1
|
Grigio V, Guerra LHA, Silva SB, Freitas MB, Taboga SR, Vilamaior PSL. Coconut oil affects aging-related changes in Mongolian gerbil liver morphophysiology. J Nutr Biochem 2024; 134:109749. [PMID: 39233189 DOI: 10.1016/j.jnutbio.2024.109749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 08/03/2024] [Accepted: 08/27/2024] [Indexed: 09/06/2024]
Abstract
Aging causes changes in liver morphophysiology, altering hepatocyte morphology and organ function. Due to its antioxidant and anti-inflammatory properties, coconut oil has been used as a therapeutic agent in diets, in an attempt to attenuate alterations in the liver naturally caused by aging. Herein, we evaluated the effects of coconut oil consumption during aging on Mongolian gerbil liver morphophysiology. The animals were divided into three experimental groups: the gerbils in the Adult Control Group (AC) were euthanized at 3 months of age, the gerbils in the Old Control Group (OC) at 15 months of age, and the gerbils in the Coconut Oil Group (CO) received 0.1 ml/day of coconut oil for 12 months and were euthanized at 15 months of age. Prolonged consumption of coconut oil during aging prevented the animals and the liver from gaining mass. However, the other results showed that coconut oil intensified the morphophysiological alterations of aging, promoting an increase in the hepatocyte cytoplasm and nuclei. In addition, an increase in blood vessels, reticular fibers, lipid droplets, and lipofuscin granules were observed in the CO group. Finally, the results also demonstrated that coconut oil promotes an increase in lipid peroxidation, indicated by an increase in MDA levels. We therefore conclude that coconut oil has the potential to intensify the morphophysiological alterations that occur in the liver during aging.
Collapse
Affiliation(s)
- Vitor Grigio
- Department of Biological Sciences, Institute of Biosciences, Humanities and Exact Sciences, São Paulo State University (UNESP), São Paulo, Brazil
| | - Luiz Henrique Alves Guerra
- Department of Biological Sciences, Institute of Biosciences, Humanities and Exact Sciences, São Paulo State University (UNESP), São Paulo, Brazil
| | - Stella Bicalho Silva
- Department of Biological Sciences, Institute of Biosciences, Humanities and Exact Sciences, São Paulo State University (UNESP), São Paulo, Brazil; Department of Animal Biology, Federal University of Viçosa, Viçosa, Minas Gerais, Brazil
| | | | - Sebastião Roberto Taboga
- Department of Biological Sciences, Institute of Biosciences, Humanities and Exact Sciences, São Paulo State University (UNESP), São Paulo, Brazil
| | - Patrícia Simone Leite Vilamaior
- Department of Biological Sciences, Institute of Biosciences, Humanities and Exact Sciences, São Paulo State University (UNESP), São Paulo, Brazil.
| |
Collapse
|
2
|
Semenovich DS, Zorova LD, Abramicheva PA, Andrianova NV, Elchaninov AV, Petrukhina AS, Pevzner IB, Manskikh VN, Zorov DB, Plotnikov EY. Impact of Intermittent Fasting and Dietary Restriction on Redox State, Energetic Metabolism, and Liver Injury in Common Bile Duct Ligation Model. Antioxidants (Basel) 2024; 13:835. [PMID: 39061903 PMCID: PMC11273810 DOI: 10.3390/antiox13070835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 07/03/2024] [Accepted: 07/09/2024] [Indexed: 07/28/2024] Open
Abstract
The aim of this work was to test whether we can treat cholestasis with dietary approaches applied after the onset of the disease. The effects of intermittent fasting and dietary restriction on liver damage caused by common bile duct ligation (BDL) in rats were studied, with particular attention paid to changes in the activity of enzymes of energy metabolism and antioxidant protection. Morphological changes in liver tissue and serum markers of liver damage were assessed in rats with BDL kept for one month on ad libitum diet, intermittent fasting, or 35% dietary restriction. We studied parameters of glucose metabolism (activity of glycolysis and gluconeogenesis enzymes), TCA cycle, and indicators of oxidative stress and redox status of the liver tissue. Dietary restriction resulted in an increase in gluconeogenesis activity, antioxidant capacity, and autophagy activation. When implemented after BDL, none of the dietary restriction protocols reduced the level of oxidative stress, detrimental morphological and biochemical alterations, or the fibrosis progression. Thus, under severe damage and oxidative stress developing in cholestasis, dietary restrictions are not hepatoprotective and can only be used in a pre-treatment mode.
