1
|
Liu W, Hu C, Qian X, He C, Gu R, Meng Z, Li D, Zhang Q. TaoHeChengQi Decotion alleviate chronic renal failure via regulation of PHD2/UCP1 and RIPK3/AKT/TGF-β pathway. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2025; 141:156548. [PMID: 40112631 DOI: 10.1016/j.phymed.2025.156548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 02/11/2025] [Accepted: 02/18/2025] [Indexed: 03/22/2025]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Chronic renal failure (CRF) is a late stage in the development of chronic kidney disease (CKD). Currently, there are no specific clinical drugs available. Traditional Chinese medicine (TCM), as a holistic therapeutic approach, may provide new strategies to improve the clinical management of CRF. AIM OF THE STUDY This study aimed to investigate the ameliorative effect of TaoHeChengQi Decoction (THCQD) on CRF and to elucidate its potential mechanism. MATERIALS AND METHODS Animal experiments were performed using 5/6 nephrectomy to establish a model of renal failure in rats, and serum, urine, and kidney samples were collected for study after low, medium, and high doses of (2, 4, and 8 g/kg) of THCQD were given by gavage for 8 consecutive weeks. Cellular experiments were performed using Ang II or TGF-β to stimulate HK-2 cells to produce symptoms similar to those of renal failure in vivo to evaluate the ameliorative effect and mechanism of THCQD. After clarifying the chemical composition of THCQD Tang, this study explored the pathogenesis of the disease by mass spectrometry-based proteomics technology, and used affinity ultrafiltration mass spectrometry, surface plasmon resonance, DARTS, and CETSA to investigate the pharmacological material basis of the compound, which was verified by immunoblotting and and immunofluorescence staining experiments. RESULTS THCQD attenuated renal injury, renal fibrosis and oxidative stress indices in serum (urine or kidney tissue) of CRF rats. Cellular experiments confirmed that THCQD also protected HK-2 cells from Ang II or TGF-β-induced injury. The mechanism of action was found to be related to the PHD2/UCP1 and RIPK3/AKT/TGF-β pathways by proteomic studies and verified by immunoblotting experiments. In addition, the pharmacodynamic material bases of PHD2/UCP1 and RIPK3/AKT/TGF-β pathways were confirmed to be amygdalin (Amy) and rhein (Rhe), respectively, by AUF-MS, SPR, CETSA and DARTS. CONCLUSION THCQD synergistically ameliorates 5/6 nephrectomy-induced CRF by activating PHD2/UCP2-mediated autophagy and targeting RIPK3 and its downstream TGF-β pathway. The basis of the synergistic effects of the above signaling pathways are Amy and Rhe, respectively.
Collapse
Affiliation(s)
- Wei Liu
- Department of Urology Surgery, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200062, PR China
| | - Cheng Hu
- Experiment Center for Science and Technology, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, PR China
| | - Xiaojing Qian
- Experiment Center for Science and Technology, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, PR China
| | - Chunfeng He
- Department of Urology Surgery, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200062, PR China
| | - Renze Gu
- Department of Urology Surgery, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200062, PR China
| | - Zhenglei Meng
- Department of Urology Surgery, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200062, PR China
| | - Dongmei Li
- Department of Pediatrics, Shanghai 9th People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200011, PR China.
| | - Qingchuan Zhang
- Department of Urology Surgery, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200062, PR China.
| |
Collapse
|
2
|
Yang J, Liao D, He L, Fan W. Puerarin raises exosomal miR- 342 - 3p by inhibiting lncRNA NEAT1 in umbilical cord mesenchymal stem cells to alleviate renal tubular epithelial cell pyroptosis in chronic renal failure. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025:10.1007/s00210-025-04164-1. [PMID: 40274620 DOI: 10.1007/s00210-025-04164-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2024] [Accepted: 04/09/2025] [Indexed: 04/26/2025]
Abstract
The therapeutic effect of exosomes (Exo) secreted by the Puerarin-treated umbilical cord mesenchymal stem cells (UC-MSC) on chronic renal failure (CRF) was explored. UC-MSC were treated by Puerarin, or transfected by lncRNA nuclear paraspeckle assembly transcript 1 (NEAT1) overexpression vectors, or both. HK-2 cells were treated with LPS/H2O2 to establish the CRF cell model. The CRF rat model was constructed by adenine administration. Exo derived from UC-MSC were used to treat the CRF cell and rat models. The therapeutic effect of the Puerarin-treated UC-MSC-derived Exo on CRF was evaluated by a series of logical tests. NEAT1 had binding sites for miR-342-3p. miR-342-3p in the Puerarin-treated UC-MSC-derived Exo was increased. miR-342-3p in the NEAT1-overexpressed and Puerarin-treated UC-MSC-derived Exo was lower than that in the Puerarin-treated UC-MSC-derived Exo. The CRF cell model treated by the Puerarin-treated UC-MSC-derived Exo expressed higher miR-342-3p, and lower TGF-β1, SMAD2/3, Cleaved-caspase-1, GSDMD-N, IL-1β and IL-18. The relieved renal injury, up-regulated renal miR-342-3p, down-regulated renal TGF-β1, SMAD2/3, Cleaved-caspase-1 and GSDMD-N, and decreased serum creatinine and blood urea nitrogen were found in the CRF rat model treated by the Puerarin-treated UC-MSC-derived Exo. However, compared to the CRF cell and rat models treated by the Puerarin-treated UC-MSC-derived Exo, those treated by the NEAT1-overexpressed and Puerarin-treated UC-MSC-derived Exo showed the opposite results. Puerarin elevates exosomal miR-342-3p by suppressing NEAT1 in UC-MSC, thereby inactivating the TGF-β1/SMAD pathway in renal tubular epithelial cells to alleviate pyroptosis in CRF. The Puerarin-treated UC-MSC-derived Exo may be useful in treating CRF.
