1
|
Ren J, Liu Z, Qi X, Meng X, Guo L, Yu Y, Dong T, Li Q. Active Ingredients and Potential Mechanism of Additive Sishen Decoction in Treating Rheumatoid Arthritis with Network Pharmacology and Molecular Dynamics Simulation and Experimental Verification. Drug Des Devel Ther 2025; 19:405-424. [PMID: 39867868 PMCID: PMC11762093 DOI: 10.2147/dddt.s489323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Accepted: 01/14/2025] [Indexed: 01/28/2025] Open
Abstract
Background Rheumatoid arthritis (RA) is a chronic inflammatory autoimmune disease in which macrophages produce cytokines that enhance inflammation and contribute to the destruction of cartilage and bone. Additive Sishen decoction (ASSD) is a widely used traditional Chinese medicine for the treatment of RA; however, its active ingredients and the mechanism of its therapeutic effects remain unclear. Methods To predict the ingredients and key targets of ASSD, we constructed "drug-ingredient-target-disease" and protein-protein interaction networks. Gene ontology and Kyoto Encyclopedia of Genes and Genomes enrichment analyses were performed to explore the potential mechanism. The activity of the predicted key ingredients was verified in lipopolysaccharide-stimulated macrophages. The binding mode between the key ingredients and key targets was elucidated using molecular docking and molecular dynamics simulation. Results In all, 75 ASSD active ingredients and 1258 RA targets were analyzed, of which kaempferol, luteolin, and quercetin were considered key components that mainly act through inflammation-related pathways, such as the PI3K-AKT, TNF, and IL-17 signaling pathways, to ameliorate RA. Transcriptome sequencing suggested that kaempferol-, luteolin-, and quercetin-mediated inhibition of glycolysis reduced the lipopolysaccharide-induced production of proinflammatory factors. In vitro experiments indicated that kaempferol, luteolin, and quercetin decreased Glut1 and LDHA expression by diminishing PI3K-AKT signaling to inhibit glycolysis. Molecular dynamic simulation revealed that kaempferol, luteolin, and quercetin stably occupied the hydrophobic pocket of PI3Kδ. Conclusion Our results show that the PI3Kδ-mediated anti-inflammatory responses elicited by kaempferol, luteolin, and quercetin are crucial for the therapeutic efficacy of ASSD against RA.
Collapse
Affiliation(s)
- Jinhong Ren
- Shanxi Key Laboratory of Innovative Drug for the Treatment of Serious Diseases Basing on the Chronic Inflammation, College of Traditional Chinese Medicine and Food Engineering, Shanxi University of Chinese Medicine, Jinzhong, People’s Republic of China
| | - Ze Liu
- Shanxi Key Laboratory of Innovative Drug for the Treatment of Serious Diseases Basing on the Chronic Inflammation, College of Traditional Chinese Medicine and Food Engineering, Shanxi University of Chinese Medicine, Jinzhong, People’s Republic of China
| | - Xiaoming Qi
- Shanxi Key Laboratory of Innovative Drug for the Treatment of Serious Diseases Basing on the Chronic Inflammation, College of Traditional Chinese Medicine and Food Engineering, Shanxi University of Chinese Medicine, Jinzhong, People’s Republic of China
| | - Xiangda Meng
- Shanxi Key Laboratory of Innovative Drug for the Treatment of Serious Diseases Basing on the Chronic Inflammation, College of Traditional Chinese Medicine and Food Engineering, Shanxi University of Chinese Medicine, Jinzhong, People’s Republic of China
| | - Linglin Guo
- Shanxi Key Laboratory of Innovative Drug for the Treatment of Serious Diseases Basing on the Chronic Inflammation, College of Traditional Chinese Medicine and Food Engineering, Shanxi University of Chinese Medicine, Jinzhong, People’s Republic of China
| | - Yating Yu
- Shanxi Key Laboratory of Innovative Drug for the Treatment of Serious Diseases Basing on the Chronic Inflammation, College of Traditional Chinese Medicine and Food Engineering, Shanxi University of Chinese Medicine, Jinzhong, People’s Republic of China
| | - Tao Dong
- Shanxi Key Laboratory of Innovative Drug for the Treatment of Serious Diseases Basing on the Chronic Inflammation, College of Traditional Chinese Medicine and Food Engineering, Shanxi University of Chinese Medicine, Jinzhong, People’s Republic of China
| | - Qingshan Li
- Shanxi Key Laboratory of Innovative Drug for the Treatment of Serious Diseases Basing on the Chronic Inflammation, College of Traditional Chinese Medicine and Food Engineering, Shanxi University of Chinese Medicine, Jinzhong, People’s Republic of China
| |
Collapse
|
2
|
Deng C, Sun S, Zhang H, Liu S, Xu X, Hu Y, Ma H, Xin P. Sappanone A attenuates rheumatoid arthritis via inhibiting PI3K/AKT/NF-κB and JAK2/STAT3 signaling pathways in vivo and in vitro. Int Immunopharmacol 2024; 143:113560. [PMID: 39520962 DOI: 10.1016/j.intimp.2024.113560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Revised: 10/29/2024] [Accepted: 10/31/2024] [Indexed: 11/16/2024]
Abstract
