1
|
Sanati M, Ghafouri-Fard S. Circular RNAs: key players in tumor immune evasion. Mol Cell Biochem 2025:10.1007/s11010-024-05186-8. [PMID: 39754640 DOI: 10.1007/s11010-024-05186-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Accepted: 12/07/2024] [Indexed: 01/06/2025]
Abstract
Immune responses against tumor antigens play a role in confining tumor growth. In response, cancer cells developed several mechanisms to bypass or defeat these anti-tumor immune responses-collectively referred to as "tumor immune evasion". Recent studies have shown that a group of non-coding RNAs, namely circRNAs affect several aspects of tumor immune evasion through regulation of activity of CD8 + T cells, regulatory T cells, natural killer cells, cytokine-induced killer cells or other immune cells. Understanding the role of circRNAs in this process facilitate design of novel therapies for enhancing the anti-tumor capacity of immune system. This review provides an outline of different roles of circRNAs in the tumor immune evasion.
Collapse
Affiliation(s)
- Mahla Sanati
- Department of Medical Genetics, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Soudeh Ghafouri-Fard
- Department of Medical Genetics, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
2
|
Huang M, Zhang F, Zhu Y, Zeng H, Li S. MEST promotes immune escape in gastric cancer by downregulating MHCI expression via SHP2. Int J Biochem Cell Biol 2024; 174:106621. [PMID: 39181599 DOI: 10.1016/j.biocel.2024.106621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 06/28/2024] [Accepted: 07/10/2024] [Indexed: 08/27/2024]
Abstract
BACKGROUND Immune escape is a major obstacle to T-cell-based immunotherapy for cancers such as gastric cancer (GC). Mesoderm-specific transcript (MEST) is a tumor-promoting factor that regulates multiple oncogenic signaling pathways. However, the role of MEST-mediated immune escape is unclear. METHODS Bioinformatics analysis of MEST expression and enrichment pathways were performed Quantitative reverse transcription PCR (qPCR) or western blot was used to detect the expression of MEST, Src homology region 2-containing protein tyrosine phosphatase 2 (SHP2), Major histocompatibility class I (MHCI)-related genes. Cell function was assessed by Cell Counting Kit (CCK)-8, Transwell, Lactate dehydrogenase (LDH) kit, flow cytometry, enzyme-linked immunosorbent assay (ELISA), and immunohistochemistry (IHC). Xenograft nude mice and immune-reconstructed mice were used to test the effects of different treatments on tumor growth and immune escape in vivo. RESULTS MEST was upregulated in GC and promoted tumor proliferation, migration, and invasion. Rescue experiments revealed that TNO155 treatment or knockdown of SHP2 promoted the killing ability of CD8+ T cells and the expression of granzyme B (GZMB) and interferon-gamma (IFN-γ), and MEST overexpression reversed the effect. In vivo experiments confirmed that MEST promoted tumor growth, knockdown of MEST inhibited immune escape in GC, and that combination treatment with anti-PD-1 improved anti-tumor activity. CONCLUSION In this study, we demonstrated that MEST inhibited IFN-γ secretion from CD8+ T cells by up-regulating SHP2, thereby downregulating MHCI expression in GC cells to promote immune escape and providing a new T cell-based therapeutic potential for GC.
Collapse
Affiliation(s)
- Min Huang
- Department of Oncology, The First People's Hospital Affiliated to Yangtze University, Jingzhou City, Hubei Province 434000, China
| | - Fan Zhang
- Department of Oncology, The First People's Hospital Affiliated to Yangtze University, Jingzhou City, Hubei Province 434000, China
| | - Yan Zhu
- Department of Oncology, The First People's Hospital Affiliated to Yangtze University, Jingzhou City, Hubei Province 434000, China
| | - Hai Zeng
- Department of Oncology, The First People's Hospital Affiliated to Yangtze University, Jingzhou City, Hubei Province 434000, China
| | - Shuang Li
- Department of Oncology, The First People's Hospital Affiliated to Yangtze University, Jingzhou City, Hubei Province 434000, China.