Collapse
Affiliation(s)
- Jing Yang
- Department of Nephrology, the First Affiliated Department of Kunming Medical University, 295 Xichang Road, Wuhua District, Kunming City, 650032, Yunnan Province, China
| | - Dongxue Liao
- Department of Nephrology, the First Affiliated Department of Kunming Medical University, 295 Xichang Road, Wuhua District, Kunming City, 650032, Yunnan Province, China
| | - Lanxin He
- Department of Nephrology, the First Affiliated Department of Kunming Medical University, 295 Xichang Road, Wuhua District, Kunming City, 650032, Yunnan Province, China
| | - Wenxing Fan
- Department of Nephrology, the First Affiliated Department of Kunming Medical University, 295 Xichang Road, Wuhua District, Kunming City, 650032, Yunnan Province, China.
| |
Collapse
|
3
|
Allela OQB, Ali NAM, Sanghvi G, Roopashree R, Kashyap A, Krithiga T, Panigrahi R, Kubaev A, Kareem RA, Sameer HN, Yaseen A, Athab ZH, Adil M. The Role of Viral Infections in Acute Kidney Injury and Mesenchymal Stem Cell-Based Therapy. Stem Cell Rev Rep 2025:10.1007/s12015-025-10873-0. [PMID: 40198477 DOI: 10.1007/s12015-025-10873-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/01/2025] [Indexed: 04/10/2025]
Abstract
Viruses may cause a wide range of renal problems. Furthermore, many kidney diseases may be brought on by viral infections. Both the primary cause and a contributing factor of acute kidney injury (AKI) may be viral infections. As an example, it is recommended that patients with dengue virus (DENV) infections undergo careful monitoring of their AKI levels. Also, researchers' data so far lend credence to the several hypothesized pathophysiological mechanisms via which AKI can develop in SARS-CoV- 2 infection. Thus, it is critical to comprehend how viral infections cause AKI. Finding an effective method of treating AKI caused by viruses is also vital. Thus, a potential cell-free method for treating AKI that uses regenerative and anti-inflammatory processes is mesenchymal stem cells (MSCs) and their exosomes (MSC-EXOs). MSCs alleviate tissue damage and enhance protective effects on damaged kidneys in AKI. Furthermore, MSC-EXOs have exhibited substantial regulatory impact on a range of immune cells and exhibit robust immune regulation in the therapy of AKI. Thus, in models of AKI caused by ischemia-reperfusion damage, nephrotoxins, or sepsis, MSCs and MSC-EXOs improved renal function, decreased inflammation, and improved healing. Therefore, MSCs and MSC-EXOs may help treat AKI caused by different viruses. Consequently, we have explored several innovative and significant processes in this work that pertain to the role of viruses in AKI and the significance of viral illness in the onset of AKI. After that, we assessed the key aspects of MSCs and MSC-EXOs for AKI therapy. We have concluded by outlining the current state of and plans for future research into MSC- and EXO-based therapeutic approaches for the treatment of AKI brought on by viruses.
