1
|
Naji O, Ghouzlani A, Rafii S, Sadiqi RU, Kone AS, Harmak Z, Choukri K, Kandoussi S, Karkouri M, Badou A. Investigating tumor immunogenicity in breast cancer: deciphering the tumor immune response to enhance therapeutic approaches. Front Immunol 2024; 15:1399754. [PMID: 39507526 PMCID: PMC11538072 DOI: 10.3389/fimmu.2024.1399754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 09/18/2024] [Indexed: 11/08/2024] Open
Abstract
The interplay between immune cells and malignant cells represents an essential chapter in the eradication of breast cancer. This widely distributed and diverse form of cancer represents a major threat to women worldwide. The incidence of breast cancer is related to several risk factors, notably genetic predisposition and family antecedents. Despite progress in treatment modalities varying from surgery and chemotherapy to radiotherapy and targeted therapies, persistently high rates of recurrence, metastasis, and treatment resistance underscore the urgent need for new therapeutic approaches. Immunotherapy has gained considerable ground in the treatment of breast cancer, as it takes advantage of the complex interactions within the tumor microenvironment. This dynamic interplay between immune and tumor cells has become a key point of focus in immunological research. This study investigates the role of various cancer markers, such as neoantigens and immune regulatory genes, in the diagnosis and treatment of breast tumors. Moreover, it explores the future potential of immune checkpoint inhibitors as therapeutically effective agents, as well as the challenges that prevent their efficacy, in particular tumor-induced immunosuppression and the difficulty of achieving tumor specificity.
Collapse
Affiliation(s)
- Oumayma Naji
- Immuno-Genetics and Human Pathologies Laboratory (LIGEP), Faculty of Medicine and Pharmacy, Hassan II University, Casablanca, Morocco
| | - Amina Ghouzlani
- Immuno-Genetics and Human Pathologies Laboratory (LIGEP), Faculty of Medicine and Pharmacy, Hassan II University, Casablanca, Morocco
| | - Soumaya Rafii
- Immuno-Genetics and Human Pathologies Laboratory (LIGEP), Faculty of Medicine and Pharmacy, Hassan II University, Casablanca, Morocco
| | - Rizwan ullah Sadiqi
- Faculty of Science and Technology, Middlesex University, London, United Kingdom
| | - Abdou-samad Kone
- Immuno-Genetics and Human Pathologies Laboratory (LIGEP), Faculty of Medicine and Pharmacy, Hassan II University, Casablanca, Morocco
| | - Zakia Harmak
- Immuno-Genetics and Human Pathologies Laboratory (LIGEP), Faculty of Medicine and Pharmacy, Hassan II University, Casablanca, Morocco
| | - Khalil Choukri
- Immuno-Genetics and Human Pathologies Laboratory (LIGEP), Faculty of Medicine and Pharmacy, Hassan II University, Casablanca, Morocco
| | - Sarah Kandoussi
- Immuno-Genetics and Human Pathologies Laboratory (LIGEP), Faculty of Medicine and Pharmacy, Hassan II University, Casablanca, Morocco
| | - Mehdi Karkouri
- Department of Pathological Anatomy, University Hospital Center (CHU) Ibn Rochd and Faculty of Medicine and Pharmacy of Casablanca, Hassan II University, Casablanca, Morocco
| | - Abdallah Badou
- Immuno-Genetics and Human Pathologies Laboratory (LIGEP), Faculty of Medicine and Pharmacy, Hassan II University, Casablanca, Morocco
- Mohammed VI Center for Research and Innovation, Rabat and Mohammed VI University for Sciences and Health, Casablanca, Morocco
| |
Collapse
|
2
|
Tian W, Blomberg AL, Steinberg KE, Henriksen BL, Jørgensen JS, Skovgaard K, Skovbakke SL, Goletz S. Novel genetically glycoengineered human dendritic cell model reveals regulatory roles of α2,6-linked sialic acids in DC activation of CD4+ T cells and response to TNFα. Glycobiology 2024; 34:cwae042. [PMID: 38873803 DOI: 10.1093/glycob/cwae042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 05/08/2024] [Accepted: 05/31/2024] [Indexed: 06/15/2024] Open
Abstract