OBJECTIVE Sappanone A (SA), a bioactive compound in Caesalpinia sappan L., has anti-inflammation, antioxidant, and bone protection activities. But its effect on rheumatoid arthritis (RA) and the underlying mechanism are incompletely understood. METHODS Candidate targets of SA against RA were screened by network pharmacology and further validated by molecular docking. CIA rats and HFLS-RA were used to explore the effect and mechanism of SA on RA in vivo and in vitro, respectively. Macroscopic inspection (body weight, paw swelling, arthritis index), histological examination and micro-CT were used to evaluate the anti-RA effect of SA in vivo. ELISA and western blotting were used to explore the effects of SA on the levels of inflammatory cytokines in serum and the phosphorylation level of key proteins in tissue, respectively. Moreover, agonists and inhibitors of key proteins were used on HFLS-RA to explore the underlying mechanism of SA. Finally, immunofluorescence was utilized to explore the effects of SA on apoptosis in HFLS-RA. RESULTS SA significantly reduced arthritis index, alleviated paw swelling, and improved inflammatory cell infiltration and cartilage degradation in CIA rats. The levels of the pro-inflammatory cytokines including TNF-α, IL-1β, IL-6, and IL-17 were decreased while the level of the anti-inflammatory cytokine IL-10 was promoted by SA. The SA also down-regulated the protein phosphorylation levels of JAK2, STAT3, PI3K, AKT and p65 in vivo and in vitro. Furthermore, SA reversed the agonist-induced increase in phosphorylation levels of PI3K/AKT/NF-κB and JAK2/STAT3 pathway-related proteins. In addition, SA acted on the phosphorylation levels of these proteins in the same trend as the pathway inhibitors and dose-dependently reduced the phosphorylation levels of PI3K/AKT/NF-κB pathway proteins. The immunofluorescence results suggested that SA could promote apoptosis in HFLS-RA. CONCLUSION SA could inhibit inflammatory symptoms and bone destruction in CIA, and its mechanism may be related to the inhibition of PI3K/AKT/NF-κB and JAK2/STAT3 pathways. Hence, SA could be developed as a potential anti-RA therapeutic drug.
Collapse
Affiliation(s)
- Chengjie Deng
- College of Pharmacy, Harbin Medical University-Daqing, Daqing 163319, China
| | - Shiqin Sun
- Science and Education Department, Nanjing Lishui People's Hospital, Nanjing 211200, China
| | - Huaxi Zhang
- College of Pharmacy, Harbin Medical University-Daqing, Daqing 163319, China
| | - Shuang Liu
- College of Pharmacy, Harbin Medical University-Daqing, Daqing 163319, China
| | - Xiaoyun Xu
- College of Pharmacy, Harbin Medical University-Daqing, Daqing 163319, China
| | - Yuezhou Hu
- College of Pharmacy, Harbin Medical University-Daqing, Daqing 163319, China
| | - Hongxing Ma
- Clinical Laboratory Department, Nanjing Lishui People's Hospital, Nanjing 211200, China.
| | - Ping Xin
- College of Pharmacy, Harbin Medical University-Daqing, Daqing 163319, China.
| |
Collapse
|
3
|
Mahmoud EM, Radwan A, Elsayed SA. A prospective randomized-controlled non-blinded comparative study of the JAK inhibitor (baricitinib) with TNF-α inhibitors and conventional DMARDs in a sample of Egyptian rheumatoid arthritis patients. Clin Rheumatol 2024; 43:3657-3668. [PMID: 39480594 PMCID: PMC11582163 DOI: 10.1007/s10067-024-07194-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 10/11/2024] [Accepted: 10/15/2024] [Indexed: 11/02/2024]
Abstract
To evaluate the efficacy of baricitinib compared to TNF-α Inhibitors and conventional DMARDs (cDMARDs) in patients with RA. Our study included 334 RA patients classified into 3 groups: the first receiving baricitinib, the second receiving TNF-α Inhibitors, and the third receiving cDMARDs. Patients were evaluated at baseline, week 12, and week 24 using TJC, SJC, VAS, DAS28, CDAI, and HAQ-DI. Larsen score was measured at baseline and 24 weeks. The response to therapy was assessed at weeks 12 and 24 using ACR 20, ACR 50, and ACR 70 response criteria. Emerging treatment side effects were monitored. Patients receiving baricitinib showed significant improvement regarding all outcome measures at weeks 12 and 24. In addition, baricitinib was comparable to TNF Inhibitors in all outcome measures except the ACR 70 at week 12, which was higher in the baricitinib group. Furthermore, baricitinib group showed significantly better outcome measures and response to therapy in comparison to cDMARDs group. The most common side effects in the baricitinib group were infection, GIT, and CVS complications. The most common side effects in the TNF inhibitors group were infection and skin complications. The cDMARDs had the least side effects, mostly GIT complications. Baricitinib is an effective drug for treating RA refractory to cDMARDs, improving disease activity measures and functional status and reducing the progression of structural joint damage. It has a comparable efficacy and safety profile to TNF Inhibitors. Multicenter studies are recommended to support our results. Key Points • Baricitinib is an effective therapeutic choice for rheumatoid arthritis refractory to cDMARDs. • Patients treated with baricitinib showed improvement in all outcome measures and functional status. • Bricitinib delayed the progression of radiographic joint damage more effectively than cDMARDs. • The efficacy and safety of baricitinib for treating rheumatoid arthritis is comparable to that of TNF inhibitors.
