1
|
Cao S, Qin X, Li C, Zhang L, Ren S, Zhou W, Zhao M, Zhou G. The IL-33/ ST2 Axis Affects Adipogenesis Through Regulating the TRAF6/ RelA Pathway. Int J Mol Sci 2024; 25:12005. [PMID: 39596071 PMCID: PMC11593896 DOI: 10.3390/ijms252212005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 10/24/2024] [Accepted: 11/07/2024] [Indexed: 11/28/2024] Open
Abstract
Understanding the regulatory mechanisms of adipogenesis is essential for preventing obesity. Interleukin-33 (IL-33) has recently attracted increasing attention for its role in adipogenesis. The purpose of this study was to explore the function and regulatory mechanism of IL-33 and its receptor suppression of tumorigenicity 2 (ST2) on adipogenesis. Here, Oil Red O staining was used to detect the accumulation of intracellular lipid droplets. Molecular techniques such as qRT-PCR and Western blotting were used to detect the expression of pivotal genes and adipogenic marker genes. Gains and losses of function experiments were used to explore the potential regulatory mechanism of the IL-33/ST2 axis in adipogenesis. Functionally, IL-33 is negatively associated with adipogenesis in 3T3-L1 preadipocytes, while ST2 is positively associated with it, encompassing both the trans-membrane receptor ST2 (ST2L) and the soluble ST2 (sST2). Mechanistically, the IL-33/ST2 axis affects adipogenesis by regulating the expression of the TRAF6/RelA pathway in 3T3-L1 preadipocytes. Downregulating the expression of ST2 suppressed the activation of the IL-33/ST2 axis, which subsequently inhibits the expression of TRAF6. This further attenuates the expression of RelA, ultimately resulting in the suppression of adipogenesis in 3T3-L1 preadipocytes. This study reveals a new mechanism by which the IL-33/ST2 axis regulates the differentiation of preadipocytes and provides a new idea for improving obesity prevention.
Collapse
Affiliation(s)
- Shujun Cao
- College of Agriculture and Biology, Liaocheng University, Liaocheng 252000, China; (S.C.); (X.Q.); (C.L.); (S.R.); (W.Z.); (M.Z.)
| | - Xuyong Qin
- College of Agriculture and Biology, Liaocheng University, Liaocheng 252000, China; (S.C.); (X.Q.); (C.L.); (S.R.); (W.Z.); (M.Z.)
| | - Chengping Li
- College of Agriculture and Biology, Liaocheng University, Liaocheng 252000, China; (S.C.); (X.Q.); (C.L.); (S.R.); (W.Z.); (M.Z.)
| | - Lichun Zhang
- Institute of Animal Biotechnology, Jilin Academy of Agricultural Sciences, Gongzhuling 136100, China;
| | - Shizhong Ren
- College of Agriculture and Biology, Liaocheng University, Liaocheng 252000, China; (S.C.); (X.Q.); (C.L.); (S.R.); (W.Z.); (M.Z.)
| | - Wenhao Zhou
- College of Agriculture and Biology, Liaocheng University, Liaocheng 252000, China; (S.C.); (X.Q.); (C.L.); (S.R.); (W.Z.); (M.Z.)
| | - Meiman Zhao
- College of Agriculture and Biology, Liaocheng University, Liaocheng 252000, China; (S.C.); (X.Q.); (C.L.); (S.R.); (W.Z.); (M.Z.)
| | - Guoli Zhou
- College of Agriculture and Biology, Liaocheng University, Liaocheng 252000, China; (S.C.); (X.Q.); (C.L.); (S.R.); (W.Z.); (M.Z.)
| |
Collapse
|
2
|
Xu D, Zhuang S, Chen H, Jiang M, Jiang P, Wang Q, Wang X, Chen R, Tang H, Tang L. IL-33 regulates adipogenesis via Wnt/β-catenin/PPAR-γ signaling pathway in preadipocytes. J Transl Med 2024; 22:363. [PMID: 38632591 PMCID: PMC11022325 DOI: 10.1186/s12967-024-05180-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 04/05/2024] [Indexed: 04/19/2024] Open
Abstract
Interleukin-33 (IL-33), an emerging cytokine within the IL-1 family, assumes a pivotal function in the control of obesity. However, the specific mechanism of its regulation of obesity formation remains unclear. In this study, we found that the expression level of IL-33 increased in visceral adipose tissue in mice fed with a high-fat diet (HFD) compared with that in mice fed with a normal diet (ND). In vitro, we also found the expression level of IL-33 was upregulated during the adipogenesis of 3T3-L1 cells. Functional test results showed that knockdown of IL-33 in 3T3-L1 cells differentiation could promote the accumulation of lipid droplets, the content of triglyceride and the expression of adipogenic-related genes (i.e. PPAR-γ, C/EBPα, FABP4, LPL, Adipoq and CD36). In contrast, overexpression of IL-33 inhibits adipogenic differentiation. Meanwhile, the above tests were repeated after over-differentiation of 3T3-L1 cells induced by oleic acid, and the results showed that IL-33 played a more significant role in the regulation of adipogenesis. To explore the mechanism, transcriptome sequencing was performed and results showed that IL-33 regulated the PPAR signaling pathway in 3T3-L1 cells. Further, Western blot and confocal microscopy showed that the inhibition of IL-33 could promote PPAR-γ expression by inhibiting the Wnt/β-catenin signal in 3T3-L1 cells. This study demonstrated that IL-33 was an important regulator of preadipocyte differentiation and inhibited adipogenesis by regulating the Wnt/β-catenin/PPAR-γ signaling pathway, which provided a new insight for further research on IL-33 as a new intervention target for metabolic disorders.
