1
|
Zeng X, Gao Y, Bahabayi A, Alimu X, Liu T, Zheng M, Zhang Z, Li Q, Liu C. Upregulated TCF1 + Treg Cells With Stronger Function in Systemic Lupus Erythematosus Through Activation of the Wnt-β-Catenin. Immunology 2025; 175:251-262. [PMID: 40129177 DOI: 10.1111/imm.13914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 02/12/2025] [Accepted: 02/14/2025] [Indexed: 03/26/2025] Open
Abstract
The role of T-cell factor 1 (TCF1) in human regulatory T cells (Treg) and its clinical significance in systemic lupus erythematosus (SLE) remain unclear. Through bioinformatics analysis and flow cytometry, the Tcf7 gene and TCF1 protein were found to be highly expressed in Treg cells. TCF1+ Treg cells exhibited increased expression of CTLA4 and LAG3 and higher IL-10 secretion than TCF1- Treg cells. Circulating TCF1+ Treg cells were elevated and displayed increased inhibitory markers in SLE patients. The Wnt-β-catenin pathway was activated in TCF1+ Treg cells in SLE patients. The addition of XAV939 impaired the function of TCF1+ Treg cells. Clinically, TCF1+ Treg cells were not only related to CRP, ESR and IL-2, but also could differentiate SLE patients from healthy controls, primary Sjögren's syndrome patients and rheumatoid arthritis patients. In conclusion, the increased TCF1+ Treg cells in SLE patients indicate a stronger suppressive function for the activated Wnt-β-catenin pathway and help screening and assisting in the diagnosis of SLE patients.
Collapse
Affiliation(s)
- Xingyue Zeng
- Department of Clinical Laboratory, Peking University People's Hospital, Beijing, China
| | - Yiming Gao
- Department of Clinical Laboratory, Peking University People's Hospital, Beijing, China
| | - Ayibaota Bahabayi
- Department of Clinical Laboratory, Peking University People's Hospital, Beijing, China
| | - Xiayidan Alimu
- Department of Clinical Laboratory, Peking University People's Hospital, Beijing, China
| | - Tianci Liu
- Department of Clinical Laboratory, Peking University People's Hospital, Beijing, China
| | - Mohan Zheng
- School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Zhonghui Zhang
- Department of Clinical Laboratory, Peking University People's Hospital, Beijing, China
| | - Qi Li
- Department of Clinical Laboratory, Peking University People's Hospital, Beijing, China
| | - Chen Liu
- Department of Clinical Laboratory, Peking University People's Hospital, Beijing, China
| |
Collapse
|
2
|
Bahabayi A, Zheng M, Hasimu A, Kang R, Li Q, Xiong Z, Guan Z, Zhang Z, Liu T, Zeng X, Liu C. Attenuated Notch Signaling Decreases T-cell factor-1+ Treg Subsets in Lung Adenocarcinoma, Assisting Early Patient Screening. Immunol Lett 2025:107034. [PMID: 40404106 DOI: 10.1016/j.imlet.2025.107034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 04/21/2025] [Accepted: 05/19/2025] [Indexed: 05/24/2025]
Abstract
OBJECTIVE This study aimed to investigate the role of T-cell factor-1 (TCF1) in early-stage lung adenocarcinoma (LUAD) patients and explore its clinical significance for diagnosing early LUAD. METHODS Blood samples were collected from 34 stage IA LUAD patients and 31 healthy controls. Flow cytometry was used to analyze the levels of TCF1 in circulating T cell subpopulations. Functional characteristics of TCF1-related cells were investigated by staining with CD62L and Ki-67. Changes in TCF1-related proportions in T cell subsets of early LUAD patients were analyzed. The role of Notch signaling was clarified by adding the Notch signal activator Jagged1 (JAG1). Receiver operating characteristic (ROC) curves were used to evaluate the diagnostic value of TCF1-related T cell subsets for screening early LUAD. RESULTS The expression level of TCF1 in follicular regulatory T(Tfr) and regulatory T(Treg) cells was decreased in early LUAD patients, and TCF1+CD62L+ follicular helper (Tfh) cells were also decreased. TCF1+CD62L+ cells in both Treg and Tfr were decreased in early LUAD patients. Decreased TCF1 in Treg and Tfr recovered in early LUAD after adding JAG1. TCF1-related indicators showed good auxiliary diagnostic significance for early LUAD. TCF1+, TCF1+CD62L+, and TCF1-CD62L+ percentages in Treg and Tfr cells were with areas under the curve (AUCs) between 0.827 and 0.897 to distinguish early LUAD from healthy individuals. CONCLUSIONS Downregulation of Notch signaling contributes to the decrease in TCF1+ Treg subsets in LUAD patients, which is of significant value for screening early-stage lung adenocarcinoma.
