. Molecules 2023; 28:7610. [PMID: 38005332 PMCID: PMC10675683 DOI: 10.3390/molecules28227610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 11/08/2023] [Accepted: 11/08/2023] [Indexed: 11/26/2023] Open
Abstract
Hypertension is a common disease that affects human health and can lead to damage to the heart, kidneys, and other important organs. In this study, we investigated the regulatory effects of bioactive peptides derived from Ruditapes philippinarum (RPP) on hypertension and organ protection in deoxycorticosterone acetate (DOCA)-salt hypertensive rats. We found that RPPs exhibited significant blood pressure-lowering properties. Furthermore, the results showed that RPPs positively influenced vascular remodeling and effectively maintained a balanced water-sodium equilibrium. Meanwhile, RPPs demonstrated anti-inflammatory potential by reducing the serum levels of inflammatory cytokines (TNF-α, IL-2, and IL-6). Moreover, we observed the strong antioxidant activity of RPPs, which played a critical role in reducing oxidative stress and alleviating hypertension-induced damage to the aorta, heart, and kidneys. Additionally, our study explored the regulatory effects of RPPs on the gut microbiota, suggesting a possible correlation between their antihypertensive effects and the modulation of gut microbiota. Our previous studies have demonstrated that RPPs can significantly reduce blood pressure in SHR rats. This suggests that RPPs can significantly improve both essential hypertension and DOAC-salt-induced secondary hypertension and can ameliorate cardiorenal damage caused by hypertension. These findings further support the possibility of RPPs as an active ingredient in functional anti-hypertensive foods.
Collapse
Affiliation(s)
- Zonghui Sun
- College of Life Sciences, Qingdao University, Qingdao 266071, China;
| | - Weixia Wang
- Qingdao Chenlan Pharmaceutical Co., Ltd., Qingdao 266061, China; (W.W.); (J.L.); (S.Z.); (D.Y.); (C.L.)
| | - Jinli Liu
- Qingdao Chenlan Pharmaceutical Co., Ltd., Qingdao 266061, China; (W.W.); (J.L.); (S.Z.); (D.Y.); (C.L.)
| | - Shengcan Zou
- Qingdao Chenlan Pharmaceutical Co., Ltd., Qingdao 266061, China; (W.W.); (J.L.); (S.Z.); (D.Y.); (C.L.)
| | - Dongli Yin
- Qingdao Chenlan Pharmaceutical Co., Ltd., Qingdao 266061, China; (W.W.); (J.L.); (S.Z.); (D.Y.); (C.L.)
| | - Chenghan Lyu
- Qingdao Chenlan Pharmaceutical Co., Ltd., Qingdao 266061, China; (W.W.); (J.L.); (S.Z.); (D.Y.); (C.L.)
| | - Jia Yu
- College of Life Sciences, Qingdao University, Qingdao 266071, China;
| | - Yuxi Wei
- College of Life Sciences, Qingdao University, Qingdao 266071, China;
| |
Collapse
|
8
|
Triptolide Suppresses NF-κB-Mediated Inflammatory Responses and Activates Expression of Nrf2-Mediated Antioxidant Genes to Alleviate Caerulein-Induced Acute Pancreatitis. Int J Mol Sci 2022; 23:ijms23031252. [PMID: 35163177 PMCID: PMC8835869 DOI: 10.3390/ijms23031252] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 01/20/2022] [Accepted: 01/21/2022] [Indexed: 12/12/2022] Open
Abstract
Triptolide (TP), the main active ingredient of Tripterygium wilfordii Hook.f., displays potent anti-inflammatory, antioxidant, and antiproliferative activities. In the present study, the effect of TP on acute pancreatitis and the underlying mechanisms of the disease were investigated using a caerulein-induced animal model of acute pancreatitis (AP) and an in vitro cell model. In vivo, pretreatment with TP notably ameliorated pancreatic damage, shown as the improvement in serum amylase and lipase levels and pancreatic morphology. Meanwhile, TP modulated the infiltration of neutrophils and macrophages (Ly6G staining and CD68 staining) and decreased the levels of proinflammatory factors (TNF-α and IL-6) through inhibiting the transactivation of nuclear factor-κB (NF-κB) in caerulein-treated mice. Furthermore, TP reverted changes in oxidative stress markers, including pancreatic glutathione (GSH), superoxide dismutase (SOD), and malondialdehyde (MDA), in acute pancreatitis mice. Additionally, TP pretreatment inhibited intracellular reactive oxygen species (ROS) levels via upregulated nuclear factor erythroid 2-related factor 2 (Nrf2) expression and Nrf2-regulated redox genes expression (HO-1, SOD1, GPx1 and NQO1) in vitro. Taken together, our data suggest that TP exert protection against pancreatic inflammation and tissue damage by inhibiting NF-κB transactivation, modulating immune cell responses and activating the Nrf2-mediated antioxidative system, thereby alleviating acute pancreatitis.