Dendritic cells (DCs) are central for the initiation and regulation of appropriate immune responses. While several studies suggest important regulatory roles of sialoglycans in DC biology, our understanding is still inadequate primarily due to a lack of appropriate models. Previous approaches based on enzymatic- or metabolic-glycoengineering and primary cell isolation from genetically modified mice have limitations related to specificity, stability, and species differences. This study addresses these challenges by introducing a workflow to genetically glycoengineer the human DC precursor cell line MUTZ-3, described to differentiate and maturate into fully functional dendritic cells, using CRISPR-Cas9, thereby providing and validating the first isogenic cell model for investigating glycan alteration on human DC differentiation, maturation, and activity. By knocking out (KO) the ST6GAL1 gene, we generated isogenic cells devoid of ST6GAL1-mediated α(2,6)-linked sialylation, allowing for a comprehensive investigation into its impact on DC function. Glycan profiling using lectin binding assay and functional studies revealed that ST6GAL1 KO increased the expression of important antigen presenting and co-stimulatory surface receptors and a specifically increased activation of allogenic human CD4 + T cells. Additionally, ST6GAL1 KO induces significant changes in surface marker expression and cytokine response to TNFα-induced maturation, and it affects migration and the endocytic capacity. These results indicate that genetic glycoengineering of the isogenic MUTZ-3 cellular model offers a valuable tool to study how specific glycan structures influence human DC biology, contributing to our understanding of glycoimmunology.
Collapse
Affiliation(s)
- Weihua Tian
- Biotherapeutic Glycoengineering and Immunology, Section for Medical Biotechnology, Department of Biotechnology and Biomedicine, Technical University of Denmark, Søltofts Plads, Kgs Lyngby 2800, Denmark
| | - Anne Louise Blomberg
- Biotherapeutic Glycoengineering and Immunology, Section for Medical Biotechnology, Department of Biotechnology and Biomedicine, Technical University of Denmark, Søltofts Plads, Kgs Lyngby 2800, Denmark
| | - Kaylin Elisabeth Steinberg
- Biotherapeutic Glycoengineering and Immunology, Section for Medical Biotechnology, Department of Biotechnology and Biomedicine, Technical University of Denmark, Søltofts Plads, Kgs Lyngby 2800, Denmark
| | - Betina Lyngfeldt Henriksen
- Biotherapeutic Glycoengineering and Immunology, Section for Medical Biotechnology, Department of Biotechnology and Biomedicine, Technical University of Denmark, Søltofts Plads, Kgs Lyngby 2800, Denmark
| | - Josefine Søborg Jørgensen
- Biotherapeutic Glycoengineering and Immunology, Section for Medical Biotechnology, Department of Biotechnology and Biomedicine, Technical University of Denmark, Søltofts Plads, Kgs Lyngby 2800, Denmark
| | - Kerstin Skovgaard
- Biotherapeutic Glycoengineering and Immunology, Section for Medical Biotechnology, Department of Biotechnology and Biomedicine, Technical University of Denmark, Søltofts Plads, Kgs Lyngby 2800, Denmark
| | - Sarah Line Skovbakke
- Biotherapeutic Glycoengineering and Immunology, Section for Medical Biotechnology, Department of Biotechnology and Biomedicine, Technical University of Denmark, Søltofts Plads, Kgs Lyngby 2800, Denmark
| | - Steffen Goletz
- Biotherapeutic Glycoengineering and Immunology, Section for Medical Biotechnology, Department of Biotechnology and Biomedicine, Technical University of Denmark, Søltofts Plads, Kgs Lyngby 2800, Denmark
| |
Collapse
|
3
|
Sun J, Tian T, Wang N, Jing X, Qiu L, Cui H, Liu Z, Liu J, Yan L, Li D. Pretreatment level of serum sialic acid predicts both qualitative and quantitative bone metastases of prostate cancer. Front Endocrinol (Lausanne) 2024; 15:1338420. [PMID: 38384968 PMCID: PMC10880016 DOI: 10.3389/fendo.2024.1338420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 01/18/2024] [Indexed: 02/23/2024] Open
Abstract
Background Recently, serum sialic acid (SA) has emerged as a distinct prognostic marker for prostate cancer (PCa) and bone metastases, warranting differential treatment and prognosis for low-volume (LVD) and high-volume disease (HVD). In clinical settings, evaluating bone metastases can prove advantageous. Objectives We aimed to establish the correlation between SA and both bone metastasis and HVD in newly diagnosed PCa patients. Methods We conducted a retrospective analysis of 1202 patients who received a new diagnosis of PCa between November 2014 and February 2021. We compared pretreatment SA levels across multiple groups and investigated the associations between SA levels and the clinical parameters of