| |
Collapse
|
3
|
Shu ML, Xia JK, Yan J, Feng YJ, Qian CJ, Teng XS, Yao J. Circ_0002395 promotes aerobic glycolysis and proliferation in pancreatic adenocarcinoma cells via miR-548c-3p/PDK1 axis. J Bioenerg Biomembr 2024; 56:55-71. [PMID: 38041751 DOI: 10.1007/s10863-023-09995-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Accepted: 11/12/2023] [Indexed: 12/03/2023]
Abstract
Circular RNAs (circRNAs) showing unusual expressions have been discovered in pancreatic adenocarcinoma (PAAD). However, the functions and underlying mechanisms of these circRNAs still remain largely unclear. Our current study discovered a notable increase in the expression of circRNA hsa_circ_0002395 (circ_0002395) in both PAAD tissues and cell lines. This up-regulation of circ_0002395 was found to be associated with larger tumor sizes and lymph node metastasis. Furthermore, our findings showed that circ_0002395 facilitated aerobic glycolysis and cell proliferation in PAAD cells by regulating the miR-548c-3p/PDK1 axis. Mechanistically, we identified circ_0002395 as a competing endogenous RNA (ceRNA) that sponged miR-548c-3p, thereby promoting PDK1 expression and aerobic glycolysis, and ultimately resulting in the enhancement of cell proliferation. Our findings found that circ_0002395 promoted proliferation of PAAD cells by enhancing PDK1 expression and aerobic glycolysis by sponging miR-548c-3p.
Collapse
Affiliation(s)
- Meng-Lu Shu
- Early Gastrointestinal Cancer Research Center, Taizhou Central Hospital (Taizhou University Hospital), Taizhou University, Taizhou, 318000, Zhejiang Province, China
- School of Medicine, Taizhou University, Taizhou, 318000, Zhejiang Province, China
| | - Jun-Kai Xia
- Early Gastrointestinal Cancer Research Center, Taizhou Central Hospital (Taizhou University Hospital), Taizhou University, Taizhou, 318000, Zhejiang Province, China
- School of Medicine, Taizhou University, Taizhou, 318000, Zhejiang Province, China
| | - Jing Yan
- Early Gastrointestinal Cancer Research Center, Taizhou Central Hospital (Taizhou University Hospital), Taizhou University, Taizhou, 318000, Zhejiang Province, China
- School of Medicine, Taizhou University, Taizhou, 318000, Zhejiang Province, China
| | - Yu-Jie Feng
- Early Gastrointestinal Cancer Research Center, Taizhou Central Hospital (Taizhou University Hospital), Taizhou University, Taizhou, 318000, Zhejiang Province, China
- School of Medicine, Taizhou University, Taizhou, 318000, Zhejiang Province, China
| | - Cui-Juan Qian
- Early Gastrointestinal Cancer Research Center, Taizhou Central Hospital (Taizhou University Hospital), Taizhou University, Taizhou, 318000, Zhejiang Province, China.
- School of Medicine, Taizhou University, Taizhou, 318000, Zhejiang Province, China.
| | - Xiao-Sheng Teng
- Early Gastrointestinal Cancer Research Center, Taizhou Central Hospital (Taizhou University Hospital), Taizhou University, Taizhou, 318000, Zhejiang Province, China.
- Department of Gastroenterology, Taizhou Central Hospital (Taizhou University Hospital), Taizhou University, Taizhou, 318000, Zhejiang Province, China.
| | - Jun Yao
- School of Medicine, Taizhou University, Taizhou, 318000, Zhejiang Province, China.
- Department of Gastroenterology, Taizhou Central Hospital (Taizhou University Hospital), Taizhou University, Taizhou, 318000, Zhejiang Province, China.
