1
|
Morshedbak M, Rahimi K, Tabandeh MR. Effect of fecal microbiota transplantation on ulcerative colitis model in rats: The gut-brain axis. Heliyon 2025; 11:e42430. [PMID: 39995913 PMCID: PMC11848074 DOI: 10.1016/j.heliyon.2025.e42430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 01/27/2025] [Accepted: 01/31/2025] [Indexed: 02/26/2025] Open
Abstract
Study objectives The impact of fecal microbiota transplantation (FMT) on the TLR4/MYD88/NF-kB signaling pathway in the colon in the ulcerative colitis model, as well as the incidence of anxiety behaviors caused by the colitis model was investigated. Methods Twenthy four ats were induced with ulcerative colitis using a 4 % acetic acid solution administered intrarectally and were subsequently treated with prednisolone and FMT. The study examined several indicators, such as TLR4, MYD88, and NF-κB mRNA expression, along with oxidative stress factors. Additionally, it examined the relationship between anxiety-related behaviors and colitis and assessed the pro-inflammatory cytokines in the hippocampus. Results FMT led to lower disease score index and improved colon tissue pathology findings. This was associated with reduced mRNA expression of TLR4, MYD88, and NF-κB, as well as lower levels of TOS, and higher levels of TAC, GSH, and GSSG in colon tissues. FMT was found to reduce anxiety in both the open field and elevated plus maze tests. Additionally, levels of IL-6 and TNF-a were decreased in the hippocampus. Conclusions FMT suppressed acetic acid-induced colitis by inhibiting the TLR4/MYD88/NF-kB signaling pathway. FMT reduced anxiety in open field and plus maze tests, and resulted in decreased levels of IL-6 and TNF-a in the hippocampus.
Collapse
Affiliation(s)
- Mahdis Morshedbak
- Department of Basic Sciences, Faculty of Veterinary Medicine, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Kaveh Rahimi
- Department of Basic Sciences, Faculty of Veterinary Medicine, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Mohammad Reza Tabandeh
- Department of Basic Sciences, Division of Biochemistry and Molecular Biology, Faculty of Veterinary Medicine, Shahid Chamran Univeristy of Ahvaz, Ahvaz, Iran
- Stem Cells and Transgenic Technology Research Center, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| |
Collapse
|
2
|
Sun S, Zhang G, Lv S, Sun J. Potential mechanisms of traditional Chinese medicine in the treatment of liver cirrhosis: a focus on gut microbiota. Front Microbiol 2024; 15:1407991. [PMID: 39234554 PMCID: PMC11371771 DOI: 10.3389/fmicb.2024.1407991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 07/29/2024] [Indexed: 09/06/2024] Open
Abstract
Cirrhosis, a pathological stage that develops from various chronic liver diseases, is characterized by liver fibrosis, pseudolobular formation, and chronic inflammation. When it progresses to the decompensated phase, the mortality rate of cirrhosis can reach 80%. The role of gut microbiota in the progression of liver diseases has received significant attention. Numerous studies have shown that regulating gut microbiota has significant therapeutic effects on preventing and reversing liver cirrhosis. This article reviewed the mechanisms by which gut microbiota influence liver cirrhosis, explaining the effective therapeutic effects of traditional Chinese medicine. Through multi-directional regulation involving signaling pathways, gut microbiota diversity, and restoration of intestinal barrier function, traditional Chinese medicine has been promising in ameliorating liver cirrhosis, providing treatment options and pharmacological guidance for the occurrence and development of liver cirrhosis.