Collapse
Affiliation(s)
| | | | - Gaurav Sanghvi
- Department of Microbiology, Faculty of Science, Marwadi University Research Center, Marwadi University, Rajkot, 360003, Gujarat, India
| | - R Roopashree
- Department of Chemistry and Biochemistry, School of Sciences, JAIN (Deemed to Be University), Bangalore, Karnataka, India
| | - Aditya Kashyap
- Centre for Research Impact & Outcome, Chitkara University Institute of Engineering and Technology, Chitkara University, Rajpura, 140401, Punjab, India
| | - T Krithiga
- Department of Chemistry, Sathyabama Institute of Science and Technology, Chennai, Tamil Nadu, India
| | - Rajashree Panigrahi
- Department of Microbiology, IMS and SUM Hospital, Siksha 'O' Anusandhan (Deemed to Be University), Bhubaneswar, 751003, Odisha, India
| | - Aziz Kubaev
- Department of Maxillofacial Surgery, Samarkand State Medical University, 18 Amir Temur Street, Samarkand, 140100, Uzbekistan
| | | | - Hayder Naji Sameer
- Collage of Pharmacy, National University of Science and Technology, Dhi Qar, 64001, Iraq
| | | | - Zainab H Athab
- Department of Pharmacy, Al-Zahrawi University College, Karbala, Iraq
| | - Mohaned Adil
- Pharmacy college, Al-Farahidi University, Baghdad, Iraq
| |
Collapse
|
4
|
Valencia M, Pérez-Beltrán M, López GD, Carazzone C, Galeano Garcia P. Molecular Networking from Volatilome of Theobroma grandiflorum (Copoazu) at Different Stages of Maturation Analyzed by HS-SPME-GC-MS. Molecules 2025; 30:1209. [PMID: 40141986 PMCID: PMC11944471 DOI: 10.3390/molecules30061209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2025] [Revised: 01/26/2025] [Accepted: 01/27/2025] [Indexed: 03/28/2025] Open
Abstract
Theobroma grandiflorum (copoazu) is a plant native to South America, widely cultivated in countries within the Amazon region. Its unique phytochemical composition imparts distinctive organoleptic properties, making it an exotic fruit. In this study, headspace solid-phase microextraction (HS-SPME) combined with gas chromatography-mass spectrometry (GC-MS) was used to identify the volatile organic compounds (VOCs) produced by copoazu. The optimal conditions for sample pretreatment were first determined using a Design of Experiments (DoE) approach. Analysis of the volatile profiles enabled the identification of 96 copoazu VOCs across three ripening stages. Of these, 79 VOCs were classified into chemical compound families using spectral correlation analysis across various libraries and databases, as well as molecular network analysis. Additionally, a volatilomic analysis was conducted to examine the changes in VOCs throughout the ripening process. Molecular network analysis showed that the VOCs emitted by the fruit are linked to the interconversion of compounds, which can be observed through the study of the metabolic pathways. These findings provide a comprehensive analysis of the copoazu volatilome, providing valuable insights into the organoleptic characteristics of this Amazonian fruit. Esters and terpenes such as α-terpineol, trans-4-methoxythujane, linalool, 2-methylbutyl butanoate, 3-methylbut-2-enoic acid, 2-methylpentyl ester, and 2-methylpropyl hexanoate were identified as potential biomarkers associated with the copoazu ripening process.
Collapse
Affiliation(s)
- Mayrin Valencia
- Grupo de Investigación en Productos Naturales Amazónicos (GIPRONAZ), Facultad de Ciencias Básicas, Universidad de la Amazonia, Florencia 180001, Colombia;
- Laboratory of Advanced Analytical Techniques in Natural Products (LATNAP), Chemistry Department, Universidad de los Andes, Bogotá 111711, Colombia; (M.P.-B.); (C.C.)
- Grupo de Investigación en Ciencias y Educación (ICE), Facultad de Ciencias y Humanidades, Universidad de América, Bogotá 111211, Colombia;
| | - Mónica Pérez-Beltrán
- Laboratory of Advanced Analytical Techniques in Natural Products (LATNAP), Chemistry Department, Universidad de los Andes, Bogotá 111711, Colombia; (M.P.-B.); (C.C.)
| | - Gerson-Dirceu López
- Grupo de Investigación en Ciencias y Educación (ICE), Facultad de Ciencias y Humanidades, Universidad de América, Bogotá 111211, Colombia;
- Chemistry Department, Faculty of Natural and Exact Sciences, Universidad del Valle, Cali 760042, Colombia
| | - Chiara Carazzone
- Laboratory of Advanced Analytical Techniques in Natural Products (LATNAP), Chemistry Department, Universidad de los Andes, Bogotá 111711, Colombia; (M.P.-B.); (C.C.)
| | - Paula Galeano Garcia
- Grupo de Investigación en Productos Naturales Amazónicos (GIPRONAZ), Facultad de Ciencias Básicas, Universidad de la Amazonia, Florencia 180001, Colombia;
- Laboratory of Advanced Analytical Techniques in Natural Products (LATNAP), Chemistry Department, Universidad de los Andes, Bogotá 111711, Colombia; (M.P.-B.); (C.C.)
