1
|
Li X, Li X, Ren Y, Wang L, Mao Z, Gao S, Ma P, Chen J. HJURP modulates cell proliferation and chemoresistance via the MYC/TOP2A transcriptional axis in gastric cancer. Front Mol Biosci 2025; 12:1566293. [PMID: 40290723 PMCID: PMC12021643 DOI: 10.3389/fmolb.2025.1566293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2025] [Accepted: 03/31/2025] [Indexed: 04/30/2025] Open
Abstract
Background The histone chaperone Holliday Junction Recognition Protein (HJURP) has been associated with multiple types of cancers, but its role in GC is not yet fully understood. Considering its functions in centromere stability and DNA repair, investigating HJURP's role in GC may offer novel therapeutic perspectives. Methods HJURP expression was examined in a dataset comprising TCGA-STAD samples and an internal group of GC patients, utilizing RNA sequencing and Western blot techniques. Functional experiments were carried out on the AGS and HGC-27 GC cell lines. The expression levels of HJURP, MYC, and Topoisomerase II alpha (TOP2A) were assessed via quantitative real-time PCR and Western blot. Proliferation rates of the cells were determined through EdU, CCK-8, and colony formation assays. Results Compared to adjacent normal tissues, HJURP expression was notably increased in GC tissues, a finding consistent across both the TCGA-STAD database and our internal patient group. Silencing HJURP markedly reduced GC cell growth and chemoresistance. Mechanistically, HJURP enhanced MYC stability, which in turn promoted TOP2A transcription. Rescue experiments confirmed that overexpression of TOP2A alters proliferation and chemoresistance of GC cells with HJURP knockdown, indicating the dependency of this axis on MYC activity. Conclusion Our study demonstrates that HJURP is critical for promoting GC proliferation and chemoresistance through the regulation of the MYC/TOP2A transcriptional network. Targeting HJURP might offer a novel therapeutic avenue for GC, necessitating further exploration of its clinical potential. This work underscores the value of investigating histone chaperones as potential targets in cancer treatment.
Collapse
Affiliation(s)
- Xu Li
- Department of Gastrointestinal Surgery, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, China
- Clinical Medical Research Center, Affiliated Hospital of Nantong University, Nantong, China
| | - Xiwen Li
- Department of Central Laboratory, Kunshan Hospital of Chinese Medicine, Affiliated Hospital of Yangzhou University, Kunshan, China
| | - Yanlin Ren
- Department of Labor Hygiene and Occupational Disease Prevention and Control, Nantong Center for Disease Control and Prevention, Nantong, China
| | - Ling Wang
- Department of Hematology, Affiliated Hospital 2 of Nantong University, Nantong, China
| | - Zehao Mao
- Clinical Medical Research Center, Affiliated Hospital of Nantong University, Nantong, China
| | - Shikun Gao
- Department of Gastrointestinal Surgery, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, China
- Clinical Medical Research Center, Affiliated Hospital of Nantong University, Nantong, China
| | - Peng Ma
- Department of Gastrointestinal Surgery, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, China
| | - Junjie Chen
- Clinical Medical Research Center, Affiliated Hospital of Nantong University, Nantong, China
- Nantong Key Laboratory of Gastrointestinal Oncology, Affiliated Hospital of Nantong University, Nantong, China
| |
Collapse
|
2
|
Peng H, Chen Q, Ye L, Wang W. A Senescence-Associated Gene Signature for Prognostic Prediction and Therapeutic Targeting in Adrenocortical Carcinoma. Biomedicines 2025; 13:894. [PMID: 40299539 PMCID: PMC12025298 DOI: 10.3390/biomedicines13040894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2025] [Revised: 03/23/2025] [Accepted: 03/30/2025] [Indexed: 04/30/2025] Open
Abstract
Background/Objectives: Cellular senescence plays a critical role in tumorigenesis, immune cell infiltration, and treatment response. Adrenocortical carcinoma (ACC) is a malignant tumor that lacks effective therapies. This study aimed to construct and validate a senescence-related gene signature as an independent prognostic predictor for ACC and explore its impact on the tumor microenvironment, immunotherapy, and chemotherapy response. Methods: Data were collected from The Cancer Genome Atlas (TCGA) and the Gene Expression Omnibus (GEO) database. Using Kaplan-Meier survival analysis, LASSO penalized Cox regression and multivariable Cox regression, we identified a prognostic model with four senescence-related genes (HJURP, CDK1, FOXM1, and CHEK1). The model's prognostic value was validated through survival analysis, risk score curves, and receiver operating characteristic (ROC) curves. Tumor mutation burden was assessed with maftools, and the tumor microenvironment was analyzed using CIBERSORT and ESTIMATE. Immune and chemotherapeutic responses were assessed through Tumor Immune Dysfunction and Exclusion (TIDE) and OncoPredict. Results: The risk score derived from our model showed a strong association with overall survival (OS) in ACC patients (p < 0.001, HR = 2.478). Higher risk scores were correlated with more advanced tumor stages and a greater frequency of somatic mutations. Differentially expressed genes (DEGs) that were downregulated in the high-risk group were significantly enriched in immune-related pathways. Furthermore, high-risk patients were predicted to have reduced sensitivity to immunotherapy (p = 0.02). Bioinformatics analysis identified potential chemotherapeutic agents, including BI-2536 and MIM1, as more effective treatment options for high-risk patients. Conclusions: Our findings indicate that this prognostic model may serve as a valuable tool for predicting overall survival (OS) and treatment responses in ACC patients, including those receiving chemotherapy and immunotherapy.