Collapse
Affiliation(s)
- Dmitry S. Semenovich
- A.N. Belozersky Institute of Physico-Chemical Biology, Moscow State University, 119992 Moscow, Russia; (D.S.S.); (L.D.Z.); (P.A.A.); (N.V.A.); (I.B.P.); (V.N.M.)
| | - Ljubava D. Zorova
- A.N. Belozersky Institute of Physico-Chemical Biology, Moscow State University, 119992 Moscow, Russia; (D.S.S.); (L.D.Z.); (P.A.A.); (N.V.A.); (I.B.P.); (V.N.M.)
- V.I. Kulakov National Medical Research Center for Obstetrics, Gynecology and Perinatology, Ministry of Healthcare of Russian Federation, 117198 Moscow, Russia
| | - Polina A. Abramicheva
- A.N. Belozersky Institute of Physico-Chemical Biology, Moscow State University, 119992 Moscow, Russia; (D.S.S.); (L.D.Z.); (P.A.A.); (N.V.A.); (I.B.P.); (V.N.M.)
| | - Nadezda V. Andrianova
- A.N. Belozersky Institute of Physico-Chemical Biology, Moscow State University, 119992 Moscow, Russia; (D.S.S.); (L.D.Z.); (P.A.A.); (N.V.A.); (I.B.P.); (V.N.M.)
- Institute for Artificial Intelligence, Lomonosov Moscow State University, 119992 Moscow, Russia
| | - Andrey V. Elchaninov
- Avtsyn Research Institute of Human Morphology of Federal State Budgetary Scientific Institution “Petrovsky National Research Centre of Surgery”, 117418 Moscow, Russia;
| | - Aleksandra S. Petrukhina
- K.I. Skryabin Moscow State Academy of Veterinary Medicine and Biotechnology, 109472 Moscow, Russia;
| | - Irina B. Pevzner
- A.N. Belozersky Institute of Physico-Chemical Biology, Moscow State University, 119992 Moscow, Russia; (D.S.S.); (L.D.Z.); (P.A.A.); (N.V.A.); (I.B.P.); (V.N.M.)
- V.I. Kulakov National Medical Research Center for Obstetrics, Gynecology and Perinatology, Ministry of Healthcare of Russian Federation, 117198 Moscow, Russia
| | - Vasily N. Manskikh
- A.N. Belozersky Institute of Physico-Chemical Biology, Moscow State University, 119992 Moscow, Russia; (D.S.S.); (L.D.Z.); (P.A.A.); (N.V.A.); (I.B.P.); (V.N.M.)
| | - Dmitry B. Zorov
- A.N. Belozersky Institute of Physico-Chemical Biology, Moscow State University, 119992 Moscow, Russia; (D.S.S.); (L.D.Z.); (P.A.A.); (N.V.A.); (I.B.P.); (V.N.M.)
- V.I. Kulakov National Medical Research Center for Obstetrics, Gynecology and Perinatology, Ministry of Healthcare of Russian Federation, 117198 Moscow, Russia
| | - Egor Y. Plotnikov
- A.N. Belozersky Institute of Physico-Chemical Biology, Moscow State University, 119992 Moscow, Russia; (D.S.S.); (L.D.Z.); (P.A.A.); (N.V.A.); (I.B.P.); (V.N.M.)