patients. Additionally, we compared the differences between HVD and LVD. We utilized several statistical methods, including the non-parametric Mann-Whitney U test, Spearman correlation, receiver operating characteristic (ROC) curve analysis, and logistic regression. Results The results indicate that SA may serve as a predictor of bone metastasis in patients with HVD. ROC curve analysis revealed a cut-off value of 56.15 mg/dL with an area under the curve of 0.767 (95% CI: 0.703-0.832, P < 0.001) for bone metastasis versus without bone metastasis and a cut-off value of 65.80 mg/dL with an area under the curve of 0.766 (95% CI: 0.644-0.888, P = 0.003) for HVD versus LVD. Notably, PCa patients with bone metastases exhibited significantly higher SA levels than those without bone metastases, and HVD patients had higher SA levels than LVD patients. In comparison to the non-metastatic and LVD cohorts, the cohort with HVD exhibited higher levels of alkaline phosphatase (AKP) (median, 122.00 U/L), fibrinogen (FIB) (median, 3.63 g/L), and prostate-specific antigen (PSA) (median, 215.70 ng/mL), as well as higher Gleason scores (> 7). Multivariate logistic regression analysis demonstrated that an SA level of > 56.15 mg/dL was independently associated with the presence of bone metastases in PCa patients (OR = 2.966, P = 0.018), while an SA level of > 65.80 mg/dL was independently associated with HVD (OR = 1.194, P = 0.048). Conclusion The pretreatment serum SA level is positively correlated with the presence of bone metastases.
Collapse
Affiliation(s)
- Jingtao Sun
- Department of Urology, Qilu Hospital of Shandong University, Jinan, China
| | - Tian Tian
- Respiratory and Critical Care Medicine Department, Qilu Hospital of Shandong University, Jinan, China
| | - Naiqiang Wang
- Department of Urology, Qilu Hospital of Shandong University, Jinan, China
| | - Xuehui Jing
- Department of Urology, Qilu Hospital of Shandong University, Jinan, China
- Department of Urology, Yucheng People’s Hospital, Dezhou, China
| | - Laiyuan Qiu
- Department of Urology, Qilu Hospital of Shandong University, Jinan, China
| | - Haochen Cui
- Department of Urology, Qilu Hospital of Shandong University, Jinan, China
| | - Zhao Liu
- Department of Urology, Qilu Hospital of Shandong University, Jinan, China
| | - Jikai Liu
- Department of Urology, Qilu Hospital of Shandong University, Jinan, China
| | - Lei Yan
- Department of Urology, Qilu Hospital of Shandong University, Jinan, China
| | - Dawei Li
- Department of Urology, Qilu Hospital of Shandong University, Jinan, China
| |
Collapse
|
4
|
Ceylani T, Teker HT, Keskin S, Samgane G, Acikgoz E, Gurbanov R. The rejuvenating influence of young plasma on aged intestine. J Cell Mol Med 2023; 27:2804-2816. [PMID: 37610839 PMCID: PMC10494294 DOI: 10.1111/jcmm.17926] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 08/07/2023] [Accepted: 08/12/2023] [Indexed: 08/25/2023] Open
Abstract
This study aims to investigate the effects of plasma exchange on the biomolecular profiles and histology of ileum and colon tissues in young and aged Sprague-Dawley male rats. Fourier transform infrared (FTIR) spectroscopy, linear discriminant analysis and support vector machine (SVM) techniques were employed to analyse the lipid, protein, and nucleic acid indices in young and aged rats. Following the application of young plasma, aged rats demonstrated biomolecular profiles similar to those of their younger counterparts. Histopathological and immunohistochemical assessments showed that young plasma had a protective effect on the intestinal tissues of aged rats, increasing cell density and reducing inflammation. Additionally, the expression levels of key inflammatory mediators tumour necrosis factor-alpha and cyclooxygenase-2 significantly decreased after young plasma administration. These findings underscore the therapeutic potential of young plasma for mitigating age-related changes and inflammation in the intestinal tract. They highlight the critical role of plasma composition in the ageing process and suggest the need for further research to explore how different regions of the intestines respond to plasma exchange. Such understanding could facilitate the development of innovative therapies targeting the gastrointestinal system, enhancing overall health during ageing.