Collapse
Affiliation(s)
- Ayibaota Bahabayi
- Department of Clinical Laboratory, Peking University People's Hospital, Beijing, China
| | - Mohan Zheng
- School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Ainizati Hasimu
- Department of Clinical Laboratory, Peking University People's Hospital, Beijing, China
| | - Rui Kang
- Department of Clinical Laboratory, Peking University People's Hospital, Beijing, China
| | - Qi Li
- Department of Clinical Laboratory, Peking University People's Hospital, Beijing, China
| | - Ziqi Xiong
- Department of Clinical Laboratory, Peking University People's Hospital, Beijing, China
| | - Zhao Guan
- Department of Clinical Laboratory, Peking University People's Hospital, Beijing, China
| | - Zhonghui Zhang
- Department of Clinical Laboratory, Peking University People's Hospital, Beijing, China
| | - Tianci Liu
- Department of Clinical Laboratory, Peking University People's Hospital, Beijing, China
| | - Xingyue Zeng
- Department of Clinical Laboratory, Peking University People's Hospital, Beijing, China
| | - Chen Liu
- Department of Clinical Laboratory, Peking University People's Hospital, Beijing, China.
| |
Collapse
|
3
|
Bahabayi A, Zhu Y, Nie Y, Ren J, Hasimu A, Li Q, Zhang Z, Zeng X, Hu Y, Wang P, Liu C. Reduced TRIM expression correlates with anomalous CD4 T cell activation in systemic lupus Erythematosus and its clinical diagnostic potential. Immunol Lett 2024; 270:106913. [PMID: 39233252 DOI: 10.1016/j.imlet.2024.106913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 07/24/2024] [Accepted: 09/01/2024] [Indexed: 09/06/2024]
Abstract
OBJECTIVE This study seeks to elucidate the expression, function, and clinical relevance of the T cell receptor interacting molecule (TRIM) within circulating CD4+T cell subsets in systemic lupus erythematosus (SLE) patients. METHODS We assessed TRIM expression across distinct subpopulations of human peripheral blood mononuclear cells (PBMCs) through the analysis of publicly available single-cell RNA sequencing data. In addition, TRIM expression was investigated within CD4+T cell subsets of peripheral blood and spleens in mice. PBMCs were isolated from both SLE patients, healthy controls (HCs) and rheumatoid arthritis (RA) patients with subsequent measurement and comparative analysis of TRIM expression and functional molecules using flow cytometry. To gauge the clinical relevance of TRIM in SLE, correlation and ROC curve analyses were performed. RESULTS In both healthy humans and mice, TRIM was higher expressed within CD4+T cell subsets, especially in naive CD4+T cells. TRIM+ Tregs exhibited lower Helios+ cells and CD45RA-FoxP3hi cells percentages compared to TRIM- Treg cells. TRIM+T cells demonstrated reduced granzyme B and perforin secretion and increased IFN-γ secretion in comparison to TRIM- T cells. Notably, the proportion of TRIM+CD4+T cells was diminished in SLE patients. The downregulation of TRIM+ in CD4+T cells positively correlated with diminished complement C3 and C1q levels and inversely correlated with CRP. The identification of TRIM-associated CD4 T cell subsets aids in distinguishing SLE patients from HCs and those with RA. CONCLUSIONS Reduced TRIM expression is linked to abnormal CD4+T cell activation in SLE. TRIM-associated CD4+T cells may be implicated in the pathogenesis of SLE and hold potential for clinical diagnostic purposes.
