1
|
Wen X, Ma H. Cytoplasmic Vacuolization: A Fascinating Morphological Alteration From Cellular Stress to Cell Death. Cancer Sci 2025; 116:1181-1192. [PMID: 40017124 PMCID: PMC12044657 DOI: 10.1111/cas.70013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 01/19/2025] [Accepted: 01/28/2025] [Indexed: 03/01/2025] Open
Abstract
Cytoplasmic vacuolization is a cellular morphological alteration characterized by the presence of substantial vacuole-like structures originating from various cellular organelles. This phenomenon is often observed in various anticancer treatments, including chemotherapeutic drugs, and photodynamic therapy (PDT), and is frequently linked with cell death. Nevertheless, the precise mechanisms underlying cytoplasmic vacuolization and ensuing cell death remain ambiguous. Cytoplasmic vacuolization associated cell death (CVACD) is a complex process characterized by cellular stress, encompassing ER stress, heightened membrane permeability, ion imbalance, and mitochondrial dysfunction. The MAPK signaling pathway is closely associated with the activation of CVACD. This review provides a thorough examination of contemporary studies on cytoplasmic vacuolization in mammalian cells, elucidating its etiology, origins, and molecular pathways. Additionally, it highlights the potential of CVACD as an innovative therapeutic strategy for cancer.
Collapse
Affiliation(s)
- Xiaoxu Wen
- School of StomatologyHenan UniversityKaifengChina
| | - Hongru Ma
- College of Chemical and Biological EngineeringZhejiang UniversityHangzhouChina
| |
Collapse
|
2
|
Perrotta I. Live and let die: analyzing ultrastructural features in cell death. Ultrastruct Pathol 2025; 49:1-19. [PMID: 39552095 DOI: 10.1080/01913123.2024.2428703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 11/08/2024] [Accepted: 11/08/2024] [Indexed: 11/19/2024]
Abstract
Cell death is an important process that supports morphogenesis during development and tissue homeostasis during adult life by removing damaged or unwanted cells and its dysregulation is associated with numerous disease states. There are different pathways through which a cell can undergo cell death, each relying on peculiar molecular mechanisms and morpho-ultrastructural features. To date, however, while molecular and genetic approaches have been successfully integrated into the field, cell death studies rarely incorporate ultrastructural data from electron microscopy. This review article reports a gallery of original transmission electron microscopy images to describe the ultrastructural features of cells undergoing different types of cell death programs, including necrosis, apoptosis, autophagy, mitotic catastrophe, ferroptosis, methuosis, and paraptosis. TEM has been an important technology in cell biology for well over 50 years and still continues to offer significant advantages in the area of cell death research. TEM allows detailed characterization of the ultrastructural changes within the cell, such as the alteration of organelles and subcellular structures, the nuclear reorganization, and the loss of membrane integrity that enable a distinction between the different forms of cell death based on morphological criteria. Possible pitfalls are also described.
Collapse
Affiliation(s)
- Ida Perrotta
- Department of Biology, Ecology and Earth Sciences, Centre for Microscopy and Microanalysis (CM2) Transmission Electron Microscopy Laboratory, University of Calabria, Cosenza, Italy
| |
Collapse
|
3
|
Dai YJ, Tang HD, Jiang GQ, Xu ZY. The immunological landscape and silico analysis of key paraptosis regulator LPAR1 in gastric cancer patients. Transl Oncol 2024; 49:102110. [PMID: 39182362 PMCID: PMC11388017 DOI: 10.1016/j.tranon.2024.102110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Revised: 08/10/2024] [Accepted: 08/21/2024] [Indexed: 08/27/2024] Open
Abstract
This study aims to identify key regulators of paraptosis in gastric cancer (GC) and explore their potential in guiding therapeutic strategies, especially in stomach adenocarcinoma (STAD). Genes associated with paraptosis were identified from the references and subjected to Cox regression analysis in the TCGA-STAD cohort. Using machine learning models, LPAR1 consistently ranked highest in feature importance. Multiple sequencing data showed that LPAR1 was significantly overexpressed in cancer-associated fibroblasts (CAFs). LPAR1 expression was significantly higher in normal tissues, and ROC analysis demonstrated its discriminative ability. Copy number alterations and microsatellite instability were significantly associated with LPAR1 expression. High LPAR1 expression correlated with advanced tumor grades and specific cancer immune subtypes, and multivariate analysis confirmed LPAR1 as an independent predictor of poor prognosis. LPAR1 expression was associated with different immune response metrics, including immune effector activation and upregulated chemokine secretion. High LPAR1 expression also correlated with increased sensitivity to compounds, such as BET bromodomain inhibitors I-BET151 and RITA, suggesting LPAR1 as a biomarker for predicting drug activity. FOXP2 showed a strong positive correlation with LPAR1 transcriptional regulation, while increased methylation of LPAR1 promoter regions was negatively correlated with gene expression. Knockdown of LPAR1 affected cell growth in most tumor cell lines, and in vitro experiments demonstrated that LPAR1 influenced extracellular matrix (ECM) contraction and cell viability in the paraptosis of CAFs. These findings suggest that LPAR1 is a critical regulator of paraptosis in GC and a potential biomarker for drug sensitivity and immunotherapy response. This underscores the role of CAFs in mediating tumorigenic effects and suggests that targeting LPAR1 could be a promising strategy for precision medicine in GC.