| |
Collapse
|
4
|
Shan H, Zhang X, Zhang X, Wei Y, Meng L, Li J, Zhang Z, Ma L, Xiao Y. CircSCUBE3 Reduces the Anti-gastric Cancer Activity of Anti-PD-L1. Mol Biotechnol 2024; 66:123-137. [PMID: 37052807 DOI: 10.1007/s12033-023-00696-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/14/2023] [Indexed: 04/14/2023]
Abstract
The progression of gastric cancer (GC) is closely related to tumor immune escape. The research, therefore, studied the impact of possible circRNAs on the immune escape of GC tumors and the underlying mechanisms. Here, to explore circRNAs that may affect GC, the differential circRNAs in six normal gastric mucosal tissues and six GC samples (GSM2005868-GSM2005879) were analyzed through the bioinformatics website circmine, and hsa_circ_0076092 (circSCUBE3) was identified as the research object. In vitro assays revealed the functions of circSCUBE3 and its downstream miRNA/mRNA axis in GC cells. The effect of circSCUBE3 against PD-1 anti-tumor activity was evaluated in vivo. The relationship between circSCUBE3 and miR-744-5p, miR-744-5p, and SLC7A5 was identified by RNA immunoprecipitation and dual-luciferase reporter experiments. The effect of SLC7A5 on GC immune escape by regulating PD-L1 expression was assessed by co-culture system and flow cytometry. CircSCUBE3 was up-regulated in human GC tissues and GC cell lines. circSCUBE3 was associated with poor prognosis in GC patients. Functional experiments reported that circSCUBE3 knockdown could suppress GC immune escape. Mechanistically, circSCUBE3 bound to miR-744-5p, which further targeted SLC7A5, and SLC7A5 can affect GC immune escape by regulating PD-L1. Furthermore, in vivo assay manifested that circSCUBE3 attenuated the anti-tumor effect of PD-L1. Our study revealed the importance of the circSCUBE3/miR-744-5p/SLC7A5 axis in GC immune escape and anti-PD-1 resistance.
Collapse
Affiliation(s)
- HuSheng Shan
- Department of Radiology, The First Medical Center, Chinese People's Liberation Army General Hospital, No. 28 Fuxing Road, Haidian District, Beijing, 100853, China
- Medical School of Chinese PLA, Beijing, 100853, China
- Huai'an Medical District of the Eastern Theater General Hospital, Huai'an, 223001, China
| | - XiaoBo Zhang
- Department of Radiology, The First Medical Center, Chinese People's Liberation Army General Hospital, No. 28 Fuxing Road, Haidian District, Beijing, 100853, China
| | - Xiao Zhang
- Department of Radiology, The First Medical Center, Chinese People's Liberation Army General Hospital, No. 28 Fuxing Road, Haidian District, Beijing, 100853, China
| | - YingTian Wei
- Department of Radiology, The First Medical Center, Chinese People's Liberation Army General Hospital, No. 28 Fuxing Road, Haidian District, Beijing, 100853, China
| | - LiangLiang Meng
- Department of Radiology, The First Medical Center, Chinese People's Liberation Army General Hospital, No. 28 Fuxing Road, Haidian District, Beijing, 100853, China
| | - Jing Li
- Department of Radiology, The First Medical Center, Chinese People's Liberation Army General Hospital, No. 28 Fuxing Road, Haidian District, Beijing, 100853, China
| | - ZhongLiang Zhang
- Department of Radiology, The First Medical Center, Chinese People's Liberation Army General Hospital, No. 28 Fuxing Road, Haidian District, Beijing, 100853, China
| | - Li Ma
- Department of Anesthesia, The First Medical Center, Chinese People's Liberation Army General Hospital, Beijing, 100853, China
| | - YueYong Xiao
- Department of Radiology, The First Medical Center, Chinese People's Liberation Army General Hospital, No. 28 Fuxing Road, Haidian District, Beijing, 100853, China.
| |
Collapse
|
5
|
Miao S, Zhang Q. Circulating circRNA: a social butterfly in tumors. Front Oncol 2023; 13:1203696. [PMID: 37546422 PMCID: PMC10401440 DOI: 10.3389/fonc.2023.1203696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 06/20/2023] [Indexed: 08/08/2023] Open
Abstract
Circular RNAs (circRNAs) are a class of single-stranded non-coding RNAs that form circular structures through irregular splicing or post-splicing events. CircRNAs are abnormally expressed in many cancers and regulate the occurrence and development of tumors. Circulating circRNAs are cell-free circRNAs present in peripheral blood, they are considered promising biomarkers due to their high stability. In recent years, more and more studies have revealed that circulating circRNAs participate in various cellular communication and regulate the occurrence and development of tumors, which involve many pathological processes such as tumorigenesis, tumor-related immunity, tumor angiogenesis, and tumor metastasis. Understanding the role of cell communication mediated by circulating circRNAs in tumor will further reveal the value and significance behind their use as biomarkers and potential therapeutic targets. In this review, we summarize the recent findings and provide an overview of the cell-cell communication mediated by circulating circRNAs, aiming to explore the role and application value of circulating circRNAs in tumors.
