1
|
Peng S, Yu L, Jiang M, Cao S, Wang H, Lu X, Tao Y, Zhou J, Sun L, Zuo D. Canthaxanthin ameliorates atopic dermatitis in mice by suppressing Th2 immune response. Int Immunopharmacol 2025; 147:113975. [PMID: 39787760 DOI: 10.1016/j.intimp.2024.113975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 12/24/2024] [Accepted: 12/28/2024] [Indexed: 01/12/2025]
Abstract
Atopic dermatitis (AD) is a prevalent chronic inflammatory skin disorder characterized by intense pruritus and complex immunopathogenic mechanisms. Recent evidence has highlighted the critical link between dysregulated intestinal microecology and altered immune responses in AD progression. As essential components of the intestinal microenvironment, metabolites play pivotal roles in various physiological processes. Through metabolomic profiling in an AD mouse model, we identified a significant reduction in canthaxanthin (CTX), a bacterial-derived metabolite naturally present in many foods, in AD mice compared to healthy controls. To investigate the therapeutic potential of CTX, we established an AD model by repeatedly applying 2,4-dinitrochlorobenzene (DNCB) to the ears and dorsal skin of mice, successfully inducing AD-like symptoms and lesions. Notably, oral administration of CTX significantly attenuated skin inflammation and reduced serum IgE levels in this DNCB-induced AD model. Both in vivo and in vitro studies demonstrated that CTX treatment effectively suppressed Th2 immune responses. Mechanistically, we found that CTX significantly inhibited the activation of the JAK2-STAT6 signaling pathway in Th2-polarized T cells. Our findings not only demonstrate the therapeutic efficacy of CTX in AD but also elucidate its molecular mechanism in modulating T helper cell subset balance. These insights suggest that CTX could serve as a promising therapeutic agent for AD and potentially other Th2 response-mediated immune disorders.
Collapse
Affiliation(s)
- Shuying Peng
- Institute of Molecular Immunology, Key Laboratory of Infectious Diseases Research in South China, Ministry of Education, Guangdong Province Key Laboratory of Immune Regulation and Immunotherapy, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, Guangdong 510515, China; Guangdong Province Key Laboratory of Proteomics, Department of Immunology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Lu Yu
- Institute of Molecular Immunology, Key Laboratory of Infectious Diseases Research in South China, Ministry of Education, Guangdong Province Key Laboratory of Immune Regulation and Immunotherapy, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, Guangdong 510515, China; Department of Blood Transfusion, Henan Provincial People's Hospital, Zhengzhou, Henan 450003, China
| | - Mingxin Jiang
- Institute of Molecular Immunology, Key Laboratory of Infectious Diseases Research in South China, Ministry of Education, Guangdong Province Key Laboratory of Immune Regulation and Immunotherapy, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Sihang Cao
- Institute of Molecular Immunology, Key Laboratory of Infectious Diseases Research in South China, Ministry of Education, Guangdong Province Key Laboratory of Immune Regulation and Immunotherapy, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, Guangdong 510515, China; Guangdong Province Key Laboratory of Proteomics, Department of Immunology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Hong Wang
- Institute of Molecular Immunology, Key Laboratory of Infectious Diseases Research in South China, Ministry of Education, Guangdong Province Key Laboratory of Immune Regulation and Immunotherapy, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, Guangdong 510515, China; Guangdong Medical Products Administration Key Laboratory for Research and Evaluation of Drugs for Inflammatory Diseases, Department of Dermatology, the Fifth Affiliated Hospital, Southern Medical University, Guangzhou, Guangdong 510900, China
| | - Xiao Lu
- Guangdong Province Key Laboratory of Proteomics, Department of Immunology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Yihao Tao
- Veritas Collegiate Academy, 935 23rd St S, Arlington, VA 22202-2422, United States
| | - Jia Zhou
- Guangdong Province Key Laboratory of Proteomics, Department of Immunology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Ledong Sun
- Guangdong Medical Products Administration Key Laboratory for Research and Evaluation of Drugs for Inflammatory Diseases, Department of Dermatology, the Fifth Affiliated Hospital, Southern Medical University, Guangzhou, Guangdong 510900, China.