Collapse
Affiliation(s)
- Esraa M Mahmoud
- Rheumatology and Rehabilitation Department, Faculty of Medicine, Sohag University, Sohag, Egypt
| | - Abdullah Radwan
- Rheumatology and Rehabilitation Department, Faculty of Medicine, Sohag University, Sohag, Egypt
| | - Sahar A Elsayed
- Rheumatology and Rehabilitation Department, Faculty of Medicine, Sohag University, Sohag, Egypt.
| |
Collapse
|
4
|
Patil SJ, Thorat VM, Koparde AA, Bhinge SD, Chavan DD, Bhosale RR. Unlocking the Future: New Biologic Therapies for Rheumatoid Arthritis. Cureus 2024; 16:e72486. [PMID: 39600762 PMCID: PMC11592031 DOI: 10.7759/cureus.72486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2024] [Accepted: 10/25/2024] [Indexed: 11/29/2024] Open
Abstract
Rheumatoid arthritis (RA) is a chronic autoimmune disorder that leads to joint destruction and functional disability. Traditional treatments, including disease-modifying antirheumatic drugs (DMARDs), often fail, leaving many patients without remission. The advent of biologic therapies that target specific immune system components (e.g., cytokines, T cells) has transformed RA treatment by offering new management options. These biologics (e.g., TNF inhibitors, interleukin blockers) are highly effective in controlling disease activity and preventing joint destruction. However, their use comes with safety concerns, particularly regarding immunosuppression and infection risks. Although still experimental, studies predict that future research will focus on enhancing the clinical response and safety of these agents through personalized approaches or novel mechanisms of action.
Collapse
Affiliation(s)
- Sarika J Patil
- Department of Pharmacology, Krishna Institute of Medical Sciences, Krishna Vishwa Vidyapeeth (Deemed to be University), Karad, IND
| | - Vandana M Thorat
- Department of Pharmacology, Krishna Institute of Medical Sciences, Krishna Vishwa Vidyapeeth (Deemed to be University), Karad, IND
| | - Akshada A Koparde
- Department of Pharmaceutical Chemistry, Krishna Institute of Pharmacy, Krishna Vishwa Vidyapeeth (Deemed to be University), Karad, IND
| | - Somnath D Bhinge
- Department of Pharmaceutical Chemistry, Rajarambapu College of Pharmacy, Kasegaon, IND
| | - Dhanashri D Chavan
- Department of Pharmacology, Krishna Institute of Medical Sciences, Krishna Vishwa Vidyapeeth (Deemed to be University), Karad, IND
| | - Rohit R Bhosale
- Department of Pharmaceutics, Krishna Foundation's Jaywant Institute of Pharmacy, Wathar, IND
| |
Collapse
|
5
|
Ali M, Benfante V, Di Raimondo D, Laudicella R, Tuttolomondo A, Comelli A. A Review of Advances in Molecular Imaging of Rheumatoid Arthritis: From In Vitro to Clinic Applications Using Radiolabeled Targeting Vectors with Technetium-99m. Life (Basel) 2024; 14:751. [PMID: 38929734 PMCID: PMC11204982 DOI: 10.3390/life14060751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 05/24/2024] [Accepted: 06/07/2024] [Indexed: 06/28/2024] Open
Abstract
Rheumatoid arthritis (RA) is a systemic autoimmune disorder caused by inflammation of cartilaginous diarthrodial joints that destroys joints and cartilage, resulting in synovitis and pannus formation. Timely detection and effective management of RA are pivotal for mitigating inflammatory arthritis consequences, potentially influencing disease progression. Nuclear medicine using radiolabeled targeted vectors presents a promising avenue for RA diagnosis and response to treatment assessment. Radiopharmaceutical such as technetium-99m (99mTc), combined with single photon emission computed tomography (SPECT) combined with CT (SPECT/CT), introduces a more refined diagnostic approach, enhancing accuracy through precise anatomical localization, representing a notable advancement in hybrid molecular imaging for RA evaluation. This comprehensive review discusses existing research, encompassing in vitro, in vivo, and clinical studies to explore the application of 99mTc radiolabeled targeting vectors with SPECT imaging for RA diagnosis. The purpose of this review is to highlight the potential of this strategy to enhance patient outcomes by improving the early detection and management of RA.
Collapse
Affiliation(s)
- Muhammad Ali
- Ri.MED Foundation, Via Bandiera 11, 90133 Palermo, Italy; (M.A.); (A.C.)
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties, Molecular and Clinical Medicine, University of Palermo, 90127 Palermo, Italy; (D.D.R.); (A.T.)
| | - Viviana Benfante
- Ri.MED Foundation, Via Bandiera 11, 90133 Palermo, Italy; (M.A.); (A.C.)
