1
|
Chen D, Lu P, Sun T, Ding A. Long non-coding RNA HOX transcript antisense intergenic RNA depletion protects against alcoholic hepatitis through the microRNA-148a-3p/sphingosine 1-phosphate receptor 1 axis. Cell Tissue Res 2023; 394:471-485. [PMID: 37851113 DOI: 10.1007/s00441-023-03835-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 10/02/2023] [Indexed: 10/19/2023]
Abstract
The aggravating role of long noncoding RNA (lncRNA) HOTAIR has been indicated in liver injury caused by hepatic ischemia/reperfusion. However, under the condition of alcoholic hepatitis (AH), its effects remain unclear. The present study aimed to examine the effect of lncRNA HOTAIR on hepatic stellate cell viability and apoptosis during liver injury caused by AH. In the liver tissues of AH rats, HOTAIR and S1PR1 were overexpressed, and microRNA (miR)-148a-3p was poorly expressed. Loss-of-function assays revealed that silencing of HOTAIR alleviated liver injury in AH by inhibiting the activated phenotype of hepatic stellate cells, inflammation, and fibrosis. Using the bioinformatics databases, dual-luciferase, RIP, and FISH assays, we observed that HOTAIR was mainly localized in the cytoplasm of hepatic stellate cells, and HOTAIR could bind specifically to miR-148a-3p. In addition, miR-148a-3p could target S1PR1 expression. Rescue experiments showed that silencing of miR-148a-3p or overexpression of S1PR1 reversed the alleviating effects of HOTAIR silencing on liver injury. Taken together, our findings revealed that HOTAIR regulates hepatic stellate cell proliferation via the miR-148a-3p/S1PR1 axis in liver injury, which may serve as the basis for developing novel therapeutic strategies to treat AH.
Collapse
Affiliation(s)
- Dan Chen
- Department of Integrated TCM & Western Medicine, Suzhou Hospital of Integrated Traditional Chinese and Western Medicine, Suzhou, Jiangsu, 215101, People's Republic of China
| | - Ping Lu
- Department of Hepatology, Suzhou Hospital of Integrated Traditional Chinese and Western Medicine, No. 39, Xiashatang, Mudu Town, Wuzhong District, Suzhou, Jiangsu, 215101, People's Republic of China.
| | - Tianfeng Sun
- Department of Liver Disease Infection, Suzhou Hospital of Integrated Traditional Chinese and Western Medicine, Suzhou, Jiangsu, 215101, People's Republic of China
| | - Aliang Ding
- Department of Critical Care Medicine, Suzhou Hospital of Integrated Traditional Chinese and Western Medicine, Suzhou, Jiangsu, 215101, People's Republic of China
| |
Collapse
|
2
|
Chen Q, Yang Z, Lin H, Lai J, Hu D, Yan M, Wu Z, Liu W, Li Z, He Y, Sun Z, Shuai L, Peng Z, Wang Y, Li S, Cui Y, Zhang H, Zhang L, Bai L. Comparative effects of hepatocyte growth factor and tacrolimus on acute liver allograft early tolerance. Front Immunol 2023; 14:1162439. [PMID: 37614233 PMCID: PMC10444199 DOI: 10.3389/fimmu.2023.1162439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 06/27/2023] [Indexed: 08/25/2023] Open
Abstract
Allostimulated CD8+ T cells (aCD8+ T cells), as the main mediators of acute liver rejection (ARJ), are hyposensitive to apoptosis due to the inactivation of death receptor FAS-mediated pathways and fail to allow tolerance induction, eventually leading to acute graft rejection. Although tacrolimus (FK506), the most commonly used immunosuppressant (IS) in the clinic, allows tolerance induction, its use is limited because its target immune cells are unknown and it is associated with increased incidences of malignancy, infection, and nephrotoxicity, which substantially impact long-term liver transplantation (LTx) outcomes. The dark agouti (DA)-to-Lewis rat LTx model is a well-known ARJ model and was hence chosen for the present study. We show that both hepatocyte growth factor (HGF) (cHGF, containing the main form of promoting HGF production) and recombinant HGF (h-rHGF) exert immunoregulatory effects mainly on allogeneic aCD8+ T cell suppression through FAS-mediated apoptotic pathways by inhibiting cMet to FAS antagonism and Fas trimerization, leading to acute tolerance induction. We also showed that such inhibition can be abrogated by treatment with neutralizing antibodies against cMet (HGF-only receptor). In contrast, we did not observe these effects in rats treated with FK506. However, we observed that the effect of anti-rejection by FK506 was mainly on allostimulated CD4+ T cell (aCD4+ T cell) suppression and regulatory T cell (Treg) promotion, in contrast to the mechanism of HGF. In addition, the protective mechanism of HGF in FK506-mediated nephrotoxicity was addressed. Therefore, HGF as a tolerance inducer, whether used in combination with FK506 or as monotherapy, may have good clinical value. Additional roles of these T-cell subpopulations in other biological systems and studies in these fields will also be meaningful.