Collapse
Affiliation(s)
- Ayibaota Bahabayi
- Department of Clinical Laboratory, Peking University People's Hospital, Beijing, China
| | - Yaoyi Zhu
- Department of Clinical Laboratory, Peking University People's Hospital, Beijing, China
| | - Yuying Nie
- Department of Clinical Laboratory, Peking University People's Hospital, Beijing, China
| | - Jiaxin Ren
- Department of Clinical Laboratory, Peking University People's Hospital, Beijing, China
| | - Ainizati Hasimu
- Department of Clinical Laboratory, Peking University People's Hospital, Beijing, China
| | - Qi Li
- Department of Clinical Laboratory, Peking University People's Hospital, Beijing, China
| | - Zhonghui Zhang
- Department of Clinical Laboratory, Peking University People's Hospital, Beijing, China
| | - Xingyue Zeng
- Department of Clinical Laboratory, Peking University People's Hospital, Beijing, China
| | - Yuzhe Hu
- Department of Immunology, NHC Key Laboratory of Medical Immunology (Peking University), Medicine Innovation Center for Fundamental Research on Major Immunology-related Diseases, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China; Peking University Center for Human Disease Genomics, Peking University Health Science Center, Beijing, China
| | - Pingzhang Wang
- Department of Immunology, NHC Key Laboratory of Medical Immunology (Peking University), Medicine Innovation Center for Fundamental Research on Major Immunology-related Diseases, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China; Peking University Center for Human Disease Genomics, Peking University Health Science Center, Beijing, China
| | - Chen Liu
- Department of Clinical Laboratory, Peking University People's Hospital, Beijing, China.
| |
Collapse
|
4
|
Zhang Y, Chen S, Tang X, Peng Y, Jiang T, Zhang X, Li J, Liu Y, Yang Z. The role of KLRG1: a novel biomarker and new therapeutic target. Cell Commun Signal 2024; 22:337. [PMID: 38898461 PMCID: PMC11186184 DOI: 10.1186/s12964-024-01714-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Accepted: 06/13/2024] [Indexed: 06/21/2024] Open
Abstract
Killer cell lectin-like receptor G1 (KLRG1) is an immune checkpoint receptor expressed predominantly in NK and T-cell subsets that downregulates the activation and proliferation of immune cells and participates in cell-mediated immune responses. Accumulating evidence has demonstrated the importance of KLRG1 as a noteworthy disease marker and therapeutic target that can influence disease onset, progression, and prognosis. Blocking KLRG1 has been shown to effectively mitigate the effects of downregulation in various mouse tumor models, including solid tumors and hematologic malignancies. However, KLRG1 inhibitors have not yet been approved for human use, and the understanding of KLRG1 expression and its mechanism of action in various diseases remains incomplete. In this review, we explore alterations in the distribution, structure, and signaling pathways of KLRG1 in immune cells and summarize its expression patterns and roles in the development and progression of autoimmune diseases, infectious diseases, and cancers. Additionally, we discuss the potential applications of KLRG1 as a tool for tumor immunotherapy.
Collapse
Affiliation(s)
- Yakun Zhang
- School of Medicine, Chongqing University, Chongqing, 400030, China
- Department of Hematology-Oncology, Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Chongqing University Cancer Hospital, Chongqing, 400030, China
| | - Shuang Chen
- Department of Hematology-Oncology, Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Chongqing University Cancer Hospital, Chongqing, 400030, China
| | - Xinyi Tang
- School of Medicine, Chongqing University, Chongqing, 400030, China
- Department of Hematology-Oncology, Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Chongqing University Cancer Hospital, Chongqing, 400030, China
| | - Yu Peng
- Department of Hematology-Oncology, Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Chongqing University Cancer Hospital, Chongqing, 400030, China
| | - Tingting Jiang
- Department of Hematology-Oncology, Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Chongqing University Cancer Hospital, Chongqing, 400030, China
| | - Xiaomei Zhang
- Department of Hematology-Oncology, Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Chongqing University Cancer Hospital, Chongqing, 400030, China
| | - Jun Li
- Department of Hematology-Oncology, Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Chongqing University Cancer Hospital, Chongqing, 400030, China
| | - Yao Liu
- Department of Hematology-Oncology, Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Chongqing University Cancer Hospital, Chongqing, 400030, China.