Collapse
Affiliation(s)
- Hangya Peng
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China; (H.P.); (Q.C.)
- Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai Key Laboratory for Endocrine Tumor, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Qiujing Chen
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China; (H.P.); (Q.C.)
- Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai Key Laboratory for Endocrine Tumor, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
- Institute of Cardiovascular Diseases, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Lei Ye
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China; (H.P.); (Q.C.)
| | - Weiqing Wang
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China; (H.P.); (Q.C.)
| |
Collapse
|
3
|
Pergaris A, Levidou G, Mandrakis G, Christodoulou MI, Karamouzis MV, Klijanienko J, Theocharis S. The Impact of DAXX, HJURP and CENPA Expression in Uveal Melanoma Carcinogenesis and Associations with Clinicopathological Parameters. Biomedicines 2024; 12:1772. [PMID: 39200236 PMCID: PMC11351862 DOI: 10.3390/biomedicines12081772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 07/31/2024] [Accepted: 08/02/2024] [Indexed: 09/02/2024] Open
Abstract
Uveal melanomas (UMs) represent rare malignant tumors associated with grim prognosis for the majority of patients. DAXX (Death Domain-Associated Protein), HJURP (Holliday Junction Recognition Protein) and CENPA (Centromere Protein A) proteins are implicated in epigenetic mechanisms, now in the spotlight of cancer research to better understand the molecular background of tumorigenesis. Herein, we investigated their expression in UM tissues using immunohistochemistry and explored possible correlations with a multitude of clinicopathological and survival parameters. The Cancer Genome Atlas Program (TCGA) was used for the investigation of their mRNA levels in UM cases. Nuclear DAXX expression correlated with an advanced T-stage (p = 0.004), while cytoplasmic expression marginally with decreased disease-free survival (DFS) (p = 0.084). HJURP nuclear positivity also correlated with advanced T-status (p = 0.054), chromosome 3 loss (p = 0.042) and increased tumor size (p = 0.03). More importantly, both nuclear and cytoplasmic HJURP immunopositivity correlated with decreased overall survival (OS) (p = 0.011 and 0.072, respectively) and worse DFS (p = 0.071 and 0.019, respectively). Lastly, nuclear CENPA overexpression was correlated with presence of irido-corneal angle involvement (p = 0.015) and loss of chromosome 3 (p = 0.041). Nuclear and cytoplasmic CENPA immunopositivity associated with decreased OS (p = 0.028) and DFS (p = 0.018), respectively. HJURP and CENPA mRNA overexpression exhibited strong association with tumor epithelioid histology and was linked to worse prognosis. Our results show the compounding role of DAXX, HJURP and CENPA in UM carcinogenesis, designating them as potential biomarkers for assessing prognosis and possible targets for novel therapeutic interventions.
Collapse
Affiliation(s)
- Alexandros Pergaris
- First Department of Pathology, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece; (A.P.); (G.M.)
| | - Georgia Levidou
- Department of Pathology, Paracelsus Medical University, 90419 Nuremberg, Germany;
| | - Georgios Mandrakis
- First Department of Pathology, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece; (A.P.); (G.M.)
| | - Maria-Ioanna Christodoulou
- Tumor Immunology and Biomarkers Laboratory, Basic and Translational Cancer Research Center, Department of Life Sciences, European University Cyprus, Nicosia 2404, Cyprus;
| | - Michail V. Karamouzis
- Molecular Oncology Unit, Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece;
| | | | - Stamatios Theocharis
- First Department of Pathology, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece; (A.P.); (G.M.)
| |
Collapse
|
4
|
Xu R, Pan Z, Nakagawa T. Gross Chromosomal Rearrangement at Centromeres. Biomolecules 2023; 14:28. [PMID: 38254628 PMCID: PMC10813616 DOI: 10.3390/biom14010028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 12/19/2023] [Accepted: 12/22/2023] [Indexed: 01/24/2024] Open
Abstract
Centromeres play essential roles in the faithful segregation of chromosomes. CENP-A, the centromere-specific histone H3 variant, and heterochromatin characterized by di- or tri-methylation of histone H3 9th lysine (H3K9) are the hallmarks of centromere chromatin. Contrary to the epigenetic marks, DNA sequences underlying the centromere region of chromosomes are not well conserved through evolution. However, centromeres consist of repetitive sequences in many eukaryotes, including animals, plants, and a subset of fungi, including fission yeast. Advances in long-read sequencing techniques have uncovered the complete sequence of human centromeres containing more than thousands of alpha satellite repeats and other types of repetitive sequences. Not only tandem but also inverted repeats are present at a centromere. DNA recombination between centromere repeats can result in gross chromosomal rearrangement (GCR), such as translocation and isochromosome formation. CENP-A chromatin and heterochromatin suppress the centromeric GCR. The key player of homologous recombination, Rad51, safeguards centromere integrity through conservative noncrossover recombination between centromere repeats. In contrast to Rad51-dependent recombination, Rad52-mediated single-strand annealing (SSA) and microhomology-mediated end-joining (MMEJ) lead to centromeric GCR. This review summarizes recent findings on the role of centromere and recombination proteins in maintaining centromere integrity and discusses how GCR occurs at centromeres.