| | - Daming Zuo
- Institute of Molecular Immunology, Key Laboratory of Infectious Diseases Research in South China, Ministry of Education, Guangdong Province Key Laboratory of Immune Regulation and Immunotherapy, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, Guangdong 510515, China.
| |
Collapse
|
2
|
Yu KL, Shen S. Could intratumoural microbiota be key to unlocking treatment responses in hepatocellular carcinoma? Eur J Cancer 2025; 216:115195. [PMID: 39729679 DOI: 10.1016/j.ejca.2024.115195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Revised: 12/12/2024] [Accepted: 12/18/2024] [Indexed: 12/29/2024]
Abstract
Hepatocellular carcinoma (HCC) is the third cause of cancer-related mortality worldwide. Current treatments include surgery and immunotherapy with variable response. Despite aggressive treatment, disease progression remains the biggest contributor to mortality. Thus, there is an urgent unmet need to improve current treatments through a better understanding of HCC tumourigenesis. The gut microbiota has been intensively examined in the context of HCC, with evidence showing gut modulation has the potential to modulate tumourigenesis and prognosis. In addition, recent literature suggests the presence of an intratumoural microbiota that may exert significant impacts on the development of solid tumours including HCC. By drawing parallels between the gut and hepatic/tumoural microbiota, we explore in the present review how the hepatic microbiota is established, its impact on tumourigenesis, and how modulation of the gut and hepatic microbiota may be key to improving current treatments of HCC. In particular, we highlight key bacteria that have been discovered in HCC tumours, and how they may affect the tumour immune microenvironment and HCC tumourigenesis. We then explore current therapies that target the intratumoural microbiota. With a deeper understanding of how the intratumoural microbiota is established, how different bacteria may be involved in HCC tumourigenesis, and how they can be targeted, we hope to spark future research in validating intratumoural microbiota as an avenue for improving treatment responses in HCC.
Collapse
Affiliation(s)
- Kin Lam Yu
- School of Clinical Medicine, UNSW Medicine and Health, UNSW Sydney, Kensington, NSW, Australia
| | - Sj Shen
- Microbiome Research Centre, St George and Sutherland Clinical Campuses, UNSW Sydney, Kogarah, NSW, Australia.
| |
Collapse
|
3
|
Jiang Y, Cai R, Huang Y, Zhu L, Xiao L, Wang C, Wang L. Macrophages in organ fibrosis: from pathogenesis to therapeutic targets. Cell Death Discov 2024; 10:487. [PMID: 39632841 PMCID: PMC11618518 DOI: 10.1038/s41420-024-02247-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 11/11/2024] [Accepted: 11/13/2024] [Indexed: 12/07/2024] Open
Abstract
Fibrosis, an excessive self-repair response, is an age-related pathological process that universally affects various major organs such as the heart, liver, kidney, and lungs. Continuous accumulation of pathological tissue fibrosis destroys structural integrity and causes loss of function, with consequent organ failure and increased mortality. Although some differences exist in the triggering mechanisms and pathophysiologic manifestations of organ-specific fibrosis, they usually share similar cascading responses and features, including chronic inflammatory stimulation, parenchymal cell injury, and macrophage recruitment. Macrophages, due to their high plasticity, can polarize into different phenotypes in response to varied microenvironments and play a crucial role in the development of organ fibrosis. This review examined the relationship between macrophages and the pathogenesis of organ fibrosis. Moreover, it analyzed how fibrosis can be modulated by targeting macrophages, which may become a novel and promising therapeutic strategy for fibrosis.
Collapse
Affiliation(s)
- Yuanyuan Jiang
- Translational Medical Innovation Center, Zhangjiagang TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Zhangjiagang, 215600, Jiangsu, China
| | - Rong Cai
- Translational Medical Innovation Center, Zhangjiagang TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Zhangjiagang, 215600, Jiangsu, China
| | - Yu Huang
- Department of Obstetrics and Gynecology, Zhangjiagang Hospital Affiliated to Soochow University, Zhangjiagang, 215600, Jiangsu, China
| | - Like Zhu
- Translational Medical Innovation Center, Zhangjiagang TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Zhangjiagang, 215600, Jiangsu, China
| | - Long Xiao
- Translational Medical Innovation Center, Zhangjiagang TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Zhangjiagang, 215600, Jiangsu, China
| | - Caihong Wang
- Translational Medical Innovation Center, Zhangjiagang TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Zhangjiagang, 215600, Jiangsu, China.