| | - Zailin Yang
- Department of Hematology-Oncology, Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Chongqing University Cancer Hospital, Chongqing, 400030, China.
| |
Collapse
|
5
|
Zhang Y, Lu Q. Immune cells in skin inflammation, wound healing, and skin cancer. J Leukoc Biol 2024; 115:852-865. [PMID: 37718697 DOI: 10.1093/jleuko/qiad107] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Revised: 08/22/2023] [Accepted: 09/05/2023] [Indexed: 09/19/2023] Open
Abstract
Given the self-evident importance of cutaneous immunity in the maintenance of body-surface homeostasis, disturbance of the steady-state skin is inextricably intertwined with dysfunction in cutaneous immunity. It is often overlooked by people that skin, well-known as a solid physical barrier, is also a strong immunological barrier, considering the abundant presence of immune cells including lymphocytes, granulocytes, dendritic cells, and macrophages. What's more, humoral immune components including cytokines, immunoglobulins, and antimicrobial peptides are also rich in the skin. This review centers on skin inflammation (acute and chronic, infection and aseptic inflammation), wound healing, and skin cancer to elucidate the elaborate network of immune cells in skin diseases.
Collapse
Affiliation(s)
- Yuhan Zhang
- Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Jiangwangmiao Street No. 12, Xuanwu, Nanjing 210042, China
- Key Laboratory of Basic and Translational Research on Immune-Mediated Skin Diseases, Chinese Academy of Medical Sciences, Jiangwangmiao Street No. 12, Xuanwu, Nanjing 210042, China
- Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing 210042, China
| | - Qianjin Lu
- Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Jiangwangmiao Street No. 12, Xuanwu, Nanjing 210042, China
- Key Laboratory of Basic and Translational Research on Immune-Mediated Skin Diseases, Chinese Academy of Medical Sciences, Jiangwangmiao Street No. 12, Xuanwu, Nanjing 210042, China
- Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing 210042, China
| |
Collapse
|
6
|
Luo Q, Xiao Q, Zhang L, Fu B, Li X, Huang Z, Li J. Circulating TIGIT ±PD1 +TPH, TIGIT ± PD1 +TFH cells are elevated and their predicting role in systemic lupus erythematosus. Heliyon 2024; 10:e27687. [PMID: 38515720 PMCID: PMC10955264 DOI: 10.1016/j.heliyon.2024.e27687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 03/05/2024] [Accepted: 03/05/2024] [Indexed: 03/23/2024] Open
Abstract
It is well established that increased peripheral helper T cells (TPH) and follicular helper T cells (TFH) was found in systemic lupus erythematosus (SLE) patients. However, the expression patterns and immunomodulatory roles of TIGIT and PD1 on TPH/TFH in SLE are poorly understood. The expression patterns of TIGIT and PD1 on TPH and TFH cells were examined using flow cytometry and their expression patterns in SLE patients were then further evaluated for their correlation with auto-antibodies, disease activity and severity, B cell differentiation. Logistic regression was used to analyze the risk factors. And the receiver operating characteristic curves and logistic regression model were created to evaluate the predicting role in SLE. TIGIT±PD1+TPH, TIGIT±PD1+TFH cells in the peripheral blood of SLE patients were upregulated, whereas TIGIT+PD1-TFH was downregulated. TIGIT ± PD1+TPH, TIGIT ± PD1+TFH cells positively correlated with auto-antibodies production, disease activity and severity, whereas TIGIT+PD1-TFH cells negatively correlated. TIGIT ± PD1+TPH, TIGIT-PD1+TFH were positively correlated with the frequency of plasmablasts. Furthermore, higher TIGIT+PD1+TPH and TIGIT+PD1+TFH were shown to be risk factors for SLE, whereas TIGIT+PD1-TFH was found to be a protective factor, according to logistic regression analysis. A further logistic regression model showed that combination of TPH/TFH and routine blood indicators may has potential predicting value for SLE, with AUC of 0.957. The increased TIGIT ± PD1+TPH, increased TIGIT ± PD1+TFH, decreased TIGIT+PD1-TFH correlates with disease severity and activity, may boost our comprehending of the role of TIGIT and PD1 on TPH/TFH in SLE, and a logistic regression model based on combination of TPH/TFH and routine blood indicators shows prominent value for predicting SLE.