Collapse
Affiliation(s)
- Ran Xu
- Department of Biological Sciences, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka 560-0043, Osaka, Japan
- Forefront Research Center, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka 560-0043, Osaka, Japan
| | - Ziyi Pan
- Department of Biological Sciences, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka 560-0043, Osaka, Japan
- Forefront Research Center, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka 560-0043, Osaka, Japan
| | - Takuro Nakagawa
- Department of Biological Sciences, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka 560-0043, Osaka, Japan
- Forefront Research Center, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka 560-0043, Osaka, Japan
| |
Collapse
|
5
|
Murali R, Gopalakrishnan AV. Molecular insight into renal cancer and latest therapeutic approaches to tackle it: an updated review. Med Oncol 2023; 40:355. [PMID: 37955787 DOI: 10.1007/s12032-023-02225-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 10/16/2023] [Indexed: 11/14/2023]
Abstract
Renal cell carcinoma (RCC) is one of the most lethal genitourinary cancers, with the highest mortality rate, and may remain undetected throughout its development. RCC can be sporadic or hereditary. Exploring the underlying genetic abnormalities in RCC will have important implications for understanding the origins of nonhereditary renal cancers. The treatment of RCC has evolved over centuries from the era of cytokines to targeted therapy to immunotherapy. A surgical cure is the primary treatment modality, especially for organ-confined diseases. Furthermore, the urologic oncology community focuses on nephron-sparing surgical approaches and ablative procedures when small renal masses are detected incidentally in conjunction with interventional radiologists. In addition to new combination therapies approved for RCC treatment, several trials have been conducted to investigate the potential benefits of certain drugs. This may lead to durable responses and more extended survival benefits for patients with metastatic RCC (mRCC). Several approved drugs have reduced the mortality rate of patients with RCC by targeting VEGF signaling and mTOR. This review better explains the signaling pathways involved in the RCC progression, oncometabolites, and essential biomarkers in RCC that can be used for its diagnosis. Further, it provides an overview of the characteristics of RCC carcinogenesis to assist in combating treatment resistance, as well as details about the current management and future therapeutic options. In the future, multimodal and integrated care will be available, with new treatment options emerging as we learn more about the disease.
Collapse
Affiliation(s)
- Reshma Murali
- Department of Biomedical Sciences, School of Bio-Sciences and Technology, Vellore Institute of Technology VIT, Vellore, Tamil Nadu, 632014, India
| | - Abilash Valsala Gopalakrishnan
- Department of Biomedical Sciences, School of Bio-Sciences and Technology, Vellore Institute of Technology VIT, Vellore, Tamil Nadu, 632014, India.
| |
Collapse
|
6
|
Pergaris A, Genaris I, Stergiou IE, Klijanienko J, Papadakos SP, Theocharis S. The Clinical Impact of Death Domain-Associated Protein and Holliday Junction Recognition Protein Expression in Cancer: Unmasking the Driving Forces of Neoplasia. Cancers (Basel) 2023; 15:5165. [PMID: 37958340 PMCID: PMC10650673 DOI: 10.3390/cancers15215165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 10/22/2023] [Accepted: 10/24/2023] [Indexed: 11/15/2023] Open
Abstract
Death domain-associated protein (DAXX) and Holliday junction recognition protein (HJURP) act as chaperones of H3 histone variants H3.3 and centromere protein A (CENPA), respectively, and are implicated in many physiological processes, including aging and epigenetic regulation, by controlling various genes' transcription and subsequently protein expression. Research has highlighted both these biomolecules as participants in key procedures of tumorigenesis, including cell proliferation, chromosome instability, and oncogene expression. As cancer continues to exert a heavy impact on patients' well-being and bears substantial socioeconomic ramifications, the discovery of novel biomarkers for timely disease detection, estimation of prognosis, and therapy monitoring remains of utmost importance. In the present review, we present data reported from studies investigating DAXX and HJURP expression, either on mRNA or protein level, in human tissue samples from various types of neoplasia. Of note, the expression of DAXX and HJURP has been associated with a multitude of clinicopathological parameters, including disease stage, tumor grade, patients' overall and disease-free survival, as well as lymphovascular invasion. The data reveal the tumor-promoting properties of DAXX and HJURP in a number of organs as well as their potential use as diagnostic biomarkers and underline the important association between aberrations in their expression and patients' prognosis, rendering them as possible targets of future, personalized and precise therapeutic interventions.
Collapse
Affiliation(s)
- Alexandros Pergaris
- First Department of Pathology, Medical School, National and Kapodistrian University of Athens, 75 Mikras Asias Street, Bld 10, Goudi, 11527 Athens, Greece; (A.P.); (I.G.); (S.P.P.)
| | - Ioannis Genaris
- First Department of Pathology, Medical School, National and Kapodistrian University of Athens, 75 Mikras Asias Street, Bld 10, Goudi, 11527 Athens, Greece; (A.P.); (I.G.); (S.P.P.)
| | - Ioanna E. Stergiou
- Department of Pathophysiology, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece;
| | | | - Stavros P. Papadakos
- First Department of Pathology, Medical School, National and Kapodistrian University of Athens, 75 Mikras Asias Street, Bld 10, Goudi, 11527 Athens, Greece; (A.P.); (I.G.); (S.P.P.)
| | - Stamatios Theocharis
- First Department of Pathology, Medical School, National and Kapodistrian University of Athens, 75 Mikras Asias Street, Bld 10, Goudi, 11527 Athens, Greece; (A.P.); (I.G.); (S.P.P.)
