1
|
Bai SH, Chandnani A, Cao S. Bile Acids in Inflammatory Bowel Disease: From Pathophysiology to Treatment. Biomedicines 2024; 12:2910. [PMID: 39767816 PMCID: PMC11673883 DOI: 10.3390/biomedicines12122910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 12/11/2024] [Accepted: 12/16/2024] [Indexed: 01/11/2025] Open
Abstract
Inflammatory bowel disease (IBD) is a chronic condition that affects about 7 million people worldwide, and new therapies are needed. Understanding the complex roles that bile acids (BAs) play in IBD may lead to the development of novel IBD treatments independent of direct immunosuppression. This review discusses the latest discoveries in the roles BAs play in IBD pathogenesis and explores how these discoveries offer promising new therapeutic targets to treat IBD and improve patient outcomes. Several therapies discussed include specific BA receptor (BAR) agonists, dietary therapies, supplements, probiotics, and mesenchymal stem cell therapies that have all been shown to decrease IBD disease activity.
Collapse
Affiliation(s)
| | | | - Siyan Cao
- Division of Gastroenterology, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA; (S.H.B.); (A.C.)
| |
Collapse
|
2
|
Long Z, Xiang W, Xiao W, Min Y, Qu F, Zhang B, Zeng L. Advances in the study of artemisinin and its derivatives for the treatment of rheumatic skeletal disorders, autoimmune inflammatory diseases, and autoimmune disorders: a comprehensive review. Front Immunol 2024; 15:1432625. [PMID: 39524446 PMCID: PMC11543433 DOI: 10.3389/fimmu.2024.1432625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 09/16/2024] [Indexed: 11/16/2024] Open
Abstract
Artemisinin and its derivatives are widely recognized as first-line treatments for malaria worldwide. Recent studies have demonstrated that artemisinin-based antimalarial drugs, such as artesunate, dihydroartemisinin, and artemether, not only possess excellent antimalarial properties but also exhibit antitumor, antifungal, and immunomodulatory effects. Researchers globally have synthesized artemisinin derivatives like SM735, SM905, and SM934, which offer advantages such as low toxicity, high bioavailability, and potential immunosuppressive properties. These compounds induce immunosuppression by inhibiting the activation of pathogenic T cells, suppressing B cell activation and antibody production, and enhancing the differentiation of regulatory T cells. This review summarized the mechanisms by which artemisinin and its analogs modulate excessive inflammation and immune responses in rheumatic and skeletal diseases, autoimmune inflammatory diseases, and autoimmune disorders, through pathways including TNF, Toll-like receptors, IL-6, RANKL, MAPK, PI3K/AKT/mTOR, JAK/STAT, and NRF2/GPX4. Notably, in the context of the NF-κB pathway, artemisinin not only inhibits NF-κB expression by disrupting upstream cascades and/or directly binding to NF-κB but also downregulates multiple downstream genes controlled by NF-κB, including inflammatory chemokines and their receptors. These downstream targets regulate various immune cell functions, apoptosis, proliferation, signal transduction, and antioxidant responses, ultimately intervening in systemic autoimmune diseases and autoimmune responses in organs such as the kidneys, nervous system, skin, liver, and biliary system by modulating immune dysregulation and inflammatory responses. Ongoing multicenter randomized clinical trials are investigating the effects of these compounds on rheumatic, inflammatory, and autoimmune diseases, with the aim of translating promising preclinical data into clinical applications.
Collapse
Affiliation(s)
- Zhiyong Long
- Department of Physical Medicine and Rehabilitation, The Affiliated Panyu Central Hospital, Guangzhou Medical University, Guangzhou, China
| | - Wang Xiang
- Department of Rheumatology, Changde Hospital, Xiangya School of Medicine, Central South University, Changde, China
| | - Wei Xiao
- Department of Rheumatology, Changde Hospital, Xiangya School of Medicine, Central South University, Changde, China
| | - Yu Min
- Department of Physical Medicine and Rehabilitation, The Affiliated Panyu Central Hospital, Guangzhou Medical University, Guangzhou, China
| | - Fei Qu
- Department of Acupuncture and Massage, The Affiliated Panyu Central Hospital, Guangzhou Medical University, Guangzhou, China
| | | | - Liuting Zeng
- Department of Physical Medicine and Rehabilitation, The Affiliated Panyu Central Hospital, Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
3
|
Li X, Liang X, Gu X, Zou M, Cao W, Liu C, Wang X. Ursodeoxycholic acid and 18β-glycyrrhetinic acid alleviate ethinylestradiol-induced cholestasis via downregulating RORγt and CXCR3 signaling pathway in iNKT cells. Toxicol In Vitro 2024; 96:105782. [PMID: 38244730 DOI: 10.1016/j.tiv.2024.105782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 11/04/2023] [Accepted: 01/15/2024] [Indexed: 01/22/2024]
Abstract
Estrogen-induced intrahepatic cholestasis (IHC) is a mild but potentially serious risk and urges for new therapeutic targets and effective treatment. Our previous study demonstrated that RORγt and CXCR3 signaling pathway of invariant natural killer T (iNKT) 17 cells play pathogenic roles in 17α-ethinylestradiol (EE)-induced IHC. Ursodeoxycholic acid (UDCA) and 18β-glycyrrhetinic acid (GA) present a protective effect on IHC partially due to their immunomodulatory properties. Hence in present study, we aim to investigate the effectiveness of UDCA and 18β-GA in vitro and verify the accessibility of the above targets. Biochemical index measurement indicated that UDCA and 18β-GA presented efficacy to alleviate EE-induced cholestatic cytotoxicity. Both UDCA and 18β-GA exhibited suppression on the CXCL9/10-CXCR3 axis, and significantly restrained the expression of RORγt in vitro. In conclusion, our observations provide new therapeutic targets of UDCA and 18β-GA, and 18β-GA as an alternative treatment for EE-induced cholestasis.