Collapse
Affiliation(s)
- Ya-Jie Dai
- Department of General Surgery, Zhongda Hospital, Southeast University, Nanjing, Jiangsu 210009, PR China; Department of Surgery, School of Medicine, Southeast University, Nanjing, Jiangsu 210009, PR China.
| | - Hao-Dong Tang
- Department of General Surgery, Zhongda Hospital, Southeast University, Nanjing, Jiangsu 210009, PR China; Department of Surgery, School of Medicine, Southeast University, Nanjing, Jiangsu 210009, PR China
| | - Guang-Qing Jiang
- Department of General Surgery, Zhongda Hospital, Southeast University, Nanjing, Jiangsu 210009, PR China; Department of Surgery, School of Medicine, Southeast University, Nanjing, Jiangsu 210009, PR China
| | - Zhai-Yue Xu
- Department of General Surgery, Zhongda Hospital, Southeast University, Nanjing, Jiangsu 210009, PR China; Department of Surgery, School of Medicine, Southeast University, Nanjing, Jiangsu 210009, PR China
| |
Collapse
|
4
|
Yang T, Liu Z, Zhang T, Liu Y. Hybrid nano-stimulator for specific amplification of oxidative stress and precise tumour treatment. J Drug Target 2024; 32:756-769. [PMID: 38832845 DOI: 10.1080/1061186x.2024.2349112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 04/23/2024] [Accepted: 04/23/2024] [Indexed: 06/06/2024]
Abstract
BACKGROUND The use of reactive oxygen species (ROS) to target cancer cells has become a hot topic in tumor therapy. PURPOSE Although ROS has strong cytotoxicity against tumor cells, the key issue currently is how to generate a large amount of ROS within tumor cells. METHODS Organic/inorganic hybrid nanoreactor materials combine the advantages of organic and inorganic components and can amplify cancer treatment by increasing targeting and material self-action. The multifunctional organic / inorganic hybrid nanoreactor is helpful to overcome the shortcomings of current reactive oxygen species in cancer treatment. It can realize the combination of in situ dynamic therapy and immunotherapy strategies, and has a synergistic anti-tumor effect. RESULTS This paper reviews the research progress of organic/inorganic hybrid nanoreactor materials using tumor components to amplify reactive oxygen species for cancer treatment. The article reviews the tumor treatment strategies of nanohybrids from the perspectives of cancer cells, immune cells, tumor microenvironment, as well as 3D printing and electrospinning techniques, which are different from traditional nanomaterial technologies, and will arouse interest among scientists in tumor therapy and nanomedicine.