Collapse
Affiliation(s)
- Shuo Miao
- Department of Urology, Affiliated Hospital of Qingdao University, Qingdao, China
- School of Basic Medicine, Qingdao University, Qingdao, China
| | - Qingsong Zhang
- Department of Urology, Affiliated Hospital of Qingdao University, Qingdao, China
| |
Collapse
|
6
|
Regulation of the tumor immune microenvironment by cancer-derived circular RNAs. Cell Death Dis 2023; 14:132. [PMID: 36797245 PMCID: PMC9935907 DOI: 10.1038/s41419-023-05647-w] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Revised: 02/01/2023] [Accepted: 02/02/2023] [Indexed: 02/18/2023]
Abstract
Circular RNA (circRNAs) is a covalently closed circular non-coding RNA formed by reverse back-splicing from precursor messenger RNA. It is found widely in eukaryotic cells and can be released to the surrounding environment and captured by other cell types. This, circRNAs serve as connections between different cell types for the mediation of multiple signaling pathways. CircRNAs reshape the tumor microenvironment (TME), a key factor involved in all stages of cancer development, by regulating epithelial-stromal transformation, tumor vascularization, immune cell function, and inflammatory responses. Immune cells are the most abundant cellular TME components, and they have profound toxicity to cancer cells. This review summarizes circRNA regulation of immune cells, including T cells, natural killer cells, and macrophages; highlights the impact of circRNAs on tumor progression, treatment, and prognosis; and indicates new targets for tumor immunotherapy.
Collapse
|
7
|
The Tumorigenic Role of Circular RNA-MicroRNA Axis in Cancer. Int J Mol Sci 2023; 24:ijms24033050. [PMID: 36769372 PMCID: PMC9917898 DOI: 10.3390/ijms24033050] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 01/30/2023] [Accepted: 02/02/2023] [Indexed: 02/09/2023] Open
Abstract
Circular RNAs (circRNAs) are a class of endogenous RNAs that control gene expression at the transcriptional and post-transcriptional levels. Recent studies have increasingly demonstrated that circRNAs act as novel diagnostic biomarkers and promising therapeutic targets for numerous cancer types by interacting with other non-coding RNAs such as microRNAs (miRNAs). The miRNAs are presented as crucial risk factors and regulatory elements in cancer by regulating the expression of their target genes. Some miRNAs are derived from transposable elements (MDTEs) that can transfer their location to another region of the genome. Genetic interactions between miRNAs and circular RNAs can form complex regulatory networks with various carcinogenic processes that play critical roles in tumorigenesis and cancer progression. This review focuses on the biological regulation of the correlative axis among circular RNAs, miRNAs, and their target genes in various cancer types and suggests the biological importance of MDTEs interacting with oncogenic or tumor-suppressive circRNAs in tumor progression.