Collapse
|
9
|
Shao M, Ye C, Bayliss G, Zhuang S. New Insights Into the Effects of Individual Chinese Herbal Medicines on Chronic Kidney Disease. Front Pharmacol 2021; 12:774414. [PMID: 34803715 PMCID: PMC8599578 DOI: 10.3389/fphar.2021.774414] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Accepted: 10/20/2021] [Indexed: 12/22/2022] Open
Abstract
The clinical and experimental study into the effects of Chinese herbal medicines on chronic kidney disease has evolved over the past 40 years with new insight into their mechanism and evidence of their clinical effects. Among the many traditional Chinese herbs examined in chronic renal disease, five were found to have evidence of sufficient clinical efficacy, high frequency of use, and well-studied mechanism. They are: Abelmoschus manihot and Huangkui capsule, Salvia miltiorrhiza and its components (tanshinone II A, salvianolic acid A and B); Rhizoma coptidis and its monomer berberine; Tripterygium wilfordii and its components (triptolide, tripterygium glycosides); Kudzu root Pueraria and its monomer Puerarin. These Chinese herbal medications have pharmaceutical effects against fibrosis, inflammation and oxidative stress and also promote renal repair and regeneration. This article reviews their clinical efficacy, anti-fibrotic effects in animal models, and molecular mechanism of action.
Collapse
Affiliation(s)
- Minghai Shao
- Department of Nephrology, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Chaoyang Ye
- Department of Nephrology, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - George Bayliss
- Department of Medicine, Rhode Island Hospital and Alpert Medical School, Brown University, Providence, RI, United States
| | - Shougang Zhuang
- Department of Medicine, Rhode Island Hospital and Alpert Medical School, Brown University, Providence, RI, United States.,Department of Nephrology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| |
Collapse
|
10
|
Xu H, Wu T, Huang L. Therapeutic and delivery strategies of phytoconstituents for renal fibrosis. Adv Drug Deliv Rev 2021; 177:113911. [PMID: 34358538 DOI: 10.1016/j.addr.2021.113911] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 07/07/2021] [Accepted: 07/29/2021] [Indexed: 12/11/2022]
Abstract
Chronic kidney disease (CKD) is one of the most common diseases endangering human health and life. By 2030, 14 per 100,000 people may die from CKD. Renal fibrosis (RF) is an important intermediate link and the final pathological change during CKD progression to the terminal stage. Therefore, identifying safe and effective treatment methods for RF has become an important goal. In 2018, the World Health Organization introduced traditional Chinese medicine into its effective global medical program. Various phytoconstituents that affect the RF process have been extracted from different plants. Here, we review the potential therapeutic capabilities of active phytoconstituents in RF treatment and discuss how phytoconstituents can be structurally modified or combined with other ingredients to enhance efficiency and reduce toxicity. We also summarize phytoconstituent delivery strategies to overcome renal barriers and improve bioavailability and targeting.
Collapse
Affiliation(s)
- Huan Xu
- Department of Pharmacy, School of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian 116029, People's Republic of China.
| | - Tianyi Wu
- Department of Pharmacy, School of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian 116029, People's Republic of China
| | - Leaf Huang
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, United States
| |
Collapse
|
11
|
Wang M, Yang Y, Yin Y, Song K, Long L, Li X, Zhou B, Gao H. New Cassane Diterpenoids from the Seed Kernels of
Caesalpinia cucullata
, Exhibit Anti‐inflammatory Effect
in vitro
by Inhibiting
iNOS
Enzymatic Activity. CHINESE J CHEM 2021. [DOI: 10.1002/cjoc.202000683] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Miao Wang
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University Shenyang Liaoning 110016 China
- Key Laboratory of Structure‐Based Drug Design & Discovery of Ministry of Education, Shenyang Pharmaceutical University Shenyang Liaoning 110016 China
| | - Yi‐Ren Yang
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University Shenyang Liaoning 110016 China
- Key Laboratory of Structure‐Based Drug Design & Discovery of Ministry of Education, Shenyang Pharmaceutical University Shenyang Liaoning 110016 China
| | - Yan Yin
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University Shenyang Liaoning 110016 China
- Key Laboratory of Structure‐Based Drug Design & Discovery of Ministry of Education, Shenyang Pharmaceutical University Shenyang Liaoning 110016 China
| | - Kai‐Ru Song
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University Shenyang Liaoning 110016 China
- Key Laboratory of Structure‐Based Drug Design & Discovery of Ministry of Education, Shenyang Pharmaceutical University Shenyang Liaoning 110016 China
| | - Li‐Ping Long
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University Shenyang Liaoning 110016 China
- Key Laboratory of Structure‐Based Drug Design & Discovery of Ministry of Education, Shenyang Pharmaceutical University Shenyang Liaoning 110016 China
| | - Xian‐Zhe Li
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University Shenyang Liaoning 110016 China
| | - Bei Zhou
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University Shenyang Liaoning 110016 China
| | - Hui‐Yuan Gao
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University Shenyang Liaoning 110016 China
- Key Laboratory of Structure‐Based Drug Design & Discovery of Ministry of Education, Shenyang Pharmaceutical University Shenyang Liaoning 110016 China
| |
Collapse
|