- V.I. Kulakov National Medical Research Center for Obstetrics, Gynecology and Perinatology, Ministry of Healthcare of Russian Federation, 117198 Moscow, Russia
| |
Collapse
|
3
|
Teker HT, Ceylani T, Keskin S, Samgane G, Baba B, Acıkgoz E, Gurbanov R. Reduced liver damage and fibrosis with combined SCD Probiotics and intermittent fasting in aged rat. J Cell Mol Med 2024; 28:e18014. [PMID: 37897241 PMCID: PMC10805504 DOI: 10.1111/jcmm.18014] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 10/08/2023] [Accepted: 10/17/2023] [Indexed: 10/30/2023] Open
Abstract
This study aimed to examine the impact of SCD Probiotics supplementation on liver biomolecule content and histological changes during a 30-day intermittent fasting (IF) program in 24-month-old male Sprague-Dawley rats. Rats underwent 18-h daily fasting and received 1 × 108 CFU of SCD Probiotics daily. Liver tissue biomolecules were analysed using FTIR Spectroscopy, LDA, and SVM techniques, while histopathological evaluations used Haematoxylin and eosin and Masson trichrome-stained tissues. Blood samples were collected for biochemical analysis. Gross alterations in the quantity of biomolecules were observed with individual or combined treatments. LDA and SVM analyses demonstrated a high accuracy in differentiating control and treated groups. The combination treatments led to the most significant reduction in cholesterol ester (1740 cm-1 ) and improved protein phosphorylation (A1239 /A2955 and A1080 /A1545 ) and carbonylation (A1740 /A1545 ). Individually, IF and SCD Probiotics were more effective in enhancing membrane dynamics (Bw2922 /Bw2955 ). In treated groups, histological evaluations showed decreased hepatocyte degeneration, lymphocyticinfiltration, steatosis and fibrosis. Serum ALP, LDH and albumin levels significantly increased in the SCD Probiotics and combined treatment groups. This study offers valuable insights into the potential mechanisms behind the beneficial effects of IF and SCD Probiotics on liver biomolecule content, contributing to the development of personalized nutrition and health strategies.
Collapse
Affiliation(s)
- Hikmet Taner Teker
- Department of Medical Biology and GeneticsAnkara Medipol UniversityAnkaraTurkey
| | - Taha Ceylani
- Department of Molecular Biology and GeneticsMuş Alparslan UniversityMuşTurkey
- Department of Food Quality Control and AnalysisMuş Alparslan UniversityMuşTurkey
| | - Seda Keskin
- Department of Histology and EmbryologyVan Yuzuncu Yil UniversityVanTurkey
| | - Gizem Samgane
- Department of BioengineeringBilecik Şeyh Edebali UniversityBilecikTurkey
| | - Burcu Baba
- Department of Medical BiochemistryYüksek İhtisas UniversityAnkaraTurkey
| | - Eda Acıkgoz
- Department of Histology and EmbryologyVan Yuzuncu Yil UniversityVanTurkey
| | - Rafig Gurbanov
- Department of BioengineeringBilecik Şeyh Edebali UniversityBilecikTurkey
- Central Research Laboratory (BARUM)Bilecik Şeyh Edebali UniversityBilecikTurkey
| |
Collapse
|
4
|
Ahmadpour S, Habibi MA, Hosseinimehr SJ. Various Aspects of Fasting on the Biodistribution of Radiopharmaceuticals. Curr Drug Metab 2022; 23:827-841. [PMID: 36121082 DOI: 10.2174/1389200223666220919121354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 07/08/2022] [Accepted: 07/30/2022] [Indexed: 01/11/2023]
Abstract
It is demonstrated that fasting can alter the biodistribution of radiopharmaceuticals in nuclear medicine. Various studies have highlighted that fasting is interpreted to be easy for physicians during PET study, fasting is one of the most important factors determining the usefulness of this protocol. It is well documented that fasting can suppress normal 18F-FDG PET uptake during nuclear cardiology. However, there is no consensus about the usefulness of fasting on radiopharmaceuticals, especially on 18F-FDG in PET imaging, but special attention should be paid to the setting of the fasting duration. Nevertheless, it does seem we still need extensive clinical studies in the future. The present study aims to review the various aspects of fasting, especially metabolic alteration on radiopharmaceutical biodistribution. In this study, we focused more on the effect of fasting on 18F-FDG biodistribution, which alters its imaging contrast in cardiology and cancer imaging. Therefore, shifting substrate metabolism from glucose to free fatty acids during fasting can be an alternative approach to suppress physiological myocardial uptake.