Collapse
|
8
|
Wang W, Huang G, Lin H, Ren L, Fu L, Mao X. Label-free LC-MS/MS proteomics analyses reveal CLIC1 as a predictive biomarker for bladder cancer staging and prognosis. Front Oncol 2023; 12:1102392. [PMID: 36727059 PMCID: PMC9885092 DOI: 10.3389/fonc.2022.1102392] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 12/22/2022] [Indexed: 01/18/2023] Open
Abstract
Introduction Bladder cancer (BC) is a significant carcinoma of the urinary system that has a high incidence of morbidity and death owing to the challenges in accurately identifying people with early-stage BC and the lack of effective treatment options for those with advanced BC. Thus, there is a need to define new markers of prognosis and prediction. Methods In this study, we have performed a comprehensive proteomics experiment by label-free quantitative proteomics to compare the proteome changes in the serum of normal people and bladder cancer patients-the successful quantification of 2064 Quantifiable proteins in total. A quantitative analysis was conducted to determine the extent of changes in protein species' relative intensity and reproducibility. There were 43 upregulated proteins and 36 downregulated proteins discovered in non-muscle invasive bladder cancer and normal individuals. Sixty-four of these proteins were elevated, and 51 were downregulated in muscle-invasive and non-muscle-invasive bladder cancer, respectively. Functional roles of differentially expressed proteins were annotated using Gene Ontology (GO) and Clusters of Orthologous Groups of Proteins (COG). To analyze the functions and pathways enriched by differentially expressed proteins, GO enrichment analysis, protein domain analysis, and KEGG pathway analysis were performed. The proteome differences were examined and visualized using radar plots, heat maps, bubble plots, and Venn diagrams. Results As a result of combining the Venn diagram with protein-protein interactions (PPIs), Chloride intracellular channel 1 (CLIC1) was identified as the primary protein. Using the Gene Set Cancer Analysis (GSCA) website, the influence of CLIC1 on immune infiltration was analyzed. A negative correlation between CD8 naive and CLIC1 levels was found. For validation, immunohistochemical (IHC), qPCR, and western blotting (WB) were performed.Further, we found that CLIC1 was associated with a poor prognosis of bladder cancer in survival analysis. Discussion Our research screened CLIC1 as a tumor-promoting protein in bladder cancer for the first time using serum mass spectrometry. And CLIC1 associated with tumor stage, and immune infiltrate. The prognostic biomarker and therapeutic target CLIC1 may be new for bladder cancer patients.
Collapse
Affiliation(s)
- Weifeng Wang
- Department of Urology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Guankai Huang
- Department of Urology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Hansen Lin
- Department of Urology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
- Institute of Precision Medicine, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Lei Ren
- Department of Urology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Liangmin Fu
- Department of Urology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
- Institute of Precision Medicine, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Xiaopeng Mao
- Department of Urology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
9
|
Kim WR, Park EG, Lee YJ, Bae WH, Lee DH, Kim HS. Integration of TE Induces Cancer Specific Alternative Splicing Events. Int J Mol Sci 2022; 23:10918. [PMID: 36142830 PMCID: PMC9502224 DOI: 10.3390/ijms231810918] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 09/13/2022] [Accepted: 09/13/2022] [Indexed: 11/16/2022] Open
Abstract
Alternative splicing of messenger RNA (mRNA) precursors contributes to genetic diversity by generating structurally and functionally distinct transcripts. In a disease state, alternative splicing promotes incidence and development of several cancer types through regulation of cancer-related biological processes. Transposable elements (TEs), having the genetic ability to jump to other regions of the genome, can bring about alternative splicing events in cancer. TEs can integrate into the genome, mostly in the intronic regions, and induce cancer-specific alternative splicing by adjusting various mechanisms, such as exonization, providing splicing donor/acceptor sites, alternative regulatory sequences or stop codons, and driving exon disruption or epigenetic regulation. Moreover, TEs can produce microRNAs (miRNAs) that control the proportion of transcripts by repressing translation or stimulating the degradation of transcripts at the post-transcriptional level. Notably, TE insertion creates a cancer-friendly environment by controlling the overall process of gene expression before and after transcription in cancer cells. This review emphasizes the correlative interaction between alternative splicing by TE integration and cancer-associated biological processes, suggesting a macroscopic mechanism controlling alternative splicing by TE insertion in cancer.