Collapse
Affiliation(s)
- Danning Xu
- Department of Laboratory Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Siqi Zhuang
- Department of Laboratory Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Hongzhi Chen
- National Clinical Research Center for Metabolic Disease, Key Laboratory of Diabetes Immunology, Ministry of Education, Metabolic Syndrome Research Center, and Department of Metabolism & Endocrinology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Mengjie Jiang
- Department of Laboratory Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Ping Jiang
- Department of Laboratory Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Qian Wang
- Department of Laboratory Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Xuemei Wang
- Department of Laboratory Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Ruohong Chen
- Department of Laboratory Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Haoneng Tang
- Department of Laboratory Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China.
| | - Lingli Tang
- Department of Laboratory Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China.
| |
Collapse
|
3
|
Ye J, Gao C, Liang Y, Hou Z, Shi Y, Wang Y. Characteristic and fate determination of adipose precursors during adipose tissue remodeling. CELL REGENERATION (LONDON, ENGLAND) 2023; 12:13. [PMID: 37138165 PMCID: PMC10156890 DOI: 10.1186/s13619-023-00157-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Accepted: 12/30/2022] [Indexed: 05/05/2023]
Abstract
Adipose tissues are essential for actively regulating systemic energy balance, glucose homeostasis, immune responses, reproduction, and longevity. Adipocytes maintain dynamic metabolic needs and possess heterogeneity in energy storage and supply. Overexpansion of adipose tissue, especially the visceral type, is a high risk for diabetes and other metabolic diseases. Changes in adipocytes, hypertrophy or hyperplasia, contribute to the remodeling of obese adipose tissues, accompanied by abundant immune cell accumulation, decreased angiogenesis, and aberrant extracellular matrix deposition. The process and mechanism of adipogenesis are well known, however, adipose precursors and their fate decision are only being defined with recent information available to decipher how adipose tissues generate, maintain, and remodel. Here, we discuss the key findings that identify adipose precursors phenotypically, with special emphasis on the intrinsic and extrinsic signals in instructing and regulating the fate of adipose precursors under pathophysiological conditions. We hope that the information in this review lead to novel therapeutic strategies to combat obesity and related metabolic diseases.
Collapse
Affiliation(s)
- Jiayin Ye
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 320 Yueyang Road, Shanghai, 200031, China
| | - Cheng Gao
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 320 Yueyang Road, Shanghai, 200031, China
| | - Yong Liang
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 320 Yueyang Road, Shanghai, 200031, China
| | - Zongliu Hou
- Key Laboratory of Tumor Immunological Prevention and Treatment of Yunnan Province, Kunming, 650000, Yunnan, China
| | - Yufang Shi
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 320 Yueyang Road, Shanghai, 200031, China.
- The Third Affiliated Hospital of Soochow University and State Key Laboratory of Radiation Medicine and Protection, Institutes for Translational Medicine, Soochow University, 199 Renai Road, Suzhou, 215123, Jiangsu, China.
| | - Ying Wang
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 320 Yueyang Road, Shanghai, 200031, China.