Collapse
Affiliation(s)
- Xinyu Li
- State Key Laboratory of Natural Medicines, New Drug Screening Center, Jiangsu Center for Pharmacodynamics Research and Evaluation, China Pharmaceutical University, Nanjing, 210009, China
| | - Xiaojing Liang
- State Key Laboratory of Natural Medicines, New Drug Screening Center, Jiangsu Center for Pharmacodynamics Research and Evaluation, China Pharmaceutical University, Nanjing, 210009, China
| | - Xiaoxia Gu
- Department of Obstetrics and Gynecology, Zhongda Hospital, Southeast University, Nanjing 210009, China
| | - Mengzhi Zou
- State Key Laboratory of Natural Medicines, New Drug Screening Center, Jiangsu Center for Pharmacodynamics Research and Evaluation, China Pharmaceutical University, Nanjing, 210009, China
| | - Weiping Cao
- Departments of Obstetrics, Maternity and Child Health Hospital of Zhenjiang, Zhenjiang 212001, China.
| | - Chunhui Liu
- Physics and Chemistry Test Center of Jiangsu Province, 210042 Nanjing, China.
| | - Xinzhi Wang
- State Key Laboratory of Natural Medicines, New Drug Screening Center, Jiangsu Center for Pharmacodynamics Research and Evaluation, China Pharmaceutical University, Nanjing, 210009, China.
| |
Collapse
|
4
|
Cao X, Wang Z, Jiao Y, Diao W, Geng Q, Zhao L, Wang Z, Wang X, Zhang M, Xu J, Wang B, Deng T, Xiao C. Dihydroartemisinin alleviates erosive bone destruction by modifying local Treg cells in inflamed joints: A novel role in the treatment of rheumatoid arthritis. Int Immunopharmacol 2024; 130:111795. [PMID: 38447418 DOI: 10.1016/j.intimp.2024.111795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 02/15/2024] [Accepted: 02/29/2024] [Indexed: 03/08/2024]
Abstract
Treg cell-based therapy has exhibited promising efficacy in combatting rheumatoid arthritis (RA). Dihydroartemisinin (DHA) exerts broad immunomodulatory effects across various diseases, with its recent spotlight on T-cell regulation in autoimmune conditions. The modulation of DHA on Treg cells and its therapeutic role in RA has yet to be fully elucidated. This study seeks to unveil the influence of DHA on Treg cells in RA and furnish innovative substantiation for the potential of DHA to ameliorate RA. To this end, we initially scrutinized the impact of DHA-modulated Treg cells on osteoclast (OC) formation in vitro using Treg cell-bone marrow-derived monocyte (BMM) coculture systems. Subsequently, employing the collagen-induced arthritis (CIA) rat model, we validated the efficacy of DHA and probed its influence on Treg cells in the spleen and popliteal lymph nodes (PLN). Finally, leveraging deep proteomic analysis with data-independent acquisition (DIA) and parallel accumulation-serial fragmentation (PASEF) technology, we found the alterations in the Treg cell proteome in PLN by proteomic analysis. Our findings indicate that DHA augmented suppressive Treg cells, thereby impeding OC formation in vitro. Consistently, DHA mitigated erosive joint destruction and osteoclastogenesis by replenishing splenic and joint-draining lymph node Treg cells in CIA rats. Notably, DHA induced alterations in the Treg cell proteome in PLN, manifesting distinct upregulation of alloantigen Col2a1 (Type II collagen alfa 1 chain) and CD8a (T-cell surface glycoprotein CD8 alpha chain) in Treg cells, signifying DHA's targeted modulation of Treg cells, rendering them more adept at sustaining immune tolerance and impeding bone erosion. These results unveil a novel facet of DHA in the treatment of RA.