Collapse
Affiliation(s)
- Siyuan Sun
- First Clinical Medical College, Beijing University of Chinese Medicine, Beijing, China
| | - Guangheng Zhang
- First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Shimeng Lv
- First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Jinhui Sun
- Gastroenterology Department, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
3
|
Long D, Mao C, Huang Y, Xu Y, Zhu Y. Ferroptosis in ulcerative colitis: Potential mechanisms and promising therapeutic targets. Biomed Pharmacother 2024; 175:116722. [PMID: 38729051 DOI: 10.1016/j.biopha.2024.116722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 05/01/2024] [Accepted: 05/06/2024] [Indexed: 05/12/2024] Open
Abstract
Ulcerative colitis (UC) is a complex immune-mediated chronic inflammatory bowel disease. It is mainly characterized by diffuse inflammation of the colonic and rectal mucosa with barrier function impairment. Identifying new biomarkers for the development of more effective UC therapies remains a pressing task for current research. Ferroptosis is a newly identified form of regulated cell death characterized by iron-dependent lipid peroxidation. As research deepens, ferroptosis has been demonstrated to be involved in the pathological processes of numerous diseases. A growing body of evidence suggests that the pathogenesis of UC is associated with ferroptosis, and the regulation of ferroptosis provides new opportunities for UC treatment. However, the specific mechanisms by which ferroptosis participates in the development of UC remain to be more fully and thoroughly investigated. Therefore, in this review, we focus on the research advances in the mechanism of ferroptosis in recent years and describe the potential role of ferroptosis in the pathogenesis of UC. In addition, we explore the underlying role of the crosslinked pathway between ferroptosis and other mechanisms such as macrophages, neutrophils, autophagy, endoplasmic reticulum stress, and gut microbiota in UC. Finally, we also summarize the potential compounds that may act as ferroptosis inhibitors in UC in the future.
Collapse
Affiliation(s)
- Dan Long
- The First Hospital of Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Chenhan Mao
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Yingtao Huang
- The First Clinical Medical College, Liaoning University of Traditional Chinese Medicine, Shenyang, Liaoning, China
| | - Yin Xu
- The First Hospital of Hunan University of Chinese Medicine, Changsha, Hunan, China.
| | - Ying Zhu
- The First Hospital of Hunan University of Chinese Medicine, Changsha, Hunan, China.
| |
Collapse
|
4
|
Liu H, Huang Y, Huang M, Wang M, Ming Y, Chen W, Chen Y, Tang Z, Jia B. From nitrate to NO: potential effects of nitrate-reducing bacteria on systemic health and disease. Eur J Med Res 2023; 28:425. [PMID: 37821966 PMCID: PMC10566198 DOI: 10.1186/s40001-023-01413-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 09/29/2023] [Indexed: 10/13/2023] Open
Abstract
Current research has described improving multisystem disease and organ function through dietary nitrate (DN) supplementation. They have provided some evidence that these floras with nitrate (NO3-) reductase are mediators of the underlying mechanism. Symbiotic bacteria with nitrate reductase activity (NRA) are found in the human digestive tract, including the mouth, esophagus and gastrointestinal tract (GT). Nitrate in food can be converted to nitrite under the tongue or in the stomach by these symbiotic bacteria. Then, nitrite is transformed to nitric oxide (NO) by non-enzymatic synthesis. NO is currently recognized as a potent bioactive agent with biological activities, such as vasodilation, regulation of cardiomyocyte function, neurotransmission, suppression of platelet agglutination, and prevention of vascular smooth muscle cell proliferation. NO also can be produced through the conventional L-arginine-NO synthase (L-NOS) pathway, whereas endogenous NO production by L-arginine is inhibited under hypoxia-ischemia or disease conditions. In contrast, exogenous NO3-/NO2-/NO activity is enhanced and becomes a practical supplemental pathway for NO in the body, playing an essential role in various physiological activities. Moreover, many diseases (such as metabolic or geriatric diseases) are primarily associated with disorders of endogenous NO synthesis, and NO generation from the exogenous NO3-/NO2-/NO route can partially alleviate the disease progression. The imbalance of NO in the body may be one of the potential mechanisms of disease development. Therefore, the impact of these floras with nitrate reductase on host systemic health through exogenous NO3-/NO2-/NO pathway production of NO or direct regulation of floras ecological balance is essential (e.g., regulation of body homeostasis, amelioration of diseases, etc.). This review summarizes the bacteria with nitrate reductase in humans, emphasizing the relationship between the metabolic processes of this microflora and host systemic health and disease. The potential effects of nitrate reduction bacteria on human health and disease were also highlighted in disease models from different human systems, including digestive, cardiovascular, endocrine, nervous, respiratory, and urinary systems, providing innovative ideas for future disease diagnosis and treatment based on nitrate reduction bacteria.