| |
Collapse
|
4
|
Unveiling IL-33/ST2 Pathway Unbalance in Cardiac Remodeling Due to Obesity in Zucker Fatty Rats. Int J Mol Sci 2023; 24:ijms24031991. [PMID: 36768322 PMCID: PMC9916239 DOI: 10.3390/ijms24031991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 01/15/2023] [Accepted: 01/16/2023] [Indexed: 01/21/2023] Open
Abstract
Obesity is an epidemic condition linked to cardiovascular disease severity and mortality. Fat localization and type represent cardiovascular risk estimators. Importantly, visceral fat secretes adipokines known to promote low-grade inflammation that, in turn, modulate its secretome and cardiac metabolism. In this regard, IL-33 regulates the functions of various immune cells through ST2 binding and-following its role as an immune sensor to infection and stress-is involved in the pro-fibrotic remodeling of the myocardium. Here we further investigated the IL-33/ST2 effects on cardiac remodeling in obesity, focusing on molecular pathways linking adipose-derived IL-33 to the development of fibrosis or hypertrophy. We analyzed the Zucker Fatty rat model, and we developed in vitro models to mimic the adipose and myocardial relationship. We demonstrated a dysregulation of IL-33/ST2 signaling in both adipose and cardiac tissue, where they affected Epac proteins and myocardial gene expression, linked to pro-fibrotic signatures. In Zucker rats, pro-fibrotic effects were counteracted by ghrelin-induced IL-33 secretion, whose release influenced transcription factor expression and ST2 isoforms balance regulation. Finally, the effect of IL-33 signaling is dependent on several factors, such as cell types' origin and the balancing of ST2 isoforms. Noteworthy, it is reasonable to state that considering IL-33 to have a unique protective role should be considered over-simplistic.
Collapse
|
5
|
Interleukin-33 inhibits glucose uptake in human adipocytes and its expression in adipose tissue is elevated in insulin resistance and type 2 diabetes. Cytokine 2023; 161:156080. [PMID: 36368230 DOI: 10.1016/j.cyto.2022.156080] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 10/05/2022] [Accepted: 10/18/2022] [Indexed: 11/09/2022]
Abstract
OBJECTIVE Interleukin-33 (IL-33) is associated with obesity-related inflammation. We aim to investigate IL-33 expression in subcutaneous adipose tissue (SAT) in type 2 diabetes (T2D) subjects and its effects on human adipocyte glucose uptake. METHODS Expression of IL-33 was analysed in SAT from cohort studies including subjects with and without obesity and T2D and correlated with insulin resistance and obesity markers. Magnetic resonance imaging (MRI) of tissue fat volumes was performed. We investigated the effects of IL-33 treatment on ex vivo adipocyte glucose uptake. RESULTS T2D subjects had higher IL-33 gene and protein expression in SAT than the control subjects. IL-33 mRNA expression was positively correlated with markers of dysglycemia (e.g. HbA1c), insulin resistance (e.g. HOMA-IR) and adiposity (BMI, visceral adipose tissue volume, liver and pancreas fat %). In multiple linear regression analyses, insulin resistance and T2D status were the strongest predictors of IL-33, independent of BMI. IL-33 mRNA expression was negatively correlated with expression of genes regulating adipocyte glucose uptake, lipid storage, and adipogenesis (e.g.glucose transporter 1 and 4 (GLUT1/4), fatty acid binding protein 4 (FABP4), and PPARG). Additionally, incubation of SAT with IL-33 reduced adipocyte glucose uptake and GLUT4 gene and protein expression. CONCLUSIONS Our findings suggest that T2D subjects have higher IL-33 gene and protein expressionin SATthan control subjects, which is associated with insulin resistance and reduced gene expression of lipid storage and adipogenesis markers. IL-33 may reduce adipocyte glucose uptake. This opens up a potential pharmacological route for reversing insulin resistance in T2D and prediabetes.
Collapse
|
6
|
Lin J, Liu J, Ma R, Hao J, Liang Y, Zhao J, Zhang A, Meng H, Lu J. Interleukin-33: Metabolic checkpoints, metabolic processes, and epigenetic regulation in immune cells. Front Immunol 2022; 13:900826. [PMID: 35979357 PMCID: PMC9376228 DOI: 10.3389/fimmu.2022.900826] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 07/12/2022] [Indexed: 11/13/2022] Open
Abstract
Interleukin-33 (IL-33) is a pleiotropic cytokine linked to various immune cells in the innate and adaptive immune systems. Recent studies of the effects of IL-33 on immune cells are beginning to reveal its regulatory mechanisms at the levels of cellular metabolism and epigenetic modifications. In response to IL-33 stimulation, these programs are intertwined with transcriptional programs, ultimately determining the fate of immune cells. Understanding these specific molecular events will help to explain the complex role of IL-33 in immune cells, thereby guiding the development of new strategies for immune intervention. Here, we highlight recent findings that reveal how IL-33, acting as an intracellular nuclear factor or an extracellular cytokine, alters metabolic checkpoints and cellular metabolism, which coordinately contribute to cell growth and function. We also discuss recent studies supporting the role of IL-33 in epigenetic alterations and speculate about the mechanisms underlying this relationship.