| |
Collapse
|
5
|
Luo H, Yang S, Deng P, Peng Y, Chen Z, Yang C, Wang M, Qin R, Yuan L, Chen X, Wang D, Huang X, Wang J. Network pharmacology combined with transcriptomics reveals that formononetin, a biologically component of Astragalus membranaceus (Fisch.) Bunge, inhibits the PI3K/AKT signaling pathway to improve chronic renal failure. JOURNAL OF ETHNOPHARMACOLOGY 2025; 338:119041. [PMID: 39510423 DOI: 10.1016/j.jep.2024.119041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 10/27/2024] [Accepted: 11/05/2024] [Indexed: 11/15/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Formononetin (FMN), one of the main isoflavones isolated from Astragalus membranaceus (Fisch.) Bunge, has multiple pharmacological and renal-protective effects. Our previous study suggested FMN as a candidate compound for the treatment of chronic renal failure (CRF). However, the mechanism underlying the repressive effect of FMN on the development of CRF is still unknown. AIMS OF THE STUDY To investigate the protective effect of FMN on CRF using in vivo and in vitro models and elucidate the potential underlying mechanism. MATERIALS AND METHODS An in vivo model of adenine-induced CRF and an in vitro model of human proximal tubule epithelial cells (HK-2) stimulated with transforming growth factor (TGF)-β1 were used. Serum levels of renal function parameters and inflammatory cytokines were evaluated. Histological analysis was performed to determine the extent of renal injury and fibrosis. Network pharmacology and mRNA sequencing were used to explore the potential mechanism. PPI analysis and molecular docking were used to identify key targets. Polymerase chain reaction and western blotting were used to determine the mechanism underlying the effect of FMN on CRF. RESULTS FMN decreased the levels of renal function biochemical markers, including serum creatinine, blood urea nitrogen, and 24 h urine protein content. Treatment with FMN improved renal tubule injury and extracellular matrix (ECM) components, including collagens I and III. In addition, FMN significantly inhibited epithelial-mesenchymal transition (EMT); decreased the expression of fibronectin, N-cadherin, vimentin, α-SMA, and TGF-β1; and restored the expression of E-cadherin. The effect of FMN on renal interstitial fibrosis contributed to decreasing the expression of PI3K, p-Akt, and interleukin (IL) 4, restoring the expression of nitric oxide synthase 3 (NOS3), and reducing the release of inflammatory cytokines (IL-1β, IL-6, and tumor necrosis factor-alpha), both in vivo and in vitro. FMN treatment improved renal function and deposition of ECM components, reduced protein levels of EMT markers in rat kidneys and HK-2 cells, decreased the release of inflammatory cytokines, and inhibited the PI3K/Akt signaling pathway. CONCLUSIONS FMN treatment significantly reduced the release of inflammatory cytokines and inhibited the effects of the PI3K/Akt signaling pathway on the key targets IL-4 and NOS3. Our results suggest FMN therapy as a novel therapeutic strategy for treating CRF.
Collapse
Affiliation(s)
- Hongyu Luo
- Chongqing Key Laboratory of Traditional Chinese Medicine for Prevention and Cure of Metabolic Diseases, College of Traditional Chinese Medicine, Chongqing Medical University, Chongqing 400016, China.
| | - Shuxian Yang
- Chongqing Key Laboratory of Traditional Chinese Medicine for Prevention and Cure of Metabolic Diseases, College of Traditional Chinese Medicine, Chongqing Medical University, Chongqing 400016, China.
| | - Peng Deng
- Chongqing Key Laboratory of Traditional Chinese Medicine for Prevention and Cure of Metabolic Diseases, College of Traditional Chinese Medicine, Chongqing Medical University, Chongqing 400016, China.
| | - Yongbo Peng
- Chongqing Key Laboratory for Pharmaceutical Metabolism Research, College of Pharmacy, Chongqing Medical University, Chongqing 400016, China.
| | - Zhiwei Chen
- Chongqing Key Laboratory of Traditional Chinese Medicine for Prevention and Cure of Metabolic Diseases, College of Traditional Chinese Medicine, Chongqing Medical University, Chongqing 400016, China.
| | - Congwen Yang
- Chongqing Key Laboratory of Traditional Chinese Medicine for Prevention and Cure of Metabolic Diseases, College of Traditional Chinese Medicine, Chongqing Medical University, Chongqing 400016, China.
| | - Meng Wang
- Chongqing Key Laboratory of Traditional Chinese Medicine for Prevention and Cure of Metabolic Diseases, College of Traditional Chinese Medicine, Chongqing Medical University, Chongqing 400016, China.
| | - Renjie Qin
- Chongqing Key Laboratory of Traditional Chinese Medicine for Prevention and Cure of Metabolic Diseases, College of Traditional Chinese Medicine, Chongqing Medical University, Chongqing 400016, China.
| | - Lin Yuan
- Chongqing Key Laboratory of Traditional Chinese Medicine for Prevention and Cure of Metabolic Diseases, College of Traditional Chinese Medicine, Chongqing Medical University, Chongqing 400016, China.
| | - Xin Chen
- Chongqing Key Laboratory of Traditional Chinese Medicine for Prevention and Cure of Metabolic Diseases, College of Traditional Chinese Medicine, Chongqing Medical University, Chongqing 400016, China.
| | - Dandan Wang
- Chongqing Key Laboratory of Traditional Chinese Medicine for Prevention and Cure of Metabolic Diseases, College of Traditional Chinese Medicine, Chongqing Medical University, Chongqing 400016, China.