Collapse
Affiliation(s)
- Hongyu Liu
- Department of Oral Surgery, School of Stomatology, Southern Medical University, Guangzhou, China
| | - Yisheng Huang
- Department of Oral Surgery, School of Stomatology, Southern Medical University, Guangzhou, China
| | - Mingshu Huang
- Department of Oral Surgery, School of Stomatology, Southern Medical University, Guangzhou, China
| | - Min Wang
- Department of Oral Surgery, School of Stomatology, Southern Medical University, Guangzhou, China
| | - Yue Ming
- Department of Oral Surgery, School of Stomatology, Southern Medical University, Guangzhou, China
| | - Weixing Chen
- Department of Oral Surgery, School of Stomatology, Southern Medical University, Guangzhou, China
| | - Yuanxin Chen
- Department of Oral Surgery, School of Stomatology, Southern Medical University, Guangzhou, China
| | - Zhengming Tang
- Department of Oral Surgery, School of Stomatology, Southern Medical University, Guangzhou, China
| | - Bo Jia
- Department of Oral Surgery, School of Stomatology, Southern Medical University, Guangzhou, China.
| |
Collapse
|
5
|
Wang M, Sun P, Li Z, Li J, Lv X, Chen S, Zhu X, Chai X, Zhao S. Eucommiae cortex polysaccharides attenuate gut microbiota dysbiosis and neuroinflammation in mice exposed to chronic unpredictable mild stress: Beneficial in ameliorating depressive-like behaviors. J Affect Disord 2023; 334:278-292. [PMID: 37156274 DOI: 10.1016/j.jad.2023.04.117] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 04/13/2023] [Accepted: 04/29/2023] [Indexed: 05/10/2023]
Abstract
BACKGROUND Chronic stress alters gut microbiota composition, as well as induces inflammatory responses and behavioral deficits. Eucommiae cortex polysaccharides (EPs) have been reported to remodel gut microbiota and ameliorate obesogenic diet-induced systemic low-grade inflammation, but their role in stress-induced behavioral and physiological changes is poorly understood. METHODS Male Institute of Cancer Research (ICR) mice were exposed to chronic unpredictable stress (CUMS) for 4 weeks and then supplemented with EPs at a dose of 400 mg/kg once per day for 2 weeks. Behavioral test-specific antidepressant and anxiolytic effects of EPs were assessed in FST, TST, EPM, and OFT. Microbiota composition and inflammation were detected using 16S ribosomal RNA (rRNA) gene sequencing, quantitative RT-PCR, western blot, and immunofluorescence. RESULTS We found that EPs ameliorated gut dysbiosis caused by CUMS, as evidenced by increasing the abundance of Lactobacillaceae and suppressing the expansion of the Proteobacteria, thereby mitigating intestinal inflammation and barrier derangement. Importantly, EPs reduced the release of bacterial-derived lipopolysaccharides (LPS, endotoxin) and inhibited the microglia-mediated TLR4/NFκB/MAPK signaling pathway, thereby attenuating the pro-inflammatory response in the hippocampus. These contributed to restoring the rhythm of hippocampal neurogenesis and alleviating behavioral abnormalities in CUMS mice. Correlation analysis showed that the perturbed-gut microbiota was strongly correlated with behavioral abnormalities and neuroinflammation. LIMITATIONS This study did not clarify the causal relationship between EPs remodeling the gut microbiota and improved behavior in CUMS mice. CONCLUSIONS EPs exert ameliorative effects on CUMS-induced neuroinflammation and depression-like symptoms, which may be strongly related to their beneficial effects on gut microbial composition.