Collapse
Affiliation(s)
- Woo Ryung Kim
- Department of Integrated Biological Sciences, Pusan National University, Busan 46241, Korea
- Institute of Systems Biology, Pusan National University, Busan 46241, Korea
| | - Eun Gyung Park
- Department of Integrated Biological Sciences, Pusan National University, Busan 46241, Korea
- Institute of Systems Biology, Pusan National University, Busan 46241, Korea
| | - Yun Ju Lee
- Department of Integrated Biological Sciences, Pusan National University, Busan 46241, Korea
- Institute of Systems Biology, Pusan National University, Busan 46241, Korea
| | - Woo Hyeon Bae
- Department of Integrated Biological Sciences, Pusan National University, Busan 46241, Korea
- Institute of Systems Biology, Pusan National University, Busan 46241, Korea
| | - Du Hyeong Lee
- Department of Integrated Biological Sciences, Pusan National University, Busan 46241, Korea
- Institute of Systems Biology, Pusan National University, Busan 46241, Korea
| | - Heui-Soo Kim
- Institute of Systems Biology, Pusan National University, Busan 46241, Korea
- Department of Biological Sciences, College of Natural Sciences, Pusan National University, Busan 46241, Korea
| |
Collapse
|
10
|
Liu AR, Yan ZW, Jiang LY, Lv Z, Li YK, Wang BG. The role of non-coding RNA in the diagnosis and treatment of Helicobacter pylori-related gastric cancer, with a focus on inflammation and immune response. Front Med (Lausanne) 2022; 9:1009021. [PMID: 36314013 PMCID: PMC9606473 DOI: 10.3389/fmed.2022.1009021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 09/20/2022] [Indexed: 02/05/2023] Open
Abstract
Helicobacter pylori (H. pylori) is one of the globally recognized causative factors of gastric cancer (GC). Currently, no definite therapy and drugs for H. pylori-related GC have been widely acknowledged although H. pylori infection could be eradicated in early stage. Inflammation and immune response are spontaneous essential stages during H. pylori infection. H pylori may mediate immune escape by affecting inflammation and immune response, leading to gastric carcinogenesis. As an important component of transcriptome, non-coding RNAs (ncRNAs) have been proven to play crucial roles in the genesis and development of H. pylori-induced GC. This review briefly described the effects of ncRNAs on H. pylori-related GC from the perspective of inflammation and immune response, as well as their association with inflammatory reaction and immune microenvironment. We aim to explore the potential of ncRNAs as markers for the early diagnosis, prognosis, and treatment of H. pylori-related GC. The ncRNAs involved in H. pylori-related GC may all hold promise as novel therapeutic targets for immunotherapy.
Collapse
Affiliation(s)
- Ao-ran Liu
- Tumor Etiology and Screening Department of Cancer Institute and General Surgery, The First Affiliated Hospital of China Medical University, Key Laboratory of Cancer Etiology and Prevention, China Medical University, Liaoning Provincial Education Department, Shenyang, China
| | - Zi-wei Yan
- Tumor Etiology and Screening Department of Cancer Institute and General Surgery, The First Affiliated Hospital of China Medical University, Key Laboratory of Cancer Etiology and Prevention, China Medical University, Liaoning Provincial Education Department, Shenyang, China
| | - Li-yue Jiang
- Tangdu Hospital of the Fourth Military Medical University, Xi’an, China
| | - Zhi Lv
- Tumor Etiology and Screening Department of Cancer Institute and General Surgery, The First Affiliated Hospital of China Medical University, Key Laboratory of Cancer Etiology and Prevention, China Medical University, Liaoning Provincial Education Department, Shenyang, China
- Department of General Surgery, The First Hospital of China Medical University, Shenyang, China
- Zhi Lv,
| | - Yan-ke Li
- Tumor Etiology and Screening Department of Cancer Institute and General Surgery, The First Affiliated Hospital of China Medical University, Key Laboratory of Cancer Etiology and Prevention, China Medical University, Liaoning Provincial Education Department, Shenyang, China
- Department of General Surgery, The First Hospital of China Medical University, Shenyang, China
- Yan-ke Li,
| | - Ben-gang Wang
- Tumor Etiology and Screening Department of Cancer Institute and General Surgery, The First Affiliated Hospital of China Medical University, Key Laboratory of Cancer Etiology and Prevention, China Medical University, Liaoning Provincial Education Department, Shenyang, China
- Department of Hepatobiliary Surgery, Institute of General Surgery, The First Hospital of China Medical University, Shenyang, China
- *Correspondence: Ben-gang Wang,
| |
Collapse
|