| |
Collapse
|
7
|
Song L, Wang S, Zhang X, Song N, Lu Y, Qin C. Bridging the gap between clear cell renal cell carcinoma and cutaneous melanoma: the role of SCARB1 in dysregulated cholesterol metabolism. Aging (Albany NY) 2023; 15:10370-10388. [PMID: 37801479 PMCID: PMC10599744 DOI: 10.18632/aging.205083] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 08/22/2023] [Indexed: 10/08/2023]
Abstract
OBJECTIVE The metabolism of cholesterol has been found to be closely related to the proliferation, invasion, and metastasis of tumors. The purpose of this study was to investigate the correlation between cholesterol metabolic genes and the prognosis of clear cell renal cell carcinoma (ccRCC). METHODS Gene expression profiles and clinical information of individuals diagnosed with prevalent malignant tumors were obtained from the TCGA database. For survival analysis, Kaplan-Meier curves were used. Consensus clustering was utilized to identify distinct molecular clusters. LASSO regression analysis was utilized to construct a novel prognostic signature. Differential analysis was used to analyze the differences in gene expression and various evaluation indicators between different subgroups. RT-qPCR and Immunohistochemistry were performed to examine the gene expression. Small interfering RNA transfection, CCK-8, and clone formation assays were conducted to verify the function of the target gene in ccRCC cell lines. RESULTS Based on genes involved in cholesterol metabolism related to survival, two molecular ccRCC subtypes were identified with distinct clinical, immune, and biological features. A molecular signature which would be utilized to evaluate the prognosis and the immune status of the tumor microenvironment of ccRCC patients was also established. The SCARB1-mediated cholesterol-dependent metabolism occurred both in ccRCC and skin cutaneous melanoma. CONCLUSION A gene signature related to cholesterol metabolism was developed and validated to forecast the prognosis of ccRCC, demonstrating a correlation with immune infiltration. Cholesterol metabolic genes such as SCARB1, were expected to contribute to the diagnosis and precision treatment of both ccRCC and skin cutaneous melanoma.
Collapse
Affiliation(s)
- Lebin Song
- Department of Dermatology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Shuai Wang
- Department of Urology, The State Key Lab of Reproductive, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Xi Zhang
- Department of Urology, The State Key Lab of Reproductive, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Ninghong Song
- Department of Urology, The State Key Lab of Reproductive, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Yan Lu
- Department of Dermatology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Chao Qin
- Department of Urology, The State Key Lab of Reproductive, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| |
Collapse
|
8
|
Liu P, Luo J, Tan N, Li C, Xu J, Yang X. Establishing a prognostic model of chromatin modulators and identifying potential drug candidates in renal clear cell patients. BMC Bioinformatics 2023; 24:104. [PMID: 36941564 PMCID: PMC10029171 DOI: 10.1186/s12859-023-05229-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 03/14/2023] [Indexed: 03/23/2023] Open
Abstract
BACKGROUND Renal carcinoma is a common malignant tumor of the urinary system. Advanced renal carcinoma has a low 5-year survival rate and a poor prognosis. More and more studies have confirmed that chromatin regulators (CRs) can regulate the occurrence and development of cancer. This article investigates the functional and prognostic value of CRs in renal carcinoma patients. METHODS mRNA expression and clinical information were obtained from The Cancer Genome Atlas database. Univariate Cox regression analysis and LASSO regression analysis were used to select prognostic chromatin-regulated genes and use them to construct a risk model for predicting the prognosis of renal cancer. Differences in prognosis between high-risk and low-risk groups were compared using Kaplan-Meier analysis. In addition, we analyzed the relationship between chromatin regulators and tumor immune infiltration, and explored differences in drug sensitivity between risk groups. RESULTS We constructed a model consisting of 11 CRs to predict the prognosis of renal cancer patients. We not only successfully validated its feasibility, but also found that the 11 CR-based model was an independent prognostic factor. Functional analysis showed that CRs were mainly enriched in cancer development-related signalling pathways. We also found through the TIMER database that CR-based models were also associated with immune cell infiltration and immune checkpoints. At the same time, the genomics of drug sensitivity in cancer database was used to analyze the commonly used drugs of renal clear cell carcinoma patients. It was found that patients in the low-risk group were sensitive to medicines such as axitinib, pazopanib, sorafenib, and gemcitabine. In contrast, those in the high-risk group may be sensitive to sunitinib. CONCLUSION The chromatin regulator-related prognostic model we constructed can be used to assess the prognostic risk of patients with clear cell renal cell carcinoma. The results of this study can bring new ideas for targeted therapy of clear cell renal carcinoma, helping doctors to take corresponding measures in advance for patients with different risks.
Collapse
Affiliation(s)
- Puyu Liu
- Department of Clinical Pathology, Affiliated Hospital of Zunyi Medical University, No.149 Dalian Road, Zunyi City, 563000, Guizhou Province, China
| | - Jihang Luo
- Department of Infectious Diseases, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Na Tan
- Department of Clinical Pathology, Affiliated Hospital of Zunyi Medical University, No.149 Dalian Road, Zunyi City, 563000, Guizhou Province, China
| | - Chengfang Li
- Department of Clinical Pathology, Affiliated Hospital of Zunyi Medical University, No.149 Dalian Road, Zunyi City, 563000, Guizhou Province, China
| | - Jieyu Xu
- Department of Clinical Pathology, Affiliated Hospital of Zunyi Medical University, No.149 Dalian Road, Zunyi City, 563000, Guizhou Province, China
| | - Xiaorong Yang
- Department of Clinical Pathology, Affiliated Hospital of Zunyi Medical University, No.149 Dalian Road, Zunyi City, 563000, Guizhou Province, China.