Collapse
Affiliation(s)
- Qing Luo
- Department of Clinical Laboratory, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, China
- Institute of Infection and Immunity, Nanchang University, Nanchang, Jiangxi, 330006, China
- Nanchang Key Laboratory of Diagnosis of Infectious Diseases, Nanchang, Jiangxi, 330006, China
| | - Qiuyun Xiao
- Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, China
| | - Lu Zhang
- Department of Clinical Laboratory, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, China
| | - Biqi Fu
- Department of Rheumatology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, China
| | - Xue Li
- Department of Clinical Laboratory, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, China
| | - Zikun Huang
- Department of Clinical Laboratory, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, China
- Institute of Infection and Immunity, Nanchang University, Nanchang, Jiangxi, 330006, China
- Nanchang Key Laboratory of Diagnosis of Infectious Diseases, Nanchang, Jiangxi, 330006, China
| | - Junming Li
- Department of Clinical Laboratory, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, China
- Institute of Infection and Immunity, Nanchang University, Nanchang, Jiangxi, 330006, China
- Medical Center of Burn Plastic and Wound Repair, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, 330006, China
| |
Collapse
|
7
|
Yang Q, Zhang F, Chen H, Hu Y, Yang N, Yang W, Wang J, Yang Y, Xu R, Xu C. The differentiation courses of the Tfh cells: a new perspective on autoimmune disease pathogenesis and treatment. Biosci Rep 2024; 44:BSR20231723. [PMID: 38051200 PMCID: PMC10830446 DOI: 10.1042/bsr20231723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 11/23/2023] [Accepted: 12/04/2023] [Indexed: 12/07/2023] Open
Abstract
The follicular helper T cells are derived from CD4+T cells, promoting the formation of germinal centers and assisting B cells to produce antibodies. This review describes the differentiation process of Tfh cells from the perspectives of the initiation, maturation, migration, efficacy, and subset classification of Tfh cells, and correlates it with autoimmune disease, to provide information for researchers to fully understand Tfh cells and provide further research ideas to manage immune-related diseases.
Collapse
Affiliation(s)
- Qingya Yang
- Division of Rheumatology, People’s Hospital of Mianzhu, Mianzhu, Sichuan, 618200, China
| | - Fang Zhang
- Division of Rheumatology, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210028, China
- Division of Rheumatology, Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing, Jiangsu 210028, China
| | - Hongyi Chen
- Division of Rheumatology, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210028, China
- Division of Rheumatology, Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing, Jiangsu 210028, China
| | - Yuman Hu
- Division of Rheumatology, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210028, China
- Division of Rheumatology, Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing, Jiangsu 210028, China
| | - Ning Yang
- Division of Rheumatology, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210028, China
- Division of Rheumatology, Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing, Jiangsu 210028, China
| | - Wenyan Yang
- Division of Rheumatology, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210028, China
- Division of Rheumatology, Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing, Jiangsu 210028, China
| | - Jing Wang
- Division of Rheumatology, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210028, China
- Division of Rheumatology, Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing, Jiangsu 210028, China
| | - Yaxu Yang
- Division of Rheumatology, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210028, China
- Division of Rheumatology, Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing, Jiangsu 210028, China
| | - Ran Xu
- Division of Rheumatology, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210028, China
- Division of Rheumatology, Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing, Jiangsu 210028, China
| | - Chao Xu
- Division of Rheumatology, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210028, China
- Division of Rheumatology, Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing, Jiangsu 210028, China
| |
Collapse
|
8
|