Collapse
Affiliation(s)
- Mengli Wang
- College of Veterinary Medicine, Northwest A&F University, Yangling, China
| | - Penghao Sun
- College of Veterinary Medicine, Northwest A&F University, Yangling, China
| | - Zhuoni Li
- College of Veterinary Medicine, Northwest A&F University, Yangling, China
| | - Jing Li
- College of Veterinary Medicine, Northwest A&F University, Yangling, China
| | - Xin Lv
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Shulin Chen
- College of Veterinary Medicine, Northwest A&F University, Yangling, China
| | - Xiaoyan Zhu
- College of Veterinary Medicine, Northwest A&F University, Yangling, China.
| | - Xuejun Chai
- College of Basic Medicine, Xi'an Medical University, Xi'an, China.
| | - Shanting Zhao
- College of Veterinary Medicine, Northwest A&F University, Yangling, China.
| |
Collapse
|
6
|
Shalaby M, Abdеlaziz RR, Ghoneim HA, Suddеk GM. Imatinib mitigates experimentally-induced ulcerative colitis: Possible contribution of NF-kB/JAK2/STAT3/COX2 signaling pathway. Life Sci 2023; 321:121596. [PMID: 36940909 DOI: 10.1016/j.lfs.2023.121596] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 03/06/2023] [Accepted: 03/15/2023] [Indexed: 03/22/2023]
Abstract
RATIONALE Ulcerative colitis (UC) is a chronic immune-mediated disease characterized by recurrent inflammation, damage, and alteration of the large intestine's mucosal and submucosal surfaces. The purpose of this research was to evaluate the impact of tyrosine kinase inhibitor (imatinib) on experimentally induced UC in rats via acetic acid (AA). METHODS Male rats were randomly assigned to four groups: control, AA, AA + imatinib (10 mg/kg), and AA + imatinib (20 mg/kg). Imatinib (10 and 20 mg/kg/day) was orally supplied by oral syringe for one week before induction of UC. On the eighth day, Rats received enemas containing a 4 % solution of acetic acid to induce colitis. One day after inducing colitis, rats were euthanized and their colons were subjected to morphological, biochemical, histological, and immunohistochemical analysis. RESULTS Imatinib pretreatment significantly decreased macroscopic and histological damage scores, decreased disease activity index as well as colon mass index. In addition, imatinib successfully lowered the levels of malondialdehyde (MDA) in colonic tissues and enhanced superoxide dismutase activity (SOD) and glutathione content (GSH). Imatinib also reduced colonic levels of inflammatory interleukins (IL-23, IL-17, IL-6), JAK2 and STAT3. Furthermore, imatinib suppressed nuclear transcription factor kappa B (NF-kB/p65) level, and COX2 expression in colonic tissues. SIGNIFICANCE Imatinib may be a viable therapy option for UC as it halts the interaction network of NF-kB/JAK2/STAT3/COX2 signaling pathway.
Collapse
Affiliation(s)
- Mohamed Shalaby
- Department of Pharmacology & Toxicology, Faculty of Pharmacy, Mansoura University, 35516 Mansoura, Egypt
| | - Rania R Abdеlaziz
- Department of Pharmacology & Toxicology, Faculty of Pharmacy, Mansoura University, 35516 Mansoura, Egypt.