| |
Collapse
|
9
|
Wu Q, Tian R, Liu J, Ou C, Li Y, Fu X. Deciphering comprehensive features of tumor microenvironment controlled by chromatin regulators to predict prognosis and guide therapies in uterine corpus endometrial carcinoma. Front Immunol 2023; 14:1139126. [PMID: 36936912 PMCID: PMC10022674 DOI: 10.3389/fimmu.2023.1139126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 02/20/2023] [Indexed: 03/06/2023] Open
Abstract
BACKGROUND Dysregulation of chromatin regulators (CRs) can perturb the tumor immune microenvironment, but the underlying mechanism remains unclear. We focused on uterine corpus endometrial carcinoma (UCEC) and used gene expression data from TCGA-UCEC to investigate this mechanism. METHODS We used weighted gene co-expression network analysis (WGCNA) and consensus clustering algorithm to classify UCEC patients into Cluster_L and Cluster_H. TME-associated CRs were identified using WGCNA and differential gene expression analysis. A CR risk score (CRRS) was constructed using univariate Cox and LASSO-Cox regression analyses. A nomogram was developed based on CRRS and clinicopathologic factors to predict patients' prognosis. RESULTS Lower CRRS was associated with lower grade, more benign molecular subtypes, and improved survival. Patients with low CRRS showed abundant immune infiltration, a higher mutation burden, fewer CNVs, and better response to immunotherapy. Moreover, low CRRS patients were more sensitive to 24 chemotherapeutic agents. CONCLUSION A comprehensive assessment of CRRS could identify immune activation and improve the efficacy of UCEC treatments.
Collapse
Affiliation(s)
- Qihui Wu
- Department of Gynecology, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, China
| | - Ruotong Tian
- Department of Pharmacology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
| | - Jiaxin Liu
- Department of Pathology, School of Basic Medical Sciences, Central South University, Changsha, China
| | - Chunlin Ou
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, China
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, China
| | - Yimin Li
- Department of Pathology, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Xiaodan Fu
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, China
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
10
|
Li L, Yuan Q, Chu YM, Jiang HY, Zhao JH, Su Q, Huo DQ, Zhang XF. Advances in holliday junction recognition protein (HJURP): Structure, molecular functions, and roles in cancer. Front Cell Dev Biol 2023; 11:1106638. [PMID: 37025176 PMCID: PMC10070699 DOI: 10.3389/fcell.2023.1106638] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Accepted: 03/13/2023] [Indexed: 04/08/2023] Open
Abstract
Oncogenes are increasingly recognized as important factors in the development and progression of cancer. Holliday Junction Recognition Protein (HJURP) is a highly specialized mitogenic protein that is a chaperone protein of histone H3. The HJURP gene is located on chromosome 2q37.1 and is involved in nucleosome composition in the mitotic region, forming a three-dimensional crystal structure with Centromere Protein A (CENP-A) and the histone 4 complex. HJURP is involved in the recruitment and assembly of centromere and kinetochore and plays a key role in stabilizing the chromosome structure of tumor cells, and its dysfunction may contribute to tumorigenesis. In the available studies HJURP is upregulated in a variety of cancer tissues and cancer cell lines and is involved in tumor proliferation, invasion, metastasis and immune response. In an in vivo model, overexpression of HJURP in most cancer cell lines promotes cell proliferation and invasiveness, reduces susceptibility to apoptosis, and promotes tumor growth. In addition, upregulation of HJURP was associated with poorer prognosis in a variety of cancers. These properties suggest that HJURP may be a possible target for the treatment of certain cancers. Various studies targeting HJURP as a prognostic and therapeutic target for cancer are gradually attracting interest and attention. This paper reviews the functional and molecular mechanisms of HJURP in a variety of tumor types with the aim of providing new targets for future cancer therapy.
Collapse
Affiliation(s)
- Lin Li
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, Bioengineering College of Chongqing University, Chongqing, China
- Department of Pharmacy, The Second Clinical Medical College of North Sichuan Medical College, Nanchong, China
| | - Qiang Yuan
- Department of Pharmacy, The Second Clinical Medical College of North Sichuan Medical College, Nanchong, China
- School of Pharmacy, North Sichuan Medical College, Nanchong, China
| | - Yue-Ming Chu
- Department of Pharmacy, The Second Clinical Medical College of North Sichuan Medical College, Nanchong, China
- School of Pharmacy, North Sichuan Medical College, Nanchong, China
| | - Hang-Yu Jiang
- Department of Pharmacy, The Second Clinical Medical College of North Sichuan Medical College, Nanchong, China
- School of Pharmacy, North Sichuan Medical College, Nanchong, China
| | - Ju-Hua Zhao
- Department of Pharmacy, The Second Clinical Medical College of North Sichuan Medical College, Nanchong, China
| | - Qiang Su
- Institute of Tissue Engineering and Stem Cells, The Second Clinical Medical College of North Sichuan Medical College, Nanchong, China
- Nanchong Key Laboratory of Individualized Drug Therapy, Nanchong, China
| | - Dan-Qun Huo
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, Bioengineering College of Chongqing University, Chongqing, China
- *Correspondence: Dan-Qun Huo, ; Xiao-Fen Zhang,
| | - Xiao-Fen Zhang
- Department of Pharmacy, The Second Clinical Medical College of North Sichuan Medical College, Nanchong, China