| | - Lihong Wang
- Translational Medical Innovation Center, Zhangjiagang TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Zhangjiagang, 215600, Jiangsu, China.
| |
Collapse
|
4
|
Almalki WH, Almujri SS. Aging, ROS, and cellular senescence: a trilogy in the progression of liver fibrosis. Biogerontology 2024; 26:10. [PMID: 39546058 DOI: 10.1007/s10522-024-10153-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Accepted: 10/30/2024] [Indexed: 11/17/2024]
Abstract
Ageing is an inevitable and multifaceted biological process that impacts a wide range of cellular and molecular mechanisms, leading to the development of various diseases, such as liver fibrosis. Liver fibrosis progresses to cirrhosis, which is an advanced form due to high amounts of extracellular matrix and restoration of normal liver structure with failure to repair damaged tissue and cells, marking the end of liver function and total liver failure, ultimately death. The most important factors are reactive oxygen species (ROS) and cellular senescence. Oxidative stress is defined as an impairment by ROS, which are by-products of the mitochondrial electron transport chain and other key molecular pathways that induce cell damage and can activate cellular senescence pathways. Cellular senescence is characterized by pro-inflammatory cytokines, growth factors, and proteases secreted by senescent cells, collectively known as the senescence-associated secretory phenotype (SASP). The presence of senescent cells, which disrupt tissue architecture and function and increase senescent cell production in liver tissues, contributes to fibrogenesis. Hepatic stellate cells (HSCs) are activated in response to chronic liver injury, oxidative stress, and senescence signals that drive excessive production and deposition of extracellular matrix. This review article aims to provide a comprehensive overview of the pathogenic role of ROS and cellular senescence in the aging liver and their contribution to fibrosis.
Collapse
Affiliation(s)
- Waleed Hassan Almalki
- Department of Pharmacology, College of Pharmacy, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Salem Salman Almujri
- Department of Pharmacology, College of Pharmacy, King Khalid University, 61421, Abha, Aseer, Saudi Arabia.
| |
Collapse
|
5
|
Liu R, Li Y, Zheng Q, Ding M, Zhou H, Li X. Epigenetic modification in liver fibrosis: Promising therapeutic direction with significant challenges ahead. Acta Pharm Sin B 2024; 14:1009-1029. [PMID: 38486982 PMCID: PMC10935124 DOI: 10.1016/j.apsb.2023.10.023] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 08/18/2023] [Accepted: 09/13/2023] [Indexed: 03/17/2024] Open
Abstract
Liver fibrosis, characterized by scar tissue formation, can ultimately result in liver failure. It's a major cause of morbidity and mortality globally, often associated with chronic liver diseases like hepatitis or alcoholic and non-alcoholic fatty liver diseases. However, current treatment options are limited, highlighting the urgent need for the development of new therapies. As a reversible regulatory mechanism, epigenetic modification is implicated in many biological processes, including liver fibrosis. Exploring the epigenetic mechanisms involved in liver fibrosis could provide valuable insights into developing new treatments for chronic liver diseases, although the current evidence is still controversial. This review provides a comprehensive summary of the regulatory mechanisms and critical targets of epigenetic modifications, including DNA methylation, histone modification, and RNA modification, in liver fibrotic diseases. The potential cooperation of different epigenetic modifications in promoting fibrogenesis was also highlighted. Finally, available agonists or inhibitors regulating these epigenetic mechanisms and their potential application in preventing liver fibrosis were discussed. In summary, elucidating specific druggable epigenetic targets and developing more selective and specific candidate medicines may represent a promising approach with bright prospects for the treatment of chronic liver diseases.