Collapse
Affiliation(s)
- Quanyu Chen
- Hepatobiliary Institute, Southwest Hospital, Army Medical University, Chongqing, China
- Key Laboratory of Freshwater Fish Reproduction and Development, Ministry of Education, Laboratory of Molecular Developmental Biology, School of Life Sciences, Southwest University, Chongqing, China
| | - Zhiqing Yang
- Hepatobiliary Institute, Southwest Hospital, Army Medical University, Chongqing, China
| | - Heng Lin
- Hepatobiliary Institute, Southwest Hospital, Army Medical University, Chongqing, China
| | - Jiejuan Lai
- Hepatobiliary Institute, Southwest Hospital, Army Medical University, Chongqing, China
| | - Deyu Hu
- Hepatobiliary Institute, Southwest Hospital, Army Medical University, Chongqing, China
- Bioengineering College, Chongqing University, Chongqing, China
| | - Min Yan
- Hepatobiliary Institute, Southwest Hospital, Army Medical University, Chongqing, China
- Department of Special Medicine, Shanxi Medical University, Taiyuan, China
| | - Zhifang Wu
- Department of Special Medicine, Shanxi Medical University, Taiyuan, China
| | - Wei Liu
- Hepatobiliary Institute, Southwest Hospital, Army Medical University, Chongqing, China
| | - Zhehai Li
- Department of Orthopedics, Peking University Third Hospital, Beijing, China
| | - Yu He
- Hepatobiliary Institute, Southwest Hospital, Army Medical University, Chongqing, China
| | - Zhe Sun
- Department of Orthopedics, Peking University Third Hospital, Beijing, China
| | - Ling Shuai
- Hepatobiliary Institute, Southwest Hospital, Army Medical University, Chongqing, China
| | - Zhiping Peng
- Department of Radiological Medicine, Chongqing Medical University, Chongqing, China
| | - Yangyang Wang
- Bioengineering College, Chongqing University, Chongqing, China
| | - Sijin Li
- Department of Special Medicine, Shanxi Medical University, Taiyuan, China
| | - Youhong Cui
- Department of Pathology, Southwest Hospital, Army Medical University, Chongqing, China
| | - Hongyu Zhang
- Hepatobiliary Institute, Southwest Hospital, Army Medical University, Chongqing, China
| | - Leida Zhang
- Hepatobiliary Institute, Southwest Hospital, Army Medical University, Chongqing, China
| | - Lianhua Bai
- Hepatobiliary Institute, Southwest Hospital, Army Medical University, Chongqing, China
| |
Collapse
|
3
|
Hepatocyte growth factor-mediated apoptosis mechanisms of cytotoxic CD8 + T cells in normal and cirrhotic livers. Cell Death Dis 2023; 9:13. [PMID: 36658107 PMCID: PMC9852593 DOI: 10.1038/s41420-023-01313-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 01/04/2023] [Accepted: 01/09/2023] [Indexed: 01/20/2023]
Abstract
Intrahepatic stem/progenitor cells and cytotoxic CD8+ T cells (CD8+ T cells) in the cirrhotic liver undergo apoptosis, which potentially facilitates progression to cancer. Here, we report that hepatocyte growth factor (HGF) signaling plays an important role in promoting normal and damaged liver CD8+ T cell Fas-mediated apoptosis through its only receptor, c-Met. In addition to binding with HGF, c-Met also binds to Fas to form a complex. Using a diethylnitrosamine (DEN)-induced liver fibrosis/cirrhosis mouse model, immunostaining, and terminal deoxynucleotidyl transferase (TdT) dUTP nick-end labeling (TUNEL) staining, we found that HGF secretion was significantly higher at 10 weeks post-DEN, the liver cirrhotic phase (LCP), than at 3 weeks post-DEN, the liver fibrotic phase (LFP). Correspondingly, differences in CD8+ T cell proliferation and apoptosis were noted between the two phases. Interestingly, staining and TUNEL assays revealed lower smooth muscle actin (α-SMA)+ cell apoptosis, a marker for hepatic stellate cells (HSCs), in the LFP group than in the LCP group, which suggested a beneficial correlation among HGF, CD8+ T cells and HSCs in improving the fibrotic load during damaged liver repair. In cultures, when met different concentrations of recombinant HGF (rHGF), phytohemagglutinin (PHA)-stimulated naive mouse splenic CD8+ T cells (pn-msCD8+ T cells) responded differently; as increases in rHGF increased were associated with decreases in the clonal numbers of pn-msCD8+ T cells, and when the rHGF dose was greater than 200 ng/mL, the clonal numbers significantly decreased. In the presence of 400 ng/mL rHGF, the death-inducing signaling complex (DISC) can be directly activated in both nsCD8+ T cells and healthy human peripheral blood CD8+ T cells (hp-CD8+ T cells), as indicated by recruitment of FADD and caspase-8 because DISC forms via the recruitment of FADD and caspase-8, among others. These findings suggest that Fas-mediated apoptosis, may also indicate a regulatory role of HGF signaling in hepatic homeostasis.
Collapse
|
4
|
Yin F, Mao LC, Cai QQ, Jiang WH. Effect of Hepatocyte Growth Factor-Transfected Human Umbilical Cord Mesenchymal Stem Cells on Hepatic Stellate Cells by Regulating Transforming Growth Factor-β1/Smads Signaling Pathway. Stem Cells Dev 2021; 30:1070-1081. [PMID: 34514810 DOI: 10.1089/scd.2021.0136] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Studies have shown that human umbilical cord mesenchymal stem cells (hUCMSCs) could ameliorate liver fibrosis (LF) through inhibiting the activation of hepatic stellate cells (HSCs). However, the specific mechanisms have not been studied clearly. The purpose of this study was to explore the possible mechanism of hepatocyte growth factor (HGF)-transfected hUCMSCs in inhibiting the proliferation and activation of HSCs-T6. The upper and lower double-cell coculture system was established among HGF-hUCMSCs, LV5-NC-hUCMSCs, hUCMSCs, and HSCs-T6 in experimental groups; HSCs-T6 were cultured alone as control group. After coculturing for 1, 2, and 3 days, results showed that HGF-transfected hUCMSCs could decrease cell viability of HSCs-T6 and promote apoptosis; inhibit their activation and reduce the expression of Collagen I, Collagen III, TGF-β1, Smad2 and Smad3, which may be related to inhibiting the activation of TGF-β1/Smads signaling pathway. These findings suggested that HGF-transfected hUCMSCs may be used as an alternative and novel therapeutic approach for the treatment of LF.
Collapse
Affiliation(s)
- Fei Yin
- Department of Histology and Embryology, Basic Medical College of Jilin University, Changchun, Jilin Province, China
| | - Li-Cui Mao
- Department of Histology and Embryology, Basic Medical College of Jilin University, Changchun, Jilin Province, China
| | - Qi-Qi Cai
- Department of Histology and Embryology, Basic Medical College of Jilin University, Changchun, Jilin Province, China
| | - Wen-Hua Jiang
- Department of Histology and Embryology, Basic Medical College of Jilin University, Changchun, Jilin Province, China
| |
Collapse
|