Zeng X, Alimu X, Bahabayi A, Zhang Z, Zheng M, Yuan Z, Liu T, Liu C. Helios characterized circulating follicular helper T cells with enhanced functional phenotypes and was increased in patients with systemic lupus erythematosus. Clin Exp Med 2024; 24:5. [PMID: 38240853 PMCID: PMC10799143 DOI: 10.1007/s10238-023-01289-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 11/04/2023] [Indexed: 01/22/2024]
Abstract
Helios was related to the immunosuppressive capacity and stability of regulatory T cells. However, the significance of Helios in follicular help T (TFH) and follicular regulatory T (TFR) cells is unclear. This research aimed to clarify the significance of Helios (IKZF2) in TFH and TFR cells and its clinical value in systemic lupus erythematosus (SLE). IKZF2 mRNA in different cell subsets was analyzed. Helios+ percentages in TFH and TFR cells were identified in the peripheral blood of 75 SLE patients and 62 HCs (healthy controls). PD-1 and ICOS expression were compared between Helios+ and Helios- cells. The capacity of TFH cells to secrete IL-21 and TFR cells to secrete IL-10 was measured. Correlation analysis and receiver operating characteristic (ROC) curve analysis were conducted to assess the clinical significance of Helios-related TFH and TFR cell subsets in SLE. There was Helios expression in TFH and TFR cells. PD-1 and ICOS were lower in Helios+ TFR than in Helios- TFR. ICOS was increased in Helios+ TFH cells compared with Helios- TFH cells, and ICOS in Helios+ TFH cells was downregulated in SLE. Helios+ TFH cells secreted more IL-21 than Helios- TFH cells, and Helios+ TFH cells from SLE patients had a stronger IL-21 secretion than HCs. Helios+ TFH percentages were negatively correlated with C3 and C4 and positively related to CRP and SLEDAI, and the AUC of Helios+ TFH to distinguish SLE from HC was 0.7959. Helios characterizes circulating TFH cells with enhanced function. Increased Helios+ TFH cells could reflect the autoimmune status of SLE.
Collapse
Affiliation(s)
- Xingyue Zeng
- Department of Clinical Laboratory, Peking University People's Hospital, 11# Xizhimen South Street, Beijing, 100044, China
| | - Xiayidan Alimu
- Department of Clinical Laboratory, Peking University People's Hospital, 11# Xizhimen South Street, Beijing, 100044, China
| | - Ayibaota Bahabayi
- Department of Clinical Laboratory, Peking University People's Hospital, 11# Xizhimen South Street, Beijing, 100044, China
| | - Zhonghui Zhang
- Department of Clinical Laboratory, Peking University People's Hospital, 11# Xizhimen South Street, Beijing, 100044, China
| | - Mohan Zheng
- School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Zihang Yuan
- School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Tianci Liu
- Department of Clinical Laboratory, Peking University People's Hospital, 11# Xizhimen South Street, Beijing, 100044, China
| | - Chen Liu
- Department of Clinical Laboratory, Peking University People's Hospital, 11# Xizhimen South Street, Beijing, 100044, China.
| |
Collapse
|
9
|
Wei X, Niu X. T follicular helper cells in autoimmune diseases. J Autoimmun 2023; 134:102976. [PMID: 36525939 DOI: 10.1016/j.jaut.2022.102976] [Citation(s) in RCA: 52] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 12/05/2022] [Accepted: 12/06/2022] [Indexed: 12/15/2022]
Abstract
T follicular helper (Tfh) cells with the phenotype of mainly expressing surface molecules C-X-C motif chemokine receptor type 5 (CXCR5), inducible co-stimulator (ICOS), secreting cytokine interleukin-21 (IL-21) and requiring the transcription factor B cell lymphoma 6 (BCL-6) have been recently defined as a new subset of CD4+ T cells. They exist in germinal centers (GCs) of lymphoid organs and in peripheral blood. With the ability to promote B cell development, GC formation and antibody production, Tfh cells play critical roles in the pathogenesis of many autoimmune diseases, such as systemic lupus erythematosus (SLE), rheumatoid arthritis (RA), primary Sjögren's syndrome (pSS), etc. The aberrant proliferation and function of Tfh cells will cause the pathological process like autoantibody production and tissue injury. In this paper, we review the recent advances in Tfh cell biology and their roles in autoimmune diseases, with a mention of their use as therapeutic targets, which will shed more light on the pathogenesis and treatment of certain autoimmune diseases.