| | - Xuekuan Huang
- Chongqing Key Laboratory of Traditional Chinese Medicine for Prevention and Cure of Metabolic Diseases, College of Traditional Chinese Medicine, Chongqing Medical University, Chongqing 400016, China.
| | - Jianwei Wang
- Chongqing Key Laboratory of Traditional Chinese Medicine for Prevention and Cure of Metabolic Diseases, College of Traditional Chinese Medicine, Chongqing Medical University, Chongqing 400016, China.
| |
Collapse
|
6
|
Yu J, Sun J, Ma Y, Niu X, Zhu R, Song H, Liu L, Luo Y, Xia S, Wang J, Li L, Wen S, Li W, Niu X. Multi-organ toxicity caused by PM 2.5 in mice with cardiovascular diseases: The role of PAHs played from the most polluted episodes in China. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 375:124330. [PMID: 39904247 DOI: 10.1016/j.jenvman.2025.124330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2024] [Revised: 01/17/2025] [Accepted: 01/22/2025] [Indexed: 02/06/2025]
Abstract
PAHs pollutants, as the key toxic components in PM2.5, have been proved to be closely related to the morbidity and mortality of people with cardiovascular diseases, however, their effects on organs and tissues other than cardiovascular/lung systems have not been deeply discussed. Here we collected PM2.5 samples from 2017 to 2020 in Xi'an, the city with one of the highest PM2.5 level in China, investigated the effects of PM2.5-bound PAHs on lung, spleen, liver and kidney by using the ApoE-/- mice model with high-fat diet. Firstly, six key toxic components in PAHs were screened to determine their relative importance in pollutants. The results showed that PAHs had the most significant toxicity in lung, followed by liver, kidney and spleen. In addition, PAHs activated systemic inflammation by enhancing the production of IL-6, particularly through strong protein interactions, mainly via van der Waals forces. This process exacerbated cardiovascular damage and led to elevated levels of pro-inflammatory cytokines circulating in the bloodstream, thereby increasing multi-organ toxicity. The results of this study deepened the understanding of comprehensive impacts of PAHs on cardiovascular patients, and suggest more strict emission source-control strategies on PAHs prevention especially for the susceptible population with cardiovascular diseases.
Collapse
Affiliation(s)
- Jinjin Yu
- Department of Pharmacy, School of Medicine, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Jian Sun
- Department of Environmental Science and Engineering, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Yajing Ma
- Department of Pharmacy, School of Medicine, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Xinyi Niu
- Department of Occupational and Environmental Health, School of Public Health, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, China
| | - Ruisi Zhu
- Department of Pharmacy, School of Medicine, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Huixin Song
- Department of Pharmacy, School of Medicine, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Lingyi Liu
- Department of Pharmacy, School of Medicine, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Yuzhi Luo
- Department of Pharmacy, School of Medicine, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Songyuan Xia
- Department of Pharmacy, School of Medicine, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Jingyu Wang
- Department of Pharmacy, School of Medicine, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Lingli Li
- Department of Pharmacy, School of Medicine, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Sha Wen
- Department of Pharmacy, School of Medicine, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Weifeng Li
- Department of Pharmacy, School of Medicine, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Xiaofeng Niu
- Department of Pharmacy, School of Medicine, Xi'an Jiaotong University, Xi'an, 710049, China.
| |
Collapse
|
7
|
Zheng H, Zeng J, Bi P, Xu W, Yang Y, Chen H, Jin D. Integrated network analysis and experimental verification of the mechanisms employed by Compound Jixuecao Decoction to improve endoplasmic reticulum stress and apoptosis in chronic renal failure. JOURNAL OF ETHNOPHARMACOLOGY 2024; 326:117959. [PMID: 38423413 DOI: 10.1016/j.jep.2024.117959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 02/09/2024] [Accepted: 02/19/2024] [Indexed: 03/02/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Compound Jixuecao Decoction (CJD) is a traditional Chinese herbal medicine prescribed in China to treat chronic renal failure (CRF). Previous studies have shown that CJD affects cell apoptosis and proliferation. However, the mechanism of its renal protective action has not been characterized. AIM OF THE STUDY To explore the mechanism(s) underlying the effect of CJD on endoplasmic reticulum stress (ERS) and apoptosis in the treatment of CRF using network pharmacology, molecular docking, molecular dynamics simulations, and in vivo studies. MATERIALS AND METHODS The compounds comprising CJD were extracted from the Traditional Chinese Medicine Systems Pharmacology Database. A Swiss target prediction database and similarity integration approach were employed to identify potential targets of these components. The GeneCards and DisGeNET databases were used to identify targets associated with CRF, apoptosis, and ERS. The STRING database was employed to analyze the protein-protein interactions (PPIs) associated with drug-disease crossover. A chemical composition-shared target network was established, and critical pathways were identified through gene ontology and Kyoto Encyclopedia of Genes and Genomes enrichment analyses. The Protein Data Bank database was used to search key proteins, while molecular docking and dynamics simulations were performed between the top four CJD active ingredients and proteins involved in apoptosis and ERS in CRF. Subsequent in vivo studies using a 5/6 nephrectomy rat model of CRF were performed to verify the findings. RESULTS The 80 compounds identified in CJD yielded 875 target genes, of which 216 were potentially related to CRF. PPI network analysis revealed key targets via topology filtering. Enrichment analysis, molecular docking, and molecular dynamics simulation results suggested that CJD primarily targets mitofusin-2 (MFN2), B-cell lymphoma-2 (BCL2), BAX, protein kinase RNA-like ER kinase (PERK), and C/EBP homologous protein (CHOP) during CRF treatment. In vivo, CJD significantly increased the abundance of MFN2, BCL2, and significantly reduced the abundance of BAX, PERK, CHOP proteins in kidney tissues, indicating that CJD could improve apoptosis and ERS in CRF rats. CONCLUSIONS This study provides evidence that CJD effectively delays CFR through modulation of the MFN2 and PERK-eIF2α-ATF4-CHOP signaling pathways.