- *Correspondence: Dan-Qun Huo, ; Xiao-Fen Zhang,
| |
Collapse
|
11
|
Tang Y, Ye C, Zeng J, Zhu P, Cheng S, Zeng W, Yang B, Liu Y, Yu Y. Identification of a basement membrane-based risk scoring system for prognosis prediction and individualized therapy in clear cell renal cell carcinoma. Front Genet 2023; 14:1038924. [PMID: 36816030 PMCID: PMC9935575 DOI: 10.3389/fgene.2023.1038924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 01/20/2023] [Indexed: 02/05/2023] Open
Abstract
Clear cell renal cell carcinoma (ccRCC) belongs to one of the 10 most frequently diagnosed cancers worldwide and has a poor prognosis at the advanced stage. Although multiple therapeutic agents have been proven to be curative in ccRCC, their clinical application was limited due to the lack of reliable biomarkers. Considering the important role of basement membrane (BM) in tumor metastasis and TME regulation, we investigated the expression of BM-related genes in ccRCC and identified prognostic BM genes through differentially expression analysis and univariate cox regression analysis. Then, BM-related ccRCC subtypes were recognized through consensus non-negative matrix factorization based on the prognostic BM genes and evaluated with regard to clinical and TME features. Next, utilizing the differentially expressed genes between the BM-related subtypes, a risk scoring system BMRS was established after serial analysis of univariate cox regression analysis, lasso regression analysis, and multivariate cox regression analysis. Time-dependent ROC curve revealed the satisfactory prognosis predictive capacity of BMRS with internal, and external validation. Multivariate analysis proved the independent predictive ability of BMRS and a BMRS-based nomogram was constructed for clinical application. Some featured mutants were discovered through genomic analysis of the BMRS risk groups. Meanwhile, the BMRS groups were found to have distinct immune scores, immune cell infiltration levels, and immune-related functions. Moreover, with the help of data from The Cancer Immunome Atlas (TCIA) and Genomics of Drug Sensitivity in Cancer (GDSC), the potential of BMRS in predicting therapeutic response was evaluated and some possible therapeutic compounds were proposed through ConnectivityMap (CMap). For the practicability of BMRS, we validated the expression of BMRS-related genes in clinical samples. After all, we identified BM-related ccRCC subtypes with distinct clinical and TME features and constructed a risk scoring system for the prediction of prognosis, therapeutic responses, and potential therapeutic agents of ccRCC. As ccRCC systemic therapy continues to evolve, the risk scoring system BMRS we reported may assist in individualized medication administration.
Collapse
Affiliation(s)
- Yanlin Tang
- Shantou University Medical College, Shantou, China
- Department of Urology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Chujin Ye
- Department of Urology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Jiayi Zeng
- Department of Urology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Ping Zhu
- Department of Immunology, School of Basic Medical Science, Southern Medical University, Guangzhou, China
| | - Shouyu Cheng
- Department of Urology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
- School of Medicine, South China University of Technology, Guangzhou, China
| | - Weinan Zeng
- Shantou University Medical College, Shantou, China
- Department of Urology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Bowen Yang
- Department of Urology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Yanjun Liu
- Department of Immunology, School of Basic Medical Science, Southern Medical University, Guangzhou, China
- *Correspondence: Yuming Yu, ; Yanjun Liu,
| | - Yuming Yu
- Department of Urology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China
- *Correspondence: Yuming Yu, ; Yanjun Liu,
| |
Collapse
|
12
|
Pan-cancer analysis based on epigenetic modification explains the value of HJURP in the tumor microenvironment. Sci Rep 2022; 12:20871. [PMID: 36460821 PMCID: PMC9718852 DOI: 10.1038/s41598-022-25439-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Accepted: 11/30/2022] [Indexed: 12/04/2022] Open
Abstract
To analyze the expression levels, prognostic value and immune infiltration association of Holliday junction protein (HJURP) as well as its feasibility as a pan-cancer biomarker for different cancers. The Protter online tool was utilized to obtain the localization of HJURP, then the methylation of HJURP in tumors were further explored. Thereafter, the mRNA data and clinical characteristics of 33 tumor types from TCGA database were obtained to investigate the expression and prognostic relationship of HJURP in different tumor types. Finally, the composition pattern and immune infiltration of HJURP in different tumors were detected in Tumor Immune Estimation Resource. HJURP was abnormally expressed in most of the cancer types and subtypes in TCGA database. Also, it was associated with poor prognosis of different cohorts. At the same time, the results also showed that HJURP was related to tumor immune evasion through different mechanisms, including T cell rejection and methylation in different cancer types. Besides, the methylation of HJURP was inversely proportional to mRNA expression levels, which mediated the dysfunctional phenotypes of T cells and poor prognosis of different cancer types. Alternatively, our results indicated that HJURP expression was associated with immune cell infiltration in a variety of cancers. HJURP may serve as an oncogenic molecule, and its expression and immune infiltration characteristics can be used as a biomarker for cancer detection, prognosis, treatment design and follow-up.