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties, Molecular and Clinical Medicine, University of Palermo, 90127 Palermo, Italy; (D.D.R.); (A.T.)
| | - Domenico Di Raimondo
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties, Molecular and Clinical Medicine, University of Palermo, 90127 Palermo, Italy; (D.D.R.); (A.T.)
| | - Riccardo Laudicella
- Nuclear Medicine Unit, Department of Biomedical and Dental Sciences and Morpho-Functional Imaging, Messina University, 98124 Messina, Italy;
| | - Antonino Tuttolomondo
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties, Molecular and Clinical Medicine, University of Palermo, 90127 Palermo, Italy; (D.D.R.); (A.T.)
| | - Albert Comelli
- Ri.MED Foundation, Via Bandiera 11, 90133 Palermo, Italy; (M.A.); (A.C.)
- NBFC—National Biodiversity Future Center, 90133 Palermo, Italy
| |
Collapse
|
6
|
Wallace BI, Cooney L, Fox DA. New molecular targets in the treatment of rheumatoid arthritis. Curr Opin Rheumatol 2024; 36:235-240. [PMID: 38165286 DOI: 10.1097/bor.0000000000001000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2024]
Abstract
PURPOSE OF REVIEW This review will discuss selected emerging molecular targets and associated potential therapeutic agents for rheumatoid arthritis (RA)-directed treatment. RECENT FINDINGS Agents in active development for RA treatment include those targeted to CD40 and CD40 ligand, programmed death protein 1 (PD-1), and granulocyte-macrophage colony-stimulating factor (GM-CSF). Several other molecules with a strong theoretical role in RA pathogenesis and/or demonstrated efficacy in other autoimmune diseases are also being evaluated as potential drug targets in preclinical or translational studies in RA. These targets include interleukin 1 receptor associated kinases 1 and 4 (IRAK1, IRAK4), tyrosine kinase 2 (Tyk2), bradykinin receptor 1 (B1R), OX40 and OX40 ligand. SUMMARY Identification of molecular targets for RA treatment remains an active area of investigation, with multiple therapeutic agents in clinical and preclinical development.
Collapse
Affiliation(s)
- Beth I Wallace
- Division of Rheumatology, Department of Internal Medicine, University of Michigan
- Center for Clinical Management Research, VA Ann Arbor Healthcare System
- Rheumatology Section, VA Ann Arbor Healthcare System, Ann Arbor, Michigan, USA
| | - Laura Cooney
- Division of Rheumatology, Department of Internal Medicine, University of Michigan
| | - David A Fox
- Division of Rheumatology, Department of Internal Medicine, University of Michigan
| |
Collapse
|
7
|
Ruan L, Cai X, Qian R, Bei S, Wu L, Cao J, Shen S. Live macrophages loaded with Fe 3O 4 and sulfasalazine for ferroptosis and photothermal therapy of rheumatoid arthritis. Mater Today Bio 2024; 24:100925. [PMID: 38226012 PMCID: PMC10788618 DOI: 10.1016/j.mtbio.2023.100925] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 11/26/2023] [Accepted: 12/18/2023] [Indexed: 01/17/2024] Open
Abstract
Rheumatoid arthritis (RA) is a systemic autoimmune disease characterized by the infiltration of inflammatory cells and proliferation of synovial cells. It can cause cartilage and bone damage as well as disability and is regarded as an incurable chronic disease. Available therapies cannot prevent the development of diseases due to the high toxicity of the therapeutic agents and the inefficient drug delivery. Ferroptosis, an iron-dependent manner of lipid peroxidative cell death, indicates great potential for RA therapy due to ability to damage the infiltrated inflammatory cells and proliferated fibroblast-like synoviocytes. Here, we use macrophages as vector to deliver Fe3O4 nanoparticles and sulfasalazine (SSZ) for ferroptosis and photothermal therapy of RA. The inherent property of migration towards the inflamed joints under the guidance of inflammatory factors enables macrophages to targetedly deliver the payload into the RA. Upon the irradiation of the near infrared light, the Fe3O4 nanoparticles convert the light into heat to damage the proliferated synovium. Meanwhile, the iron released from Fe3O4 nanoparticles works with SSZ to generate synergetic ferroptosis effect. The resident inflammatory cells and proliferated synovium are efficiently damaged by the ferroptosis and photothermal effect, showing pronounced therapeutic effect for RA.