Collapse
Affiliation(s)
- Sajjad Ahmadpour
- Gastroenterology and Hepatology Diseases Research Center, Qom University of Medical Sciences, Qom, Iran
| | - Mohammad Amin Habibi
- Iranian Tissue Bank and Research Center, Gene, Cell and Tissue Institute, Tehran University of Medical Sciences, Tehran, Iran.,Clinical Research of Development Center, Beheshti Hospital, Qom University of Medical Sciences, Qom, Iran
| | - Seyed Jalal Hosseinimehr
- Department of Radiopharmacy, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
| |
Collapse
|
5
|
Wang Q, Gao B, Yue X, Cui Y, Loor JJ, Dai X, Wei X, Xu C. Weighted Gene Co-expression Network Analysis Identifies Specific Modules and Hub Genes Related to Subacute Ruminal Acidosis. Front Vet Sci 2022; 9:897714. [PMID: 35754546 PMCID: PMC9226770 DOI: 10.3389/fvets.2022.897714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 04/26/2022] [Indexed: 11/13/2022] Open
Abstract
Weighted gene co-expression network analysis (WGCNA) was used to understand the pathogenesis of subacute ruminal acidosis (SARA) and identify potential genes related to the disease. Microarray data from dataset GSE143765, which included 22 cows with and nine cows without SARA, were downloaded from the NCBI Gene Expression Omnibus (GEO). Results of WGCNA identified highly correlated modules of sample genes, and Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses allowed further biological insights into SARA-related modules. The protein-protein interaction (PPI) network, modules from the PPI network, and cistron annotation enrichment of modules were also analyzed. A total of 14,590 DEGs were used for the WGCNA. Construction of a protein-protein network identified DCXR, MMP15, and MMP17 as hub genes. Functional annotation showed that DCXR mainly exhibited L-xylulose reductase (NADP+) activity, glucose metabolic process, xylulose metabolic process, and carbonyl reductase (NADPH) activity, which are involved in the pentose and glucuronate interconversion pathways. MMP15 and MMP17 mainly have a collagen catabolic process. Overall, the results of this study aid the clarification of the biological and metabolic processes associated with SARA at the molecular level. The data highlight potential mechanisms for the future development of intervention strategies to reduce or alleviate the risk of SARA.
Collapse
Affiliation(s)
- Qiuju Wang
- College of Animal Science and Technology, Heilongjiang Bayi Agricultural University, Daqing, China.,Key Laboratory of Low-Carbon Green Agriculture in Northeastern China, Ministry of Agriculture and Rural Affairs P. R. China, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Bingnan Gao
- College of Animal Science and Technology, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Xueqing Yue
- College of Animal Science and Technology, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Yizhe Cui
- College of Animal Science and Technology, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Juan J Loor
- Department of Animal Sciences, Division of Nutritional Sciences, University of Illinois, Urbana, IL, United States
| | - Xiaoxia Dai
- The Royal Veterinary College, University of London, London, United Kingdom
| | - Xu Wei
- Department of Biosystems, Division of Animal and Human Health Engineering, KU Leuven, Leuven, Belgium
| | - Chuang Xu
- College of Animal Science and Technology, Heilongjiang Bayi Agricultural University, Daqing, China.,Heilongjiang Provincial Key Laboratory of Prevention and Control of Bovine Diseases, Daqing, China
| |
Collapse
|