Collapse
Affiliation(s)
- Xiaoxue Cao
- Institute of Clinical Medicine, China-Japan Friendship Hospital, Beijing, China; Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences/Peking Union Medical College, Beijing, China.
| | - Zhaoran Wang
- Institute of Clinical Medicine, China-Japan Friendship Hospital, Beijing, China; Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences/Peking Union Medical College, Beijing, China.
| | - Yi Jiao
- China-Japan Friendship Clinical Medical College, Beijing University of Chinese Medicine, Beijing, China.
| | - Wenya Diao
- China-Japan Friendship Clinical Medical College, Beijing University of Chinese Medicine, Beijing, China.
| | - Qishun Geng
- Institute of Clinical Medicine, China-Japan Friendship Hospital, Beijing, China; Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences/Peking Union Medical College, Beijing, China.
| | - Lu Zhao
- China-Japan Friendship Hospital, Capital Medical University, Beijing, China.
| | - Zihan Wang
- China-Japan Friendship Clinical Medical College, Beijing University of Chinese Medicine, Beijing, China.
| | - Xing Wang
- China-Japan Friendship Clinical Medical College, Beijing University of Chinese Medicine, Beijing, China.
| | - Mengxiao Zhang
- Institute of Clinical Medicine, China-Japan Friendship Hospital, Beijing, China.
| | - Jiahe Xu
- China-Japan Friendship School of Clinical Medicine, Peking University, Beijing, China.
| | - Bailiang Wang
- Department of Orthopaedic Surgery, China-Japan Friendship Hospital, Beijing, China.
| | - Tingting Deng
- Institute of Clinical Medicine, China-Japan Friendship Hospital, Beijing, China.
| | - Cheng Xiao
- Institute of Clinical Medicine, China-Japan Friendship Hospital, Beijing, China; Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences/Peking Union Medical College, Beijing, China; Department of Emergency, China-Japan Friendship Hospital, Beijing, China.
| |
Collapse
|
5
|
Wang S, Zhang G, Cui Q, Yang Y, Wang D, Liu A, Xia Y, Li W, Liu Y, Yu J. The DC-T cell axis is an effective target for the treatment of non-small cell lung cancer. Immun Inflamm Dis 2023; 11:e1099. [PMID: 38018578 PMCID: PMC10681037 DOI: 10.1002/iid3.1099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 11/06/2023] [Accepted: 11/09/2023] [Indexed: 11/30/2023] Open
Abstract
The dendritic cell (DC)-T cell axis is a bridge that connects innate and adaptive immunities. The initial immune response against tumors is mainly induced by mature antigen-presenting DCs. Enhancing the crosstalk between DCs and T cells may be an effective approach to improve the immune response to non-small cell lung cancer (NSCLC). In this article, a review was made of the interaction between DCs and T cells in the treatment of NSCLC and how this interaction affects the treatment outcome.
Collapse
Affiliation(s)
- Shuangcui Wang
- Department of OncologyFirst Teaching Hospital of Tianjin University of Traditional Chinese MedicineTianjinChina
- National Clinical Research Center for Chinese Medicine Acupuncture and MoxibustionTianjinChina
- Graduate SchoolTianjin University of Traditional Chinese MedicineTianjinChina
| | - Guan Zhang
- Department of OncologyFirst Teaching Hospital of Tianjin University of Traditional Chinese MedicineTianjinChina
- National Clinical Research Center for Chinese Medicine Acupuncture and MoxibustionTianjinChina
- Graduate SchoolTianjin University of Traditional Chinese MedicineTianjinChina
| | - Qian Cui
- Department of OncologyFirst Teaching Hospital of Tianjin University of Traditional Chinese MedicineTianjinChina
- National Clinical Research Center for Chinese Medicine Acupuncture and MoxibustionTianjinChina
- Graduate SchoolTianjin University of Traditional Chinese MedicineTianjinChina
| | - Yanjie Yang
- Department of OncologyFirst Teaching Hospital of Tianjin University of Traditional Chinese MedicineTianjinChina
- National Clinical Research Center for Chinese Medicine Acupuncture and MoxibustionTianjinChina
- Graduate SchoolTianjin University of Traditional Chinese MedicineTianjinChina
| | - Dong Wang
- Department of OncologyFirst Teaching Hospital of Tianjin University of Traditional Chinese MedicineTianjinChina
- National Clinical Research Center for Chinese Medicine Acupuncture and MoxibustionTianjinChina
- Graduate SchoolTianjin University of Traditional Chinese MedicineTianjinChina
| | - Aqing Liu
- Department of OncologyFirst Teaching Hospital of Tianjin University of Traditional Chinese MedicineTianjinChina
- National Clinical Research Center for Chinese Medicine Acupuncture and MoxibustionTianjinChina
- Graduate SchoolTianjin University of Traditional Chinese MedicineTianjinChina
| | - Ying Xia
- Department of OncologyFirst Teaching Hospital of Tianjin University of Traditional Chinese MedicineTianjinChina
- National Clinical Research Center for Chinese Medicine Acupuncture and MoxibustionTianjinChina
- Graduate SchoolTianjin University of Traditional Chinese MedicineTianjinChina
| | - Wentao Li
- Department of OncologyFirst Teaching Hospital of Tianjin University of Traditional Chinese MedicineTianjinChina
| | - Yunhe Liu
- Department of OncologyFirst Teaching Hospital of Tianjin University of Traditional Chinese MedicineTianjinChina
| | - Jianchun Yu
- Department of OncologyFirst Teaching Hospital of Tianjin University of Traditional Chinese MedicineTianjinChina
| |
Collapse
|