Collapse
Affiliation(s)
- Li Ruan
- Affiliated Hospital of Jiangsu University, Zhenjiang, 212001, China
- College of Pharmaceutical Sciences, Jiangsu University, Zhenjiang, Jiangsu, 212013, China
| | - Xinxi Cai
- Affiliated Hospital of Jiangsu University, Zhenjiang, 212001, China
- College of Pharmaceutical Sciences, Jiangsu University, Zhenjiang, Jiangsu, 212013, China
| | - Rui Qian
- Affiliated Hospital of Jiangsu University, Zhenjiang, 212001, China
- College of Pharmaceutical Sciences, Jiangsu University, Zhenjiang, Jiangsu, 212013, China
| | - Shifang Bei
- The Affiliated People's Hospital, Jiangsu University, Zhenjiang, Jiangsu, 212001, China
| | - Lin Wu
- Affiliated Hospital of Jiangsu University, Zhenjiang, 212001, China
| | - Jin Cao
- College of Pharmaceutical Sciences, Jiangsu University, Zhenjiang, Jiangsu, 212013, China
| | - Song Shen
- College of Pharmaceutical Sciences, Jiangsu University, Zhenjiang, Jiangsu, 212013, China
| |
Collapse
|
8
|
Pan Q, Yang H, Zhou Z, Li M, Jiang X, Li F, Luo Y, Li M. [ 68 Ga]Ga-FAPI-04 PET/CT may be a predictor for early treatment response in rheumatoid arthritis. EJNMMI Res 2024; 14:2. [PMID: 38175339 PMCID: PMC10766931 DOI: 10.1186/s13550-023-01064-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 12/19/2023] [Indexed: 01/05/2024] Open
Abstract
BACKGROUND The identification of biomarkers predicting the treatment response of rheumatoid arthritis (RA) is important. [68 Ga]Ga-FAPI-04 showed markedly increased uptake in the joints of patients with RA. The purpose of this study is to investigate whether [68 Ga]Ga-FAPI-04 PET/CT can be a predictor of treatment response in RA. RESULTS Nineteen patients diagnosed with RA in the prospective cohort study were finally enrolled. Both total synovitis uptake (TSU) and metabolic synovitis volume (MSV) in [68 Ga]Ga-FAPI-04 and [18F]FDG PET/CT of the responders were significantly higher than those in non-responders according to Clinical Disease Activity Index (CDAI) and Simplified Disease Activity Index (SDAI) response criteria at 3-months' follow-up (P < 0.05). The PET joint count (PJC) detected in [68 Ga]Ga-FAPI-04 and [18F]FDG PET/CT were also significantly higher in CDAI responders than non-responders (P = 0.016 and 0.045, respectively). The clinical characteristics of disease activity at baseline did not show significant difference between the responders and non-responders, except CRP (P = 0.035 and 0.033 in CDAI and SDAI response criteria, respectively). The baseline PJCFAPI, TSUFAPI and MSVFAPI > cutoff values in [68 Ga]Ga-FAPI-04 PET/CT successfully discriminated CDAI and SDAI responders and non-responders at 3-months' follow-up. CONCLUSION [68 Ga]Ga-FAPI-04 uptake at baseline were significantly higher in early responders than those in non-responders. Trial registration ClinicalTrials. NCT04514614. Registered 13 August 2020, https://register. CLINICALTRIALS gov/prs/app/action/SelectProtocol?sid=S000A4PN&selectaction=Edit&uid=U0001JRW&ts=2&cx=-x9t7cp.
Collapse
Affiliation(s)
- Qingqing Pan
- Department of Nuclear Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College Hospital, No.1 Shuaifuyuan Wangfujing, Dongcheng District, Beijing, 100730, China
- Beijing Key Laboratory of Molecular Targeted Diagnosis and Therapy in Nuclear Medicine, Beijing, 100730, China
| | - Huaxia Yang
- Department of Rheumatology and Clinical Immunology, National Clinical Research Center for Dermatologic and Immunologic Diseases, the Ministry of Education Key Laboratory, Chinese Academy of Medical Sciences and Peking Union Medical College Hospital, Beijing, China
- State Key Laboratory of Difficult, Severe and Rare Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College Hospital, Beijing, China
| | - Ziyue Zhou
- Department of Rheumatology and Clinical Immunology, National Clinical Research Center for Dermatologic and Immunologic Diseases, the Ministry of Education Key Laboratory, Chinese Academy of Medical Sciences and Peking Union Medical College Hospital, Beijing, China
- State Key Laboratory of Difficult, Severe and Rare Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College Hospital, Beijing, China
| | - Min Li
- Department of Rheumatology and Clinical Immunology, National Clinical Research Center for Dermatologic and Immunologic Diseases, the Ministry of Education Key Laboratory, Chinese Academy of Medical Sciences and Peking Union Medical College Hospital, Beijing, China
- Department of Endocrinology and Rheumatology, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei, China
| | - Xu Jiang
- State Key Laboratory of Difficult, Severe and Rare Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College Hospital, Beijing, China
- Medical Research Center, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China
| | - Fang Li
- Department of Nuclear Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College Hospital, No.1 Shuaifuyuan Wangfujing, Dongcheng District, Beijing, 100730, China
- Beijing Key Laboratory of Molecular Targeted Diagnosis and Therapy in Nuclear Medicine, Beijing, 100730, China
| | - Yaping Luo
- Department of Nuclear Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College Hospital, No.1 Shuaifuyuan Wangfujing, Dongcheng District, Beijing, 100730, China.
- Beijing Key Laboratory of Molecular Targeted Diagnosis and Therapy in Nuclear Medicine, Beijing, 100730, China.