Collapse
Affiliation(s)
- Xindi Wei
- Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai Institute of Immunology, Shanghai, 200025, China; Department of Oral and Maxillo-facial Implantology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai, 200011, China
| | - Xiaoyin Niu
- Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai Institute of Immunology, Shanghai, 200025, China.
| |
Collapse
|
10
|
Bahabayi A, Zeng X, Tuerhanbayi B, Zhang Y, Hasimu A, Guo S, Liu T, Zheng M, Alimu X, Liu C. Changes in circulating TCF1- and GARP-associated regulatory T cell subsets reflect the clinical status of patients with chronic HBV infection. Med Microbiol Immunol 2022; 211:237-247. [PMID: 35953613 DOI: 10.1007/s00430-022-00748-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 07/23/2022] [Indexed: 10/15/2022]
Abstract
This study aimed to clarify the expression changes and clinical significance of regulatory T (Treg) cells and follicular regulatory T (TFR) cell subsets divided by glycoprotein A repetitions predominant protein (GARP) and T cell factor 1(TCF1) in peripheral blood of patients with chronic HBV infection. The peripheral blood of 26 chronic hepatitis B (CHB) patients, 27 inactive HBsAg carriers and 32 healthy controls were collected and GARP + percentages in Treg and TFR cells were analyzed by flow cytometry. In addition, Treg and TFR cell subsets sorted by CD62L and TCF1 were analyzed and compared. Correlation analyses were performed between Treg and TFR cell subpopulations and clinical parameters as well as cytokine concentrations, including IL-21, IL-10 and TGF-β1 in plasma. Circulating Treg and TFR levels were elevated in CHB patients. Moreover, GARP and TCF1 were up-regulated in circulating Treg and TFR cells of CHB patients. TCF1 + CD62L- Treg cells were increased while TCF1-CD62L + Treg cells were decreased in CHB patients. TCF1 + CD62L- and TCF1-CD62L- TFR cells were increased while TCF1 + CD62L + TFR cells were decreased in CHB patients. TCF1 + CD62L- Treg cells were positively correlated with HBV DNA, ALT and plasma IL-10, while TCF1 + CD62L + TFR cells were negatively correlated with HBV DNA, HBeAg, HBsAg, ALT, AST, T-BIL and positively correlated with plasma IL-21. Treg and TFR subsets sorted by TCF1, CD62L and GARP were changed in CHB patients. Changes in Treg and TFR functional subsets are associated with antiviral immunity in CHB patients.
Collapse
Affiliation(s)
- Ayibaota Bahabayi
- Department of Clinical Laboratory, Peking University People's Hospital, 11# Xizhimen South Street, Beijing, 100044, China
| | - Xingyue Zeng
- Department of Clinical Laboratory, Peking University People's Hospital, 11# Xizhimen South Street, Beijing, 100044, China
| | - Bulidierxin Tuerhanbayi
- Department of Clinical Laboratory, Peking University People's Hospital, 11# Xizhimen South Street, Beijing, 100044, China
| | - Yangyang Zhang
- Department of Clinical Laboratory, Peking University People's Hospital, 11# Xizhimen South Street, Beijing, 100044, China
| | - Ainizati Hasimu
- Department of Clinical Laboratory, Peking University People's Hospital, 11# Xizhimen South Street, Beijing, 100044, China
| | - Siyu Guo
- Department of Clinical Laboratory, Peking University People's Hospital, 11# Xizhimen South Street, Beijing, 100044, China
| | - Tianci Liu
- Department of Clinical Laboratory, Peking University People's Hospital, 11# Xizhimen South Street, Beijing, 100044, China
| | - Mohan Zheng
- School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Xiayidan Alimu
- Department of Clinical Laboratory, Peking University People's Hospital, 11# Xizhimen South Street, Beijing, 100044, China
| | - Chen Liu
- Department of Clinical Laboratory, Peking University People's Hospital, 11# Xizhimen South Street, Beijing, 100044, China.
| |
Collapse
|