Collapse
Affiliation(s)
- Runping Liu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102400, China
| | - Yajing Li
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing 102400, China
| | - Qi Zheng
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102400, China
| | - Mingning Ding
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing 102400, China
| | - Huiping Zhou
- Department of Microbiology and Immunology, Virginia Commonwealth University, Richmond, VA 22460, USA
| | - Xiaojiaoyang Li
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing 102400, China
| |
Collapse
|
6
|
Zhang L, Huang X, Wang D, Fan C, Jiang H, Xie D. Transcriptomic evaluation of N6-methyladenosine modification can be used to identify differentially gene and immune-related biological processes in TX mice with liver fibrosis. Mol Biol Rep 2024; 51:149. [PMID: 38236359 DOI: 10.1007/s11033-023-09163-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 12/14/2023] [Indexed: 01/19/2024]
Abstract
BACKGROUND N6-methyladenosine (m6A) modification controls the stability, splicing, and translation of mRNA, which is important in the development of illnesses. Wilson's disease (WD) is an autosomal recessive liver copper metabolic disorder that causes liver fibrosis. The role of m6A methylation in WD-induced liver fibrosis development is still unclear. Thus, the goal of this study was to examine the scope of m6A methylation and further explore the potential targets related to WD-induced liver fibrosis. RESULTS A total of 1930 significantly different m6A peaks were found on 1737 mRNAs, of which 993 were hypermethylated and 744 were hypomethylated when comparing normal and WD-induced liver fibrosis mice (n = 3). In parallel, 1261 differentially expressed mRNAs, comprising 557 upregulated and 704 downregulated mRNAs, were found. Overall, 114 mRNAs with significant changes in m6A levels and RNA expression were identified via joint analysis. Then, through PPI network construction and functional enrichment analysis, 12 hub genes were identified, these genes were mainly enriched in the inflammatory response and immunomodulation, and they are associated with immune cell infiltration. CONCLUSIONS The significant difference in the amount of mRNA m6A modifications indicates that m6A modification is involved in the progression of WD-induced liver fibrosis, and theidentified hub genes are involved in inflammation and immune infiltration. These results may provide insights for subsequent studies on potential regulatory mechanisms.
Collapse
Affiliation(s)
- Lili Zhang
- Experimental Center of Clinical Research, The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, China
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
| | - Xiaofeng Huang
- Encephalopathy Center, The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, China
| | - Dan Wang
- Encephalopathy Center, The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, China
| | - Chang Fan
- Experimental Center of Clinical Research, The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, China
| | - Hui Jiang
- Experimental Center of Clinical Research, The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, China.
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, China.
| | - Daojun Xie
- Encephalopathy Center, The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, China.
| |
Collapse
|
7
|
Tang CM, Zhang Z, Sun Y, Ding WJ, Yang XC, Song YP, Ling MY, Li XH, Yan R, Zheng YJ, Yu N, Zhang WH, Wang Y, Wang SP, Gao HQ, Zhao CL, Xing YQ. Multi-omics reveals aging-related pathway in natural aging mouse liver. Heliyon 2023; 9:e21011. [PMID: 37920504 PMCID: PMC10618800 DOI: 10.1016/j.heliyon.2023.e21011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 10/01/2023] [Accepted: 10/12/2023] [Indexed: 11/04/2023] Open
Abstract
Aging is associated with gradual changes in liver structure, altered metabolites and other physiological/pathological functions in hepatic cells. However, its characterized phenotypes based on altered metabolites and the underlying biological mechanism are unclear. Advancements in high-throughput omics technology provide new opportunities to understand the pathological process of aging. Here, in our present study, both metabolomics and phosphoproteomics were applied to identify the altered metabolites and phosphorylated proteins in liver of young (the WTY group) and naturally aged (the WTA group) mice, to find novel biomarkers and pathways, and uncover the biological mechanism. Analysis showed that the body weights, alanine aminotransferase (ALT) and aspartate aminotransferase (AST) increased in the WTA group. The grips decreased with age, while the triglyceride (TG) and cholesterol (TC) did not change significantly. The increase of fibrosis, accumulation of inflammatory cells, hepatocytes degeneration, the deposition of lipid droplets and glycogen, the damaged mitochondria, and deduction of endoplasmic reticulum were observed in the aging liver under optical and electron microscopes. In addition, a network of metabolites and phosphorylated proteomes of the aging liver was established. Metabolomics detected 970 metabolites in the positive ion mode and 778 metabolites in the negative ion mode. A total of 150 pathways were pooled. Phosphoproteomics identified 2618 proteins which contained 16621 phosphosites. A total of 164 pathways were detected. 65 common pathways were detected in two omics. Phosphorylated protein heat shock protein HSP 90-alpha (HSP90A) and v-raf murine viral oncogene homolog B1(BRAF), related to cancer pathway, were significantly upregulated in aged mice liver. Western blot verified that protein expression of MEK and ERK, downstream of BRAF pathway were elevated in the liver of aging mice. However, the protein expression of BRAF was not a significant difference. Overall, these findings revealed a close link between aging and cancer and contributed to our understanding of the multi-omics changes in natural aging.