Collapse
Affiliation(s)
- Huihong Zheng
- Department of Nephrology, Hangzhou Hospital of Traditional Chinese Medicine, Affiliated to Zhejiang University of Traditional Chinese Medicine, Hangzhou, 310007, China
| | - Jiali Zeng
- Department of Nephrology, Hangzhou Hospital of Traditional Chinese Medicine, Affiliated to Zhejiang University of Traditional Chinese Medicine, Hangzhou, 310007, China
| | - Peng Bi
- Department of Nephrology, Hangzhou Hospital of Traditional Chinese Medicine, Affiliated to Zhejiang University of Traditional Chinese Medicine, Hangzhou, 310007, China
| | - Wanyue Xu
- Department of Nephrology, Hangzhou Hospital of Traditional Chinese Medicine, Affiliated to Zhejiang University of Traditional Chinese Medicine, Hangzhou, 310007, China
| | - Yazhen Yang
- Department of Nephrology, Hangzhou Hospital of Traditional Chinese Medicine, Affiliated to Zhejiang University of Traditional Chinese Medicine, Hangzhou, 310007, China
| | - Hongyu Chen
- Department of Nephrology, Hangzhou Hospital of Traditional Chinese Medicine, Affiliated to Zhejiang University of Traditional Chinese Medicine, Hangzhou, 310007, China.
| | - De Jin
- Department of Nephrology, Hangzhou Hospital of Traditional Chinese Medicine, Affiliated to Zhejiang University of Traditional Chinese Medicine, Hangzhou, 310007, China.
| |
Collapse
|
8
|
Liu X, Mo J, Yang X, Peng L, Zeng Y, Zheng Y, Song G. Causal relationship between gut microbiota and chronic renal failure: a two-sample Mendelian randomization study. Front Microbiol 2024; 15:1356478. [PMID: 38633704 PMCID: PMC11021586 DOI: 10.3389/fmicb.2024.1356478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 03/20/2024] [Indexed: 04/19/2024] Open
Abstract
Background Observational studies and some experimental investigations have indicated that gut microbiota are closely associated with the incidence and progression of chronic renal failure. However, the causal relationship between gut microbiota and chronic renal failure remains unclear. The present study employs a two-sample Mendelian randomization approach to infer the causal relationship between gut microbiota and chronic renal failure at the genetic level. This research aims to determine whether there is a causal effect of gut microbiota on the risk of chronic renal failure, aiming to provide new evidence to support targeted gut therapy for the treatment of chronic renal failure. Methods Employing genome-wide association study (GWAS) data from the public MiBioGen and IEU OpenGWAS platform, a two-sample Mendelian randomization analysis was conducted. The causal relationship between gut microbiota and chronic renal failure was inferred using five different methods: Inverse Variance Weighted, MR-Egger, Weighted Median, Simple Mode, and Weighted Mode. The study incorporated sensitivity analyses that encompassed evaluations for pleiotropy and heterogeneity. Subsequently, the results of the Mendelian randomization analysis underwent a stringent correction for multiple testing, employing the False Discovery Rate method to enhance the validity of our findings. Results According to the results from the Inverse Variance Weighted method, seven bacterial genera show a significant association with the outcome variable chronic renal failure. Of these, Ruminococcus (gauvreauii group) (OR = 0.82, 95% CI = 0.71-0.94, p = 0.004) may act as a protective factor against chronic renal failure, while the genera Escherichia-Shigella (OR = 1.22, 95% CI = 1.08-1.38, p = 0.001), Lactococcus (OR = 1.1, 95% CI = 1.02-1.19, p = 0.013), Odoribacter (OR = 1.23, 95% CI = 1.03-1.49, p = 0.026), Enterorhabdus (OR = 1.14, 95% CI = 1.00-1.29, p = 0.047), Eubacterium (eligens group) (OR = 1.18, 95% CI = 1.02-1.37, p = 0.024), and Howardella (OR = 1.18, 95% CI = 1.09-1.28, p < 0.001) may be risk factors for chronic renal failure. However, after correction for multiple comparisons using False Discovery Rate, only the associations with Escherichia-Shigella and Howardella remain significant, indicating that the other genera have suggestive associations. Sensitivity analyses did not reveal any pleiotropy or heterogeneity. Conclusion Our two-sample Mendelian randomization study suggests that the genera Escherichia-Shigella and Howardella are risk factors for chronic renal failure, and they may serve as potential targets for future therapeutic interventions. However, the exact mechanisms of action are not yet clear, necessitating further research to elucidate their precise roles fully.