- State Key Laboratory of Common Mechanism Research for Major Diseases, Beijing, China.
| | - Mengtao Li
- Department of Rheumatology and Clinical Immunology, National Clinical Research Center for Dermatologic and Immunologic Diseases, the Ministry of Education Key Laboratory, Chinese Academy of Medical Sciences and Peking Union Medical College Hospital, Beijing, China
- State Key Laboratory of Difficult, Severe and Rare Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College Hospital, Beijing, China
| |
Collapse
|
9
|
Wang L, Hong X, Du H. Association Between Serum Chemokine Ligand 20 Levels and Disease Activity and Th1/Th2/Th17-Related Cytokine Levels in Rheumatoid Arthritis. J Interferon Cytokine Res 2023; 43:512-517. [PMID: 37815793 DOI: 10.1089/jir.2023.0057] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/11/2023] Open
Abstract
Rheumatoid arthritis (RA) is a type of arthritis autoimmune disease characterized by systemic chronic inflammation. C-C Chemokine ligand 20 (CCL20) is the same as most chemokines with immunomodulatory and inflammatory processes. The correlation of CCL20 in RA remains unclear. This study aimed to explore the association among levels of CCL20, T helper cell (TH) subset (Th1/Th2/Th17)-related cytokine levels, and clinical indices of RA disease activity. Serum CCL20 levels were quantified by enzyme-linked immunosorbent assay, and a flow-fluorescence technique was used to assess Th1/Th2/Th17-related cytokine levels. The serum CCL20 levels in patients were significantly higher than those in healthy controls and positively associated with C-reactive protein levels, erythrocyte sedimentation rate, and disease activity score-28 (DAS28). Patients with RA were categorized into 4 major groups, including remission, low, moderate, and high disease activity, with related DAS28 scores for each group. CCL20 levels of the disease moderate/high activity group were moderately positively correlated with IL-6 levels, but not with the other Th1/Th2/Th17-related cytokines. Serum CCL20 levels correlate strongly with RA disease activity and clinical inflammation and were significantly elevated in patients compared to healthy individuals. CCL20 plays a key role in the immune response of patients with RA and is, therefore, a potential biomarker of disease activity.
Collapse
Affiliation(s)
- Liuqing Wang
- Department of Rheumatology, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jin Hua, China
| | - Xuelian Hong
- Department of Rheumatology, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jin Hua, China
| | - Hongwei Du
- Department of Rheumatology, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jin Hua, China
| |
Collapse
|
10
|
Bruckner S, Capria VM, Zeno B, Leblebicioglu B, Goyal K, Vasileff WK, Awan H, Willis WL, Ganesan LP, Jarjour WN. The therapeutic effects of gingival mesenchymal stem cells and their exosomes in a chimeric model of rheumatoid arthritis. Arthritis Res Ther 2023; 25:211. [PMID: 37885040 PMCID: PMC10601129 DOI: 10.1186/s13075-023-03185-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 10/07/2023] [Indexed: 10/28/2023] Open
Abstract
BACKGROUND Rheumatoid arthritis is a chronic systemic autoimmune disease that involves transformation of the lining of synovial joints into an invasive and destructive tissue. Synovial fibroblasts become transformed, invading and destroying the bone and cartilage of the affected joint(s). Due to the significant role these cells play in the progression of the disease process, developing a therapeutic strategy to target and inhibit their invasive destructive nature could help patients who are afflicted with this debilitating disease. Gingival-derived mesenchymal stem cells are known to possess immunomodulatory properties and have been studied extensively as potential cell-based therapeutics for several autoimmune disorders. METHODS A chimeric human/mouse model of synovitis was created by surgically implanting SCID mice with a piece of human articular cartilage surrounded by RASF. Mice were injected once with either GMSC or GMSCExo at 5-7 days post-implantation. Histology and IHC were used to assess RASF invasion of the cartilage. Flow cytometry was used to understand the homing ability of GMSC in vivo and the incidence of apoptosis of RASF in vitro. RESULTS We demonstrate that both GMSC and GMSCExo are potent inhibitors of the deleterious effects of RASF. Both treatments were effective in inhibiting the invasive destructive properties of RASF as well as the potential for these cells to migrate to secondary locations and attack the cartilage. GMSC home to the site of the implant and induce programmed cell death of the RASF. CONCLUSIONS Our results indicate that both GMSC and GMSCExo can block the pathological effects of RASF in this chimeric model of RA. A single dose of either GMSC or GMSCExo can inhibit the deleterious effects of RASF. These treatments can also block the invasive migration of the RASF, suggesting that they can inhibit the spread of RA to other joints. Because the gingival tissue is harvested with little difficulty, relatively small amounts of tissue are required to expand the cells, the simple in vitro expansion process, and the increasing technological advances in the production of therapeutic exosomes, we believe that GMSCExo are excellent candidates as a potential therapeutic for RA.