Collapse
Affiliation(s)
- Cong-min Tang
- Department of Geriatric Medicine, Qilu Hospital of Shandong University, Jinan 250012, Shandong Province, China
- Institute of Basic Medical Sciences, Qilu Hospital, Shandong University, Jinan 250012, Shandong Province, China
- Department of Ultrasound, Shandong Provincial Third Hospital, Jinan 250031, Shandong Province, China
| | - Zhen Zhang
- Department of Geriatric Medicine, Qilu Hospital of Shandong University, Jinan 250012, Shandong Province, China
- Key Laboratory of Cardiovascular Proteomics of Shandong Province, Qilu Hospital of Shandong University, Jinan 250012, Shandong Province, China
| | - Yan Sun
- Department of Geriatric Medicine, Qilu Hospital of Shandong University, Jinan 250012, Shandong Province, China
| | - Wen-jing Ding
- Department of Geriatric Medicine, Qilu Hospital of Shandong University, Jinan 250012, Shandong Province, China
- Institute of Basic Medical Sciences, Qilu Hospital, Shandong University, Jinan 250012, Shandong Province, China
| | - Xue-chun Yang
- Department of Geriatric Medicine, Qilu Hospital of Shandong University, Jinan 250012, Shandong Province, China
- Institute of Basic Medical Sciences, Qilu Hospital, Shandong University, Jinan 250012, Shandong Province, China
| | - Yi-ping Song
- Department of Geriatric Medicine, Qilu Hospital of Shandong University, Jinan 250012, Shandong Province, China
- Key Laboratory of Cardiovascular Proteomics of Shandong Province, Qilu Hospital of Shandong University, Jinan 250012, Shandong Province, China
| | - Ming-ying Ling
- Department of Geriatric Medicine, Qilu Hospital of Shandong University, Jinan 250012, Shandong Province, China
- Key Laboratory of Cardiovascular Proteomics of Shandong Province, Qilu Hospital of Shandong University, Jinan 250012, Shandong Province, China
- Institute of Basic Medical Sciences, Qilu Hospital, Shandong University, Jinan 250012, Shandong Province, China
| | - Xue-hui Li
- Department of Geriatric Medicine, Qilu Hospital of Shandong University, Jinan 250012, Shandong Province, China
- Key Laboratory of Cardiovascular Proteomics of Shandong Province, Qilu Hospital of Shandong University, Jinan 250012, Shandong Province, China
| | - Rong Yan
- Department of Geriatric Medicine, Qilu Hospital of Shandong University, Jinan 250012, Shandong Province, China
| | - Yu-jing Zheng
- Shandong Precision Medicine Engineering Laboratory of Bacterial Anti-tumor Drugs, Jinan 250101, Shandong Province, China
| | - Na Yu
- Shandong Precision Medicine Engineering Laboratory of Bacterial Anti-tumor Drugs, Jinan 250101, Shandong Province, China
| | - Wen-hua Zhang
- Shandong Precision Medicine Engineering Laboratory of Bacterial Anti-tumor Drugs, Jinan 250101, Shandong Province, China
| | - Yong Wang
- Shandong Precision Medicine Engineering Laboratory of Bacterial Anti-tumor Drugs, Jinan 250101, Shandong Province, China
| | - Shao-peng Wang
- Shandong Precision Medicine Engineering Laboratory of Bacterial Anti-tumor Drugs, Jinan 250101, Shandong Province, China
| | - Hai-qing Gao
- Department of Geriatric Medicine, Qilu Hospital of Shandong University, Jinan 250012, Shandong Province, China
- Key Laboratory of Cardiovascular Proteomics of Shandong Province, Qilu Hospital of Shandong University, Jinan 250012, Shandong Province, China
| | - Chuan-li Zhao
- Dept of Hematology, Qilu Hospital of Shandong University, Jinan 250012, Shandong Province, China
| | - Yan-qiu Xing
- Department of Geriatric Medicine, Qilu Hospital of Shandong University, Jinan 250012, Shandong Province, China
- Key Laboratory of Cardiovascular Proteomics of Shandong Province, Qilu Hospital of Shandong University, Jinan 250012, Shandong Province, China
| |
Collapse
|
8
|
Song L, Zhang S. Anti-Aging Activity and Modes of Action of Compounds from Natural Food Sources. Biomolecules 2023; 13:1600. [PMID: 38002283 PMCID: PMC10669485 DOI: 10.3390/biom13111600] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 10/21/2023] [Accepted: 10/28/2023] [Indexed: 11/26/2023] Open