Collapse
Affiliation(s)
- Xingzheng Liu
- The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, China
| | - Jinying Mo
- The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, China
| | - Xuerui Yang
- The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, China
| | - Ling Peng
- The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, China
| | - Youjia Zeng
- Department of Nephrology, Shenzhen Traditional Chinese Medicine Hospital, Shenzhen, China
| | - Yihou Zheng
- Department of Nephrology, Shenzhen Traditional Chinese Medicine Hospital, Shenzhen, China
| | - Gaofeng Song
- Department of Nephrology, Shenzhen Traditional Chinese Medicine Hospital, Shenzhen, China
| |
Collapse
|
9
|
Wang L, Xu A, Wang J, Fan G, Liu R, Wei L, Pei M. The effect and mechanism of Fushen Granule on gut microbiome in the prevention and treatment of chronic renal failure. Front Cell Infect Microbiol 2024; 13:1334213. [PMID: 38274729 PMCID: PMC10808756 DOI: 10.3389/fcimb.2023.1334213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 12/14/2023] [Indexed: 01/27/2024] Open
Abstract
Background Fushen Granule is an improved granule based on the classic formula Fushen Formula, which is used for the treatment of peritoneal dialysis-related intestinal dysfunction in patients with end-stage renal disease. However, the effect and mechanism of this granule on the prevention and treatment of chronic renal failure have not been fully elucidated. Methods A 5/6 nephrectomy model of CRF was induced and Fushen Granule was administered at low and high doses to observe its effects on renal function, D-lactate, serum endotoxin, and intestinal-derived metabolic toxins. The 16SrRNA sequencing method was used to analyze the abundance and structure of the intestinal flora of CRF rats. A FMT assay was also used to evaluate the effects of transplantation of Fushen Granule fecal bacteria on renal-related functional parameters and metabolic toxins in CRF rats. Results Gavage administration of Fushen Granule at low and high doses down-regulated creatinine, urea nitrogen, 24-h urine microalbumin, D-lactate, endotoxin, and the intestinal-derived toxins indophenol sulphateand p-cresol sulphate in CRF rats. Compared with the sham-operated group in the same period, CRF rats had a decreased abundance of the firmicutes phylum and an increased abundance of the bacteroidetes phylum at the phylum level, and a decreasing trend of the lactobacillus genus at the genus level. Fushen Granule intervention increased the abundance of the firmicutes phylum, decreased the abundance of the bacteroidetes phylum, and increased the abundance of the lactobacillus genus. The transplantation of Fushen Granule fecal bacteria significantly reduced creatinine(Cr), blood urea nitrogen(Bun), uric acid(UA), 24-h urinary microalbumin, D-lactate, serum endotoxin, and enterogenic metabolic toxins in CRF rats. Compared with the sham-operated group, the transplantation of Fushen Granule fecal bacteria modulated the Firmicutes and Bacteroidetes phyla and the Lactobacillus genus. Conclusion Fushen Granule improved renal function and intestinal barrier function by regulating intestinal flora, inhibiting renal fibrosis, and delaying the progression of chronic renal failure.