Collapse
|
13
|
Sarafidis M, Lambrou GI, Zoumpourlis V, Koutsouris D. An Integrated Bioinformatics Analysis towards the Identification of Diagnostic, Prognostic, and Predictive Key Biomarkers for Urinary Bladder Cancer. Cancers (Basel) 2022; 14:cancers14143358. [PMID: 35884419 PMCID: PMC9319344 DOI: 10.3390/cancers14143358] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 07/03/2022] [Accepted: 07/06/2022] [Indexed: 02/04/2023] Open
Abstract
Simple Summary Bladder cancer is evidently a challenge as far as its prognosis and treatment are concerned. The investigation of potential biomarkers and therapeutic targets is indispensable and still in progress. Most studies attempt to identify differential signatures between distinct molecular tumor subtypes. Therefore, keeping in mind the heterogeneity of urinary bladder tumors, we attempted to identify a consensus gene-related signature between the common expression profile of bladder cancer and control samples. In the quest for substantive features, we were able to identify key hub genes, whose signatures could hold diagnostic, prognostic, or therapeutic significance, but, primarily, could contribute to a better understanding of urinary bladder cancer biology. Abstract Bladder cancer (BCa) is one of the most prevalent cancers worldwide and accounts for high morbidity and mortality. This study intended to elucidate potential key biomarkers related to the occurrence, development, and prognosis of BCa through an integrated bioinformatics analysis. In this context, a systematic meta-analysis, integrating 18 microarray gene expression datasets from the GEO repository into a merged meta-dataset, identified 815 robust differentially expressed genes (DEGs). The key hub genes resulted from DEG-based protein–protein interaction and weighted gene co-expression network analyses were screened for their differential expression in urine and blood plasma samples of BCa patients. Subsequently, they were tested for their prognostic value, and a three-gene signature model, including COL3A1, FOXM1, and PLK4, was built. In addition, they were tested for their predictive value regarding muscle-invasive BCa patients’ response to neoadjuvant chemotherapy. A six-gene signature model, including ANXA5, CD44, NCAM1, SPP1, CDCA8, and KIF14, was developed. In conclusion, this study identified nine key biomarker genes, namely ANXA5, CDT1, COL3A1, SPP1, VEGFA, CDCA8, HJURP, TOP2A, and COL6A1, which were differentially expressed in urine or blood of BCa patients, held a prognostic or predictive value, and were immunohistochemically validated. These biomarkers may be of significance as prognostic and therapeutic targets for BCa.
Collapse
Affiliation(s)
- Michail Sarafidis
- Biomedical Engineering Laboratory, School of Electrical and Computer Engineering, National Technical University of Athens, 9 Iroon Polytechniou Str., 15780 Athens, Greece;
- Correspondence: ; Tel.: +30-210-772-2430
| | - George I. Lambrou
- Choremeio Research Laboratory, First Department of Pediatrics, National and Kapodistrian University of Athens, 8 Thivon & Levadeias Str., 11527 Athens, Greece;
- University Research Institute of Maternal and Child Health and Precision Medicine, National and Kapodistrian University of Athens, 8 Thivon & Levadeias Str., 11527 Athens, Greece
| | - Vassilis Zoumpourlis
- Biomedical Applications Unit, Institute of Chemical Biology, National Hellenic Research Foundation, 48 Vas. Konstantinou Ave., 11635 Athens, Greece;
| | - Dimitrios Koutsouris
- Biomedical Engineering Laboratory, School of Electrical and Computer Engineering, National Technical University of Athens, 9 Iroon Polytechniou Str., 15780 Athens, Greece;
| |
Collapse
|
14
|
Luo D, Liao S, Liu Y, Lin Y, Li Y, Liao X. Holliday Cross-Recognition Protein HJURP: Association With the Tumor Microenvironment in Hepatocellular Carcinoma and With Patient Prognosis. Pathol Oncol Res 2022; 28:1610506. [PMID: 35783358 PMCID: PMC9248293 DOI: 10.3389/pore.2022.1610506] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 05/31/2022] [Indexed: 12/04/2022]
Abstract
Background: Hepatocellular carcinoma is the most common type of primary liver cancer, and it is associated with poor prognosis. It often fails to respond to immunotherapy, highlighting the need to identify genes that are associated with the tumor microenvironment and may be good therapeutic targets. We and others have shown that the Holliday cross-recognition protein HJURP can promote the proliferation, migration, and invasion by hepatocellular carcinoma cells, and that HJURP overexpression is associated with poor survival. Here we explored the potential relationship between HJURP and the tumor microenvironment in hepatocellular carcinoma. Methods: We used the Immuno-Oncology-Biological-Research (IOBR) software package to analyze the potential roles of HJURP in the tumor microenvironment. Using single-cell RNA sequencing data, we identified the cell clusters expressing abundant HJURP, then linked some of these clusters to certain bioprocesses using Gene Set Enrichment Analysis (GSEA). We validated the differential expression of HJURP in tumor-infiltrating CD8+ T cells, sorted by flow cytometry into populations based on the expression level of PD-1. We used weighted gene co-expression network analysis (WGCNA) to identify immunity-related genes whose expression strongly correlated with that of HJURP. The function of these genes was validated based on enrichment in Gene Ontology (GO) terms, and they were used to establish a prognosis prediction model. Results: IOBR analysis suggested that HJURP is significantly related to the immunosuppressive tumor microenvironment and was significantly related to T cells, dendritic cells, and B cells. Based on single-cell RNA sequencing, HJURP was strongly expressed in T cells, erythrocytes, and B cells from normal liver tissues, as well as in CD8+ T cells, dendritic cells, and one cluster of hepatocytes in hepatocellular carcinoma tissues. Malignant hepatocytes strongly expressing HJURP were associated with the downregulation of immune bioprocesses. HJURP expression was significantly higher in CD8+ T cells strongly expressing PD-1 than in those expressing no or intermediate levels of PD1. WGCNA identified two module eigengenes (comprising 397 and 84 genes) related to the tumor microenvironment. We identified 24 hub genes and confirmed that they were related to immune regulation. A prognostic risk score model based on expression of HJURP, PPT1, PML, and CLEC7A showed moderate ability to predict survival. Conclusion:HJURP is associated with tumor-infiltrating immune cells, immune checkpoints, and immune suppression in hepatocellular carcinoma. HJURP-related genes involved in immune responses may be useful for predicting patient prognosis.