Collapse
Affiliation(s)
- Ting Yang
- Department of Pharmaceutics, School of Pharmacy, Ningxia Medical University, Yinchuan, China
| | - Zihan Liu
- Department of Pharmaceutics, School of Pharmacy, Ningxia Medical University, Yinchuan, China
| | - Tong Zhang
- Department of Pharmaceutics, School of Pharmacy, Ningxia Medical University, Yinchuan, China
| | - Yanhua Liu
- Department of Pharmaceutics, School of Pharmacy, Ningxia Medical University, Yinchuan, China
- Key Laboratory of Protection, Development and Utilization of Medicinal Resources in Liupanshan Area, Ministry of Education, Yinchuan, China
| |
Collapse
|
5
|
Guo Z, Gao X, Lu J, Li Y, Jin Z, Fahad A, Pambe NU, Ejima H, Sun X, Wang X, Xie W, Zhang G, Zhao L. Apoptosis and Paraptosis Induced by Disulfiram-Loaded Ca 2+/Cu 2+ Dual-Ions Nano Trap for Breast Cancer Treatment. ACS NANO 2024; 18:6975-6989. [PMID: 38377439 DOI: 10.1021/acsnano.3c10173] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/22/2024]
Abstract
Regarded as one of the hallmarks of tumorigenesis and tumor progression, the evasion of apoptotic cell death would also account for treatment resistance or failure during cancer therapy. In this study, a Ca2+/Cu2+ dual-ion "nano trap" to effectively avoid cell apoptosis evasion by synchronously inducing paraptosis together with apoptosis was successfully designed and fabricated for breast cancer treatment. In brief, disulfiram (DSF)-loaded amorphous calcium carbonate nanoparticles (NPs) were fabricated via a gas diffusion method. Further on, the Cu2+-tannic acid metal phenolic network was embedded onto the NPs surface by self-assembling, followed by mDSPE-PEG/lipid capping to form the DSF-loaded Ca2+/Cu2+ dual-ions "nano trap". The as-prepared nanotrap would undergo acid-triggered biodegradation upon being endocytosed by tumor cells within the lysosome for Ca2+, Cu2+, and DSF releasing simultaneously. The released Ca2+ could cause mitochondrial calcium overload and lead to hydrogen peroxide (H2O2) overexpression. Meanwhile, Ca2+/reactive oxygen species-associated mitochondrial dysfunction would lead to paraptosis cell death. Most importantly, cell paraptosis could be further induced and strengthened by the toxic dithiocarbamate (DTC)-copper complexes formed by the Cu2+ combined with the DTC, the metabolic products of DSF. Additionally, the released Cu2+ will be reduced by intracellular glutathione to generate Cu+, which can catalyze the H2O2 to produce a toxic hydroxyl radical by a Cu+-mediated Fenton-like reaction for inducing cell apoptosis. Both in vitro cellular assays and in vivo antitumor evaluations confirmed the cancer therapeutic efficiency by the dual ion nano trap. This study can broaden the cognition scope of dual-ion-mediated paraptosis together with apoptosis via a multifunctional nanoplatform.
Collapse
Affiliation(s)
- Zhenhu Guo
- State Key Laboratory of Biochemical Engineering; Key Laboratory of Biopharmaceutical Preparation and Delivery, Chinese Academy of Sciences, Beijing 100190, China
| | - Xiaohan Gao
- Department of Neurosurgery, Yuquan Hospital, School of Clinical Medicine, Tsinghua University, Beijing 100084, China
| | - Jingsong Lu
- State Key Laboratory of New Ceramics and Fine Processing; Key Laboratory of Advanced Materials (Ministry of Education of China), School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China
| | - Ying Li
- State Key Laboratory of New Ceramics and Fine Processing; Key Laboratory of Advanced Materials (Ministry of Education of China), School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China
| | - Zeping Jin
- Department of Neurosurgery, Beijing Chao-Yang Hospital, Capital Medical University, Beijing 100020, China
| | - Abdul Fahad
- State Key Laboratory of New Ceramics and Fine Processing; Key Laboratory of Advanced Materials (Ministry of Education of China), School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China
| | - Neema Ufurahi Pambe
- State Key Laboratory of New Ceramics and Fine Processing; Key Laboratory of Advanced Materials (Ministry of Education of China), School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China
| | - Hirotaka Ejima
- Department of Materials Engineering, School of Engineering, The University of Tokyo, Tokyo 113-8656, Japan
| | - Xiaodan Sun
- State Key Laboratory of New Ceramics and Fine Processing; Key Laboratory of Advanced Materials (Ministry of Education of China), School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China
| | - Xiumei Wang
- State Key Laboratory of New Ceramics and Fine Processing; Key Laboratory of Advanced Materials (Ministry of Education of China), School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China
| | - Wensheng Xie
- State Key Laboratory of Organic-Inorganic Composites, Beijing Laboratory of Biomedical Materials, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Guifeng Zhang
- State Key Laboratory of Biochemical Engineering; Key Laboratory of Biopharmaceutical Preparation and Delivery, Chinese Academy of Sciences, Beijing 100190, China
| | - Lingyun Zhao
- State Key Laboratory of New Ceramics and Fine Processing; Key Laboratory of Advanced Materials (Ministry of Education of China), School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China
| |
Collapse
|