Abstract
Aging is a natural and inescapable phenomenon characterized by a progressive deterioration of physiological functions, leading to increased vulnerability to chronic diseases and death. With economic and medical development, the elderly population is gradually increasing, which poses a great burden to society, the economy and the medical field. Thus, healthy aging has now become a common aspiration among people over the world. Accumulating evidence indicates that substances that can mediate the deteriorated physiological processes are highly likely to have the potential to prolong lifespan and improve aging-associated diseases. Foods from natural sources are full of bioactive compounds, such as polysaccharides, polyphenols, carotenoids, sterols, terpenoids and vitamins. These bioactive compounds and their derivatives have been shown to be able to delay aging and/or improve aging-associated diseases, thereby prolonging lifespan, via regulation of various physiological processes. Here, we summarize the current understanding of the anti-aging activities of the compounds, polysaccharides, polyphenols, carotenoids, sterols, terpenoids and vitamins from natural food sources, and their modes of action in delaying aging and improving aging-associated diseases. This will certainly provide a reference for further research on the anti-aging effects of bioactive compounds from natural food sources.
Collapse
Affiliation(s)
- Lili Song
- Key Laboratory of Biomedical Materials of Zhangjiakou, College of Lab Medicine, Hebei North University, Zhangjiakou 075000, China;
| | - Shicui Zhang
- College of Life and Geographic Sciences, Kashi University, Kashi 844000, China
- Xinjiang Key Laboratory of Biological Resources and Ecology of Pamirs Plateau, Kashi 844000, China
- Department of Marine Biology, Institute of Evolution & Marine Biodiversity, Ocean University of China, 5 Yushan Road, Qingdao 266003, China
| |
Collapse
|
9
|
He W, Huang Y, Shi X, Wang Q, Wu M, Li H, Liu Q, Zhang X, Huang C, Li X. Identifying a distinct fibrosis subset of NAFLD via molecular profiling and the involvement of profibrotic macrophages. J Transl Med 2023; 21:448. [PMID: 37415134 PMCID: PMC10326954 DOI: 10.1186/s12967-023-04300-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Accepted: 06/23/2023] [Indexed: 07/08/2023] Open
Abstract
BACKGROUND There are emerging studies suggesting that non-alcoholic fatty liver disease (NAFLD) is a heterogeneous disease with multiple etiologies and molecular phenotypes. Fibrosis is the key process in NAFLD progression. In this study, we aimed to explore molecular phenotypes of NAFLD with a particular focus on the fibrosis phenotype and also aimed to explore the changes of macrophage subsets in the fibrosis subset of NAFLD. METHODS To assess the transcriptomic alterations of key factors in NAFLD and fibrosis progression, we included 14 different transcriptomic datasets of liver tissues. In addition, two single-cell RNA sequencing (scRNA-seq) datasets were included to construct transcriptomic signatures that could represent specific cells. To explore the molecular subsets of fibrosis in NAFLD based on the transcriptomic features, we used a high-quality RNA-sequencing (RNA-seq) dataset of liver tissues from patients with NAFLD. Non-negative matrix factorization (NMF) was used to analyze the molecular subsets of NAFLD based on the gene set variation analysis (GSVA) enrichment scores of key molecule features in liver tissues. RESULTS The key transcriptomic signatures on NAFLD including non-alcoholic steatohepatitis (NASH) signature, fibrosis signature, non-alcoholic fatty liver (NAFL) signature, liver aging signature and TGF-β signature were constructed by liver transcriptome datasets. We analyzed