Collapse
Affiliation(s)
- Dongcheng Luo
- Department of First Chemotherapy, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Sina Liao
- Department of First Chemotherapy, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Yu Liu
- Department of First Chemotherapy, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Youzhi Lin
- Hepatobiliary Surgery Department, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Yongqiang Li
- Department of First Chemotherapy, Guangxi Medical University Cancer Hospital, Nanning, China
| | - XiaoLi Liao
- Department of First Chemotherapy, Guangxi Medical University Cancer Hospital, Nanning, China
- *Correspondence: XiaoLi Liao,
| |
Collapse
|
15
|
Jing J, Sun J, Wu Y, Zhang N, Liu C, Chen S, Li W, Hong C, Xu B, Chen M. AQP9 Is a Prognostic Factor for Kidney Cancer and a Promising Indicator for M2 TAM Polarization and CD8+ T-Cell Recruitment. Front Oncol 2021; 11:770565. [PMID: 34804972 PMCID: PMC8602816 DOI: 10.3389/fonc.2021.770565] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Accepted: 10/11/2021] [Indexed: 12/23/2022] Open
Abstract
Background It is undeniable that the tumor microenvironment (TME) plays an indispensable role in the progression of kidney renal clear cell carcinoma (KIRC). However, the precise mechanism of activities in TME is still unclear. Methods and Results Using the CIBERSORT and ESTIMATE calculation methods, the scores of the two main fractions of tumor-infiltrating immune cells (TICs) from The Cancer Genome Atlas (TCGA) database of 537 KIRC patients were calculated. Subsequently, differentially expressed genes (DEGs) were drawn out by performing an overlap between Cox regression analysis and protein–protein interaction (PPI) network. Aquaporin 9 (AQP9) was identified as a latent predictor through the process. Following research revealed that AQP9 expression was positively correlated with the pathological characteristics (TNM stage) and negatively connected with survival time. Then, by performing gene set enrichment analysis (GSEA), it can be inferred that genes with high expression level of AQP9 were mainly enriched in immune-related activities, while low AQP9 group was associated with functions of cellular metabolism. Further studies have shown that regulatory T cells (Tregs), macrophages M2, macrophages M0, CD4+ T cells, and neutrophils were positively correlated with AQP9 expression. While the levels of mast cells, natural killer (NK) cells, and CD8+ T cells are negatively correlated with AQP9. The result of multiple immunohistochemistry (mIHC) suggests a negative relevance between AQP9 and CD8+ T cells and reveals a trend of consistent change on AQP9 and M2 macrophages. Conclusion The expression level of AQP9 may be helpful in predicting the prognosis of patients with KIRC, especially to the TME state transition, the mechanism of which is possibly through lipid metabolism and P53, Janus kinase (JAK)/signal transducer and activator of transcription (STAT) pathways that affect M2 polarization. AQP9 was associated with the expression levels of M2, tumor-associated macrophages (TAMs), and the recruitment of CD8+ T cells in tumor environment. The research result indicates that AQP9 may be an obstacle to maintain the immune activity of TME.
Collapse
Affiliation(s)
- Jibo Jing
- Institute of Urology, Surgical Research Center, Institute of Urology, Medical School of Southeast University, Nanjing, China.,Department of Urology, Medical School of Southeast University, Nanjing, China.,Department of Urology, Affiliated Zhongda Hospital of Southeast University, Nanjing, China
| | - Jin Sun
- Department of Urology, People's Hospital of Xuyi County, Nanjing, China
| | - Yuqing Wu
- Institute of Urology, Surgical Research Center, Institute of Urology, Medical School of Southeast University, Nanjing, China.,Department of Urology, Medical School of Southeast University, Nanjing, China.,Department of Urology, Affiliated Zhongda Hospital of Southeast University, Nanjing, China
| | - Nieke Zhang
- Institute of Urology, Surgical Research Center, Institute of Urology, Medical School of Southeast University, Nanjing, China.,Department of Urology, Medical School of Southeast University, Nanjing, China.,Department of Urology, Affiliated Zhongda Hospital of Southeast University, Nanjing, China
| | - Chunhui Liu
- Institute of Urology, Surgical Research Center, Institute of Urology, Medical School of Southeast University, Nanjing, China.,Department of Urology, Medical School of Southeast University, Nanjing, China.,Department of Urology, Affiliated Zhongda Hospital of Southeast University, Nanjing, China
| | - Saisai Chen
- Institute of Urology, Surgical Research Center, Institute of Urology, Medical School of Southeast University, Nanjing, China.,Department of Urology, Medical School of Southeast University, Nanjing, China.,Department of Urology, Affiliated Zhongda Hospital of Southeast University, Nanjing, China
| | - Wenchao Li
- Institute of Urology, Surgical Research Center, Institute of Urology, Medical School of Southeast University, Nanjing, China.,Department of Urology, Medical School of Southeast University, Nanjing, China.,Department of Urology, Affiliated Zhongda Hospital of Southeast University, Nanjing, China
| | - Cheng Hong
- Institute of Urology, Surgical Research Center, Institute of Urology, Medical School of Southeast University, Nanjing, China.,Department of Urology, Medical School of Southeast University, Nanjing, China.,Department of Urology, Affiliated Zhongda Hospital of Southeast University, Nanjing, China
| | - Bin Xu
- Institute of Urology, Surgical Research Center, Institute of Urology, Medical School of Southeast University, Nanjing, China.,Department of Urology, Medical School of Southeast University, Nanjing, China.,Department of Urology, Affiliated Zhongda Hospital of Southeast University, Nanjing, China
| | - Ming Chen
- Institute of Urology, Surgical Research Center, Institute of Urology, Medical School of Southeast University, Nanjing, China.,Department of Urology, Medical School of Southeast University, Nanjing, China.,Department of Urology, Affiliated Zhongda Hospital of Southeast University, Nanjing, China
| |
Collapse
|