1
|
Guo H, Li M, Liu H, Chen X, Cheng Z, Li X, Yu H, He Q. Multi-threshold Image Segmentation based on an improved Salp Swarm Algorithm: Case study of breast cancer pathology images. Comput Biol Med 2024; 168:107769. [PMID: 38039898 DOI: 10.1016/j.compbiomed.2023.107769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 11/02/2023] [Accepted: 11/26/2023] [Indexed: 12/03/2023]
Abstract
Breast cancer poses a significant risk to women's health, and it is essential to provide proper diagnostic support. Medical image processing technology is a key component of all supporting diagnostic techniques, with Image Segmentation (IS) being one of its primary steps. Among various methods, Multilevel Image Segmentation (MIS) is considered one of the most effective and straightforward approaches. Many researchers have attempted to improve the quality of image segmentation by combining different metaheuristic algorithms with MIS. However, these methods often suffer from issues such as low convergence accuracy and