| | - Hamdy A Ghoneim
- Department of Pharmacology & Toxicology, Faculty of Pharmacy, Mansoura University, 35516 Mansoura, Egypt
| | - Ghada M Suddеk
- Department of Pharmacology & Toxicology, Faculty of Pharmacy, Mansoura University, 35516 Mansoura, Egypt
| |
Collapse
|
7
|
Mulberry Anthocyanins Ameliorate DSS-Induced Ulcerative Colitis by Improving Intestinal Barrier Function and Modulating Gut Microbiota. Antioxidants (Basel) 2022; 11:antiox11091674. [PMID: 36139747 PMCID: PMC9496020 DOI: 10.3390/antiox11091674] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 08/13/2022] [Accepted: 08/22/2022] [Indexed: 12/12/2022] Open
Abstract
Mulberry has attracted wide attention due to its substantial nutritional values. This work first studied the protective effect of mulberry anthocyanins (MAS) on dextran sulfate sodium (DSS)-induced colitis. The mice experiment was designed as four groups including normal mice (Control), dextran sodium sulfate (DSS)-fed mice, and DSS plus 100 mg/kg·bw MAS-fed mice (LMAS-DSS) or DSS plus 200 mg/kg·bw MAS-fed mice (HMAS-DSS). Mice were given MAS by gavage for 1 week, and then DSS was added to the drinking water for 7 days. MAS was administered for a total of 17 days. The results showed that oral gavage of MAS reduced the disease activity index (DAI), prevented colon shortening, attenuated colon tissue damage and inflammatory response, suppressed colonic oxidative stress and restored the protein expression of intestinal tight junction (TJ) protein (ZO-1, occludin and claudin-3) in mice with DSS-induced colitis. In addition, analysis of 16S rRNA amplicon sequences showed that MAS reduced the DSS-induced intestinal microbiota dysbiosis, including a reduction in Escherichia-Shigella, an increase in Akkermansia, Muribaculaceae and Allobaculum. Collectively, MAS alleviates DSS-induced colitis by maintaining the intestinal barrier, modulating inflammatory cytokines, and improving the microbial community.
Collapse
|
8
|
Li C, Wang J, Ma R, Li L, Wu W, Cai D, Lu Q. Natural-derived alkaloids exhibit great potential in the treatment of ulcerative colitis. Pharmacol Res 2021; 175:105972. [PMID: 34758401 DOI: 10.1016/j.phrs.2021.105972] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Revised: 10/29/2021] [Accepted: 11/02/2021] [Indexed: 12/12/2022]
Abstract
Ulcerative colitis (UC) is a chronic nonspecific inflammatory disease of colon and rectum with unknown etiology, and the lesions are mainly confined to the mucosa and submucosa of large intestine. The main clinical features of UC include diarrhea, abdominal pain, bloody purulent stool and tenesmus, which seriously affect patients' quality of life. Most of UC patients would receive drug therapy with the exception of surgery for some severe cases. However, current drugs for the treatment of UC have certain limitations including difficulty of radical treatment, adverse reactions and drug resistance after long-term use and exorbitant price of some drugs. The research and development of new drugs for the treatment of UC is urgent, and natural alkaloids are an important source. This research paid close attention to the progress of natural alkaloids from diverse medicinal plants for treating UC in the last twenty years. The potential mechanisms for the natural alkaloids in the treatment of UC was closely related to its modulation of oxidative stress, immune response, intestinal flora and improvement of the gut barrier function. Remarkable effectiveness and safety of natural-derived alkaloids make them potential candidates of UC therapy.
Collapse
Affiliation(s)
- Cailan Li
- Department of Pharmacology, Zunyi Medical University, Zhuhai Campus, Zhuhai 519041, PR China
| | - Jiahao Wang
- Department of Pharmacology, Zunyi Medical University, Zhuhai Campus, Zhuhai 519041, PR China
| | - Runfang Ma
- Department of Pharmaceutical Sciences, Zunyi Medical University, Zhuhai Campus, Zhuhai 519041, PR China
| | - Luhao Li
- Health Service Center of Dengfeng Street Community, Yuexiu District, Guangzhou 510091, PR China
| | - Wenfeng Wu
- Laboratory of Herbal Pharmacology, GuangDong Second Traditional Chinese Medicine Hospital, Guangzhou 510095, PR China
| | - Dake Cai
- Laboratory of Herbal Pharmacology, GuangDong Second Traditional Chinese Medicine Hospital, Guangzhou 510095, PR China
| | - Qiang Lu
- Department of Pharmaceutical Sciences, Zunyi Medical University, Zhuhai Campus, Zhuhai 519041, PR China.
| |
Collapse
|