Collapse
Affiliation(s)
- Taha Ceylani
- Department of Molecular Biology and GeneticsMuş Alparslan University MuşMuşTurkey
- Department of Food Quality Control and AnalysisMuş Alparslan University MuşMuşTurkey
| | - Hikmet Taner Teker
- Department of Molecular BiologyAnkara Medipol University AnkaraAnkaraTurkey
| | - Seda Keskin
- Department of Histology and EmbryologyVan Yuzuncu Yil UniversityVanTurkey
| | - Gizem Samgane
- Department BiotechnologyInstitute of Graduate Education, Bilecik Şeyh Edebali University BilecikBilecikTurkey
| | - Eda Acikgoz
- Department of Histology and EmbryologyVan Yuzuncu Yil UniversityVanTurkey
| | - Rafig Gurbanov
- Department of BioengineeringBilecik Şeyh Edebali University BilecikBilecikTurkey
- Central Research Laboratory (BARUM)Bilecik Seyh Edebali University BilecikBilecikTurkey
| |
Collapse
|
5
|
Huang J, Huang J, Zhang G. Insights into the Role of Sialylation in Cancer Metastasis, Immunity, and Therapeutic Opportunity. Cancers (Basel) 2022; 14:5840. [PMID: 36497322 PMCID: PMC9737300 DOI: 10.3390/cancers14235840] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 11/24/2022] [Accepted: 11/24/2022] [Indexed: 11/29/2022] Open
Abstract
Sialylation is an enzymatic process that covalently attaches sialic acids to glycoproteins and glycolipids and terminates them by creating sialic acid-containing glycans (sialoglycans). Sialoglycans, usually located in the outmost layers of cells, play crucial biological roles, notably in tumor transformation, growth, metastasis, and immune evasion. Thus, a deeper comprehension of sialylation in cancer will help to facilitate the development of innovative cancer therapies. Cancer sialylation-related articles have consistently increased over the last four years. The primary subjects of these studies are sialylation, cancer, immunotherapy, and metastasis. Tumor cells activate endothelial cells and metastasize to distant organs in part by the interactions of abnormally sialylated integrins with selectins. Furthermore, cancer sialylation masks tumor antigenic epitopes and induces an immunosuppressive environment, allowing cancer cells to escape immune monitoring. Cytotoxic T lymphocytes develop different recognition epitopes for glycosylated and nonglycosylated peptides. Therefore, targeting tumor-derived sialoglycans is a promising approach to cancer treatments for limiting the dissemination of tumor cells, revealing immunogenic tumor antigens, and boosting anti-cancer immunity. Exploring the exact tumor sialoglycans may facilitate the identification of new glycan targets, paving the way for the development of customized cancer treatments.
Collapse
Affiliation(s)
- Jianmei Huang
- School of Medicine, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Jianming Huang
- Biochemistry and Molecular Biology, Sichuan Cancer Institute, Chengdu 610041, China
| | - Guonan Zhang
- School of Medicine, University of Electronic Science and Technology of China, Chengdu 610054, China
- Department of Gynecologic Oncology, Sichuan Cancer Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610041, China
| |
Collapse
|