Collapse
Affiliation(s)
- Jian Lin
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Henan Engineering Research Center of Clinical Mass Spectrometry for Precision Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Zhengzhou Key Laboratory of Clinical Mass Spectrometry, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Jiyun Liu
- Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiamen, China
| | - Rui Ma
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Henan Engineering Research Center of Clinical Mass Spectrometry for Precision Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Zhengzhou Key Laboratory of Clinical Mass Spectrometry, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Jie Hao
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Henan Engineering Research Center of Clinical Mass Spectrometry for Precision Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Zhengzhou Key Laboratory of Clinical Mass Spectrometry, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yan Liang
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Henan Engineering Research Center of Clinical Mass Spectrometry for Precision Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Zhengzhou Key Laboratory of Clinical Mass Spectrometry, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Junjie Zhao
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Henan Engineering Research Center of Clinical Mass Spectrometry for Precision Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Zhengzhou Key Laboratory of Clinical Mass Spectrometry, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Ailing Zhang
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Henan Engineering Research Center of Clinical Mass Spectrometry for Precision Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Zhengzhou Key Laboratory of Clinical Mass Spectrometry, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Haiyang Meng
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Henan Engineering Research Center of Clinical Mass Spectrometry for Precision Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Zhengzhou Key Laboratory of Clinical Mass Spectrometry, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Jingli Lu
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Henan Engineering Research Center of Clinical Mass Spectrometry for Precision Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Zhengzhou Key Laboratory of Clinical Mass Spectrometry, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- *Correspondence: Jingli Lu,
| |
Collapse
|
7
|
Dong Q, Tian J, Zheng W, Fan Q, Wu X, Tang Y, Liu T, Yin H. Interleukin-33 protects mice against hindlimb ischemic injury by enhancing endothelial angiogenesis. Int Immunopharmacol 2022; 109:108850. [DOI: 10.1016/j.intimp.2022.108850] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 04/30/2022] [Accepted: 05/09/2022] [Indexed: 12/15/2022]
|
8
|
Jeerawattanawart S, Siripurkpong P, Roytrakul S, Angkasekwinai P. IL-25 directly modulates adipocyte function and inflammation through the regulation of adiponectin. Inflamm Res 2022; 71:1229-1244. [PMID: 35819460 DOI: 10.1007/s00011-022-01606-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 06/28/2022] [Indexed: 11/30/2022] Open
Abstract
OBJECTIVE This study aimed to investigate the direct role of IL-25 in modulating adipocyte function during homeostasis and low-grade inflammation induced by lipopolysaccharide (LPS). METHODS The 3T3-L1 preadipocyte cell lines and primary cultures of adipose-derived stromal vascular precursor cells of wild-type and IL-17RB-deficient mice were used to determine the direct function of IL-25. The expression of IL-17RB in differentiating adipocyte was determined using real-time PCR and flow cytometry analysis. The effect of IL-25 on lipid accumulation, triglyceride content, lipolysis, glucose uptake, and adipokine expression in the mature adipocytes was evaluated. IL-25 modulating the expression of inflammatory cytokines in adipocytes induced by low dose LPS was determined using real-time PCR and ELISA. RESULTS The receptor for IL-25 was up-regulated during adipocyte differentiation and IL-25 directly modulated adipocyte function by reducing lipid accumulation and triglyceride concentration and enhancing lipolysis without affecting an insulin-stimulated glucose uptake. Interestingly, IL-25 induced adiponectin secretion through the PI3K/AKT signaling pathway. In 3T3-L1 adipocytes under low-grade inflammation, IL-25 attenuated the expression of IL-6 and CCL5 through the induction of adiponectin. CONCLUSION Our studies suggest that IL-25 directly regulates adipocyte function by maintaining the adiponectin level during homeostasis and by alleviating inflammatory response through the regulation of adiponectin during low-grade inflammation in adipocytes.
Collapse
Affiliation(s)
- Siranart Jeerawattanawart
- Department of Medical Technology, Faculty of Allied Health Sciences, Thammasat University, Pathumthani, 12120, Thailand.,Graduate Program in Biomedical Sciences, Faculty of Allied Health Sciences, Thammasat University, Pathumthani, 12120, Thailand
| | - Pilaiwan Siripurkpong
- Department of Medical Technology, Faculty of Allied Health Sciences, Thammasat University, Pathumthani, 12120, Thailand
| | - Sittiruk Roytrakul
- Functional Proteomics Technology Laboratory, Functional Ingredients and Food Innovation Research Group, National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Pathumthani, 12120, Thailand
| | - Pornpimon Angkasekwinai
- Department of Medical Technology, Faculty of Allied Health Sciences, Thammasat University, Pathumthani, 12120, Thailand.
| |
Collapse
|