Collapse
Affiliation(s)
- Lin Wang
- Nephrology Department, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Ao Xu
- Nephrology Department, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Jinxiang Wang
- Guangdong Provincial Key Laboratory of Digestive Cancer Research, Precision Medicine Center, Scientific Research Center, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, China
| | - Guorong Fan
- Nephrology Department, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Ruiqi Liu
- Nephrology Department, Tianjin Academy of Traditional Chinese Medicine Affiliated Hospital, Tianjin, China
| | - Lijuan Wei
- Nephrology Department, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Ming Pei
- Nephrology Department, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| |
Collapse
|
10
|
Zhou L, Wang X, Xia J, Zhang L, Xue L, Jia Q, Fu Z, Sun Z. Pharmacokinetic-pharmacodynamic modeling of the active components of Shenkang injection in rats with chronic renal failure and its protective effect on damaged renal cells. Biopharm Drug Dispos 2023; 44:406-419. [PMID: 37679901 DOI: 10.1002/bdd.2377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Revised: 07/14/2023] [Accepted: 08/20/2023] [Indexed: 09/09/2023]
Abstract
The study aimed to explore the pharmacokinetic and pharmacodynamic alterations of the active components of Shenkang injection (i.e. hydroxy saffron yellow pigment A [HSYA], tanshinol, rheum emodin, and astragaloside IV) in rats with chronic renal failure (CRF), and establish a pharmacokinetic-pharmacodynamic model (PK-PD model) in order to provide a scientific and theoretical basis for the rational clinical use of Shenkang injection. Sprague-Dawley (SD) rats were randomly divided into a normal group, model group, and Shenkang injection group. A rat model of CRF was induced by adenine gavage and then followed by drug administration via tail vein injection. Orbital blood was collected at different timepoints and the blood concentrations of the four active components were measured by UHPLC-Q-Orbitrap HRMS. Serum levels of creatinine (Scr), urea nitrogen (BUN), and uric acid (UA) were determined using an automatic biochemical analyzer. A PK-PD model was established, and DAS 3.2.6 software was used for model fitting as well as statistical analysis. TGF-β1 was utilized to induce normal rat kidney cells to construct a renal fibrosis model to investigate the protective effect of the pharmacological components on renal fibrosis. The pharmacokinetic analysis of hydroxy saffron yellow pigment A, tanshinol, rheum emodin, and astragaloside IV based on UHPLC-Q-Orbitrap HRMS was stable. The linear regression equations for the four active components were as follows: Y = 0.031X + 0.0091 (R2 = 0.9986) for hydroxy saffron yellow pigment A, Y = 0.0389X + 0.164 (R2 = 0.9979) for tanshinol, Y = 0.0257X + 0.0146 (R2 = 0.9973) for rheum emodin, and Y = 0.0763X + 0.0139 (R2 = 0.9993) for astragaloside IV, which indicated good linear relationships. The methodological investigation was stable, with the interday and intraday precision RSD <10%. Meanwhile, the recoveries ranged between 90% and 120%, in accordance with the requirements for in vivo analysis of drugs. Compared with the model group, the levels of Scr, BUN, and UA were significantly decreased after 20 min in the Shenkang injection group (p < 0.01). The PK-PD model showed that the four active components in the Shenkang injection group could fit well with the three effect measures (i.e. Scr, BUN, and UA), with the measured values similar to the predicted values. The cell model of renal fibrosis showed that the connective tissue growth factor and FN1 protein expression levels were significantly lower in the Shenkang injection group than those in the model group, and the cell fibrosis was improved. The established method for in vivo analysis of Shenkang injection was highly specific, with good separation of the components and simple operation. The total statistical moment could well integrate the pharmacokinetic parameters of the four active components. After treatment with Shenkang injection, all indexes in the administered group improved and showed significant inhibition of renal cell fibrosis in vitro. This study could provide scientific reference ideas for the clinical rational use of traditional Chinese medicine.
Collapse
Affiliation(s)
- Lin Zhou
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- School of Minerals Processing and Bioengineering, Central South University, Changsha, China
| | - Xiaohui Wang
- Department of Ultrasound, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Jinlan Xia
- School of Minerals Processing and Bioengineering, Central South University, Changsha, China
| | - Liyuan Zhang
- Department of Psychiatry, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Lianping Xue
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Qingquan Jia
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Zhihui Fu
- Department of Chinese Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Zhi Sun
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
11
|
Ford NA, Spagnuolo P, Kraft J, Bauer E. Nutritional Composition of Hass Avocado Pulp. Foods 2023; 12:2516. [PMID: 37444254 DOI: 10.3390/foods12132516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 06/13/2023] [Accepted: 06/20/2023] [Indexed: 07/15/2023] Open
Abstract
Avocados (Persea americana) are a unique fruit that can provide health benefits when included in a healthy diet. As health care moves towards precision health and targeted therapies or preventative medicine, it is critical to understand foods and their dietary components. The nutritional composition and plant physiology of the Hass avocado is strikingly different from other fruits. This paper reviews the nutrient and bioactive composition of the edible portion of the Hass avocado (pulp) reported in the literature and from commercial lab analyses of the current market supply of fresh Hass avocados. These results provide comprehensive data on what nutrients and bioactives are in avocado and the quantity of these nutrients. We discuss the reasons for nutrient composition variations and review some potential health benefits of bioactive compounds found in Hass avocados.
Collapse
Affiliation(s)
- Nikki A Ford
- Avocado Nutrition Center, 25212 Marguerite Pkwy Ste. 250, Mission Viejo, CA 92692, USA
| | - Paul Spagnuolo
- Department of Food Science, University of Guelph, 50 Stone Rd., Guelph, ON N1G2W1, Canada
| | - Jana Kraft
- Department of Animal and Veterinary Sciences, The University of Vermont, 570 Main Street, Burlington, VT 05405, USA
| | - Ella Bauer
- Avocado Nutrition Center, 25212 Marguerite Pkwy Ste. 250, Mission Viejo, CA 92692, USA
| |
Collapse
|