two liver scRNA-seq datasets and constructed cell type-specific transcriptomic signatures based on the genes that were highly expressed in each cell subset. We analyzed the molecular subsets of NAFLD by NMF and categorized four main subsets of NAFLD. Cluster 4 subset is mainly characterized by liver fibrosis. Patients with Cluster 4 subset have more advanced liver fibrosis than patients with other subsets, or may have a high risk of liver fibrosis progression. Furthermore, we identified two key monocyte-macrophage subsets which were both significantly correlated with the progression of liver fibrosis in NAFLD patients. CONCLUSION Our study revealed the molecular subtypes of NAFLD by integrating key information from transcriptomic expression profiling and liver microenvironment, and identified a novel and distinct fibrosis subset of NAFLD. The fibrosis subset is significantly correlated with the profibrotic macrophages and M2 macrophage subset. These two liver macrophage subsets may be important players in the progression of liver fibrosis of NAFLD patients.
Collapse
Affiliation(s)
- Weiwei He
- Department of Endocrinology and Diabetes, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xaimen, China
- Xiamen Diabetes Institute, The First Affiliated Hospital of Xiamen University, Xiamen, China
- Fujian Provincial Key Laboratory of Translational Medicine for Diabetes, Xiamen, China
| | - Yinxiang Huang
- Xiamen Diabetes Institute, The First Affiliated Hospital of Xiamen University, Xiamen, China
- Fujian Provincial Key Laboratory of Translational Medicine for Diabetes, Xiamen, China
| | - Xiulin Shi
- Department of Endocrinology and Diabetes, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xaimen, China
- Xiamen Diabetes Institute, The First Affiliated Hospital of Xiamen University, Xiamen, China
- Fujian Provincial Key Laboratory of Translational Medicine for Diabetes, Xiamen, China
| | - Qingxuan Wang
- Department of Endocrinology and Diabetes, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xaimen, China
- Xiamen Diabetes Institute, The First Affiliated Hospital of Xiamen University, Xiamen, China
- Fujian Provincial Key Laboratory of Translational Medicine for Diabetes, Xiamen, China
| | - Menghua Wu
- Department of Endocrinology and Diabetes, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xaimen, China
- Xiamen Diabetes Institute, The First Affiliated Hospital of Xiamen University, Xiamen, China
- Fujian Provincial Key Laboratory of Translational Medicine for Diabetes, Xiamen, China
| | - Han Li
- Department of Endocrinology and Diabetes, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xaimen, China
- Xiamen Diabetes Institute, The First Affiliated Hospital of Xiamen University, Xiamen, China
- Fujian Provincial Key Laboratory of Translational Medicine for Diabetes, Xiamen, China
| | - Qiuhong Liu
- Department of Endocrinology and Diabetes, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xaimen, China
- Xiamen Diabetes Institute, The First Affiliated Hospital of Xiamen University, Xiamen, China
- Fujian Provincial Key Laboratory of Translational Medicine for Diabetes, Xiamen, China
| | - Xiaofang Zhang
- Xiamen Diabetes Institute, The First Affiliated Hospital of Xiamen University, Xiamen, China
- Fujian Provincial Key Laboratory of Translational Medicine for Diabetes, Xiamen, China
| | - Caoxin Huang
- Xiamen Diabetes Institute, The First Affiliated Hospital of Xiamen University, Xiamen, China.
- Fujian Provincial Key Laboratory of Translational Medicine for Diabetes, Xiamen, China.
| | - Xuejun Li
- Department of Endocrinology and Diabetes, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xaimen, China.
- Xiamen Diabetes Institute, The First Affiliated Hospital of Xiamen University, Xiamen, China.
- Fujian Provincial Key Laboratory of Translational Medicine for Diabetes, Xiamen, China.
| |
Collapse
|