Collapse
Affiliation(s)
- Shane Bruckner
- Division of Immunology & Rheumatology, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Vittoria M Capria
- University Laboratory Animal Resources, The Ohio State University, Columbus, OH, USA
| | - Braden Zeno
- Division of Immunology & Rheumatology, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Binnaz Leblebicioglu
- Division of Periodontology, College of Dentistry, The Ohio State University, Columbus, OH, USA
| | - Kanu Goyal
- Department of Orthopaedic Surgery, The Ohio State Wexner Medical Center, Hand & Upper Extremity Center, Columbus, OH, USA
| | - William K Vasileff
- Department of Orthopaedics, The Ohio State University, Columbus, OH, USA
| | - Hisham Awan
- Department of Orthopaedics, The Ohio State University, Columbus, OH, USA
| | - William L Willis
- Division of Immunology & Rheumatology, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Latha P Ganesan
- Division of Immunology & Rheumatology, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Wael N Jarjour
- Division of Immunology & Rheumatology, The Ohio State University Wexner Medical Center, Columbus, OH, USA.
| |
Collapse
|
11
|
Bruckner S, Capria VM, Zeno B, Leblebicioglu B, Goyal K, Vasileff WK, Awan H, Willis WL, Ganesan LP, Jarjour WN. Therapeutic Effects of Gingival Mesenchymal Stem Cells and Their Exosomes in a Chimeric Model of Rheumatoid Arthritis. RESEARCH SQUARE 2023:rs.3.rs-3121787. [PMID: 37461531 PMCID: PMC10350241 DOI: 10.21203/rs.3.rs-3121787/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/25/2023]
Abstract
Background Rheumatoid arthritis is a chronic systemic autoimmune disease that involves transformation of the lining of synovial joints into an invasive and destructive tissue. Synovial fibroblasts become transformed, invading and destroying bone and cartilage of the affected joint(s). Due to the significant role these cells play in the progression of the disease process, developing a therapeutic strategy to target and inhibit their invasive destructive nature could help patients who are affiicted with this debilitating disease. Gingival-derived mesenchymal stem cells are known to possess immunomodulatory properties and have been studied extensively as potential cell-based therapeutics for several autoimmune disorders. Methods A chimeric human/mouse model of synovitis was created by surgically implanting SCID mice with a piece of human articular cartilage surrounded by RASF. Mice were injected once with either GMSC or GMSCExo at 5-7 days post-implantation. Histology and IHC were used to assess RASF invasion of the cartilage. Flow cytometry was used to understand the homing ability of GMSC in vivo and the incidence of apoptosis of RASF in vitro. Results We demonstrate that both GMSC and GMSCExo are potent inhibitors of the deleterious effects of RASF. Both treatments were effective in inhibiting the invasive destructive properties of RASF as well as the potential of these cells to migrate to secondary locations and attack the cartilage. GMSC home to the site of the implant and induce programmed cell death of the RASF. Conclusions Our results indicate that both GMSC and GMSCExo can block the pathological effects of RASF in this chimeric model of RA. A single dose of either GMSC or GMSCExo can inhibit the deleterious effects of RASF. These treatments can also block the invasive migration of the RASF, suggesting that they can inhibit the spread of RA to other joints. Because the gingival tissue is harvested with little difficulty, relatively small amounts of tissue are required to expand the cells, the simple in vitro expansion process, and the increasing technological advances in the production of therapeutic exosomes, we believe that GMSCExo are excellent candidates as a potential therapeutic for RA.
Collapse
Affiliation(s)
| | | | - Braden Zeno
- The Ohio State University Wexner Medical Center
| | | | - Kanu Goyal
- The Ohio State University Wexner Medical Center
| | | | - Hisham Awan
- The Ohio State University Wexner Medical Center
| | | | | | | |
Collapse
|
12
|
Prevalence and risk factors of falls in adults with rheumatoid arthritis: A systematic review and meta-analysis. Semin Arthritis Rheum 2023; 60:152186. [PMID: 36933303 DOI: 10.1016/j.semarthrit.2023.152186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Revised: 02/22/2023] [Accepted: 02/27/2023] [Indexed: 03/12/2023]
Abstract
BACKGROUND Despite the fact that the estimated prevalence and risk factors of falls in adults with rheumatoid arthritis (RA) are widely reported, these results have not been synthesized. The systematic review and meta-analysis aimed to investigate the prevalence and risk factors of falls in adults with RA. METHODS PubMed, EMBASE, Web of Science, the Cochrane Library, Cumulative Index to Nursing & Allied Health Literature (CINAHL), Wanfang Database, China Knowledge Resource Integrated Database (CNKI), Weipu Database (VIP), and Chinese Biomedical Database (CBM) were searched for relevant studies published from the inception of the database until July 4, 2022. Stata 15.0 Software was used to perform the meta-analysis. For the prevalence of falls in adults with RA and risk factors that were investigated in at least 2 studies in a comparable way, we calculated pooled incidence and odds ratios (ORs) using random-effects models, with a test for heterogeneity. A study protocol was registered in PROSPERO (CRD42022358120). RESULTS A total of 6,470 articles were screened and data from 34 studies involving 24,123 subjects were used in meta-analysis. The pooled prevalence of any falls was 34% (95% confidence interval, CI: 29% to 38%, I2=97.7%, P<0.001), and 16% for recurrent falls (95% CI: 12% to 20%, I2=97.5%, P<0.001). 25 risk factors were considered, including sociodemographic, medical and psychological, medication, and physical function. The strongest associations were found for history of falls (OR=3.08, 95%CI: 2.32 to 4.08, I2=0.0%, P = 0.660), history of fracture (OR=4.03, 95%CI: 3.12 to 5.21, I2=97.3%, P<0.001), walking aid use (OR=1.60, 95%CI: 1.23 to 2.08, I2=67.7%, P = 0.026), dizziness (OR=1.95, 95%CI: 1.43 to 2.64, I2=82.9%, P = 0.003), psychotropic medication use (OR=1.79, 95%CI: 1.39 to 2.30, I2=22.0%, P = 0.254), antihypertensive medicine/diuretic (OR=1.83, 95%CI: 1.37 to 2.46, I2=51.4%, P = 0.055), taking four or more medicine(OR=1.51, 95%CI: 1.26 to 1.81, I2=26.0%, P = 0.256), and HAQ score(OR=1.54, 95%CI: 1.40 to 1.69, I2=36.9%, P = 0.135). CONCLUSIONS This meta-analysis provides a comprehensive evidence-based assessment of the prevalence and risk factors for falls in adults with RA, confirming their multifactorial etiology. Understanding the risk factors of falls can provide healthcare personnel with a theoretical basis for the management and prevention of RA patients.
Collapse
|
13
|
An overview of aryl hydrocarbon receptor ligands in the Last two decades (2002–2022): A medicinal chemistry perspective. Eur J Med Chem 2022; 244:114845. [DOI: 10.1016/j.ejmech.2022.114845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 09/28/2022] [Accepted: 10/08/2022] [Indexed: 11/21/2022]
|
14
|
Deng L, Yao F, Tian F, Luo X, Yu S, Wen Z. Influence of Iguratimod on Bone Metabolism in Patients with Rheumatoid Arthritis: A Meta-analysis. Int J Clin Pract 2022; 2022:5684293. [PMID: 35936067 PMCID: PMC9334038 DOI: 10.1155/2022/5684293] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 06/13/2022] [Indexed: 11/25/2022] Open
Abstract
Background Influence of iguratimod on bone mineral density (BMD) and biomarkers of bone metabolism in patients with rheumatoid arthritis (RA) remains not determined. Accordingly, a meta-analysis was performed for systematical evaluation. Methods Relevant randomized controlled trials (RCTs) were retrieved by searching of PubMed, Embase, Cochrane's Library, China National Knowledge Infrastructure (CNKI), and Wanfang databases. A random-effect model was used to pool the results. Results In total, 24 RCTs including 2439 patients with RA contributed to the meta-analysis. Pooled results showed that compared to methotrexate alone, additional use of iguratimod 25 mg Bid for 12∼24 weeks significantly improved lumbar-spine BMD (mean difference [MD]: 0.12, 95% confidence interval [CI]: 0.04 to 0.20, p=0.002, I 2 = 39%) in patients with RA. Moreover, treatment with iguratimod was associated with increased serum osteoprotegerin (MD: 180.36 pg/ml, 95% CI: 122.52 to 238.20, p < 0.001, I 2 = 48%), and decreased serum receptor activator for nuclear factor kappa-B ligand (MD: -10.65 pmol/l, 95% CI: -15.59 to -5.72, p < 0.001, I 2 = 53%). In addition, iguratimod was associated with increased bone formation markers such as the serum N-terminal middle molecular fragment of osteocalcin (MD: 4.23 ng/ml, 95% CI: 3.74 to 4.71, p < 0.001, I 2 = 35%) and total procollagen type I amino-terminal propeptide (MD: 9.10 ng/ml, 95% CI: 7.39 to 10.80, p < 0.001, I 2 = 86%), but decreased the bone resorption marker such as serum β-C terminal cross-linking telopeptide of type 1 collagen (MD: -0.18 pg/ml, 95% CI: -0.21 to -0.14, p < 0.001, I 2 = 70%). Conclusions Iguratimod could prevent the bone loss and improve the bone metabolism in patients with RA.
Collapse
Affiliation(s)
- Li Deng
- Department of Rheumatology and Immunology, Zhuzhou Hospital Affiliated to Xiangya Medical College, Central South University, Zhuzhou 412000, China
| | - Fangling Yao
- Department of Rheumatology and Immunology, Zhuzhou Hospital Affiliated to Xiangya Medical College, Central South University, Zhuzhou 412000, China
| | - Feng Tian
- Department of Rheumatology and Immunology, Zhuzhou Hospital Affiliated to Xiangya Medical College, Central South University, Zhuzhou 412000, China
| | - Xiaowen Luo
- Department of Rheumatology and Immunology, Zhuzhou Hospital Affiliated to Xiangya Medical College, Central South University, Zhuzhou 412000, China
| | - Shenyi Yu
- Department of Rheumatology and Immunology, Zhuzhou Hospital Affiliated to Xiangya Medical College, Central South University, Zhuzhou 412000, China
| | - Zhenhua Wen
- Department of Rheumatology and Immunology, Zhuzhou Hospital Affiliated to Xiangya Medical College, Central South University, Zhuzhou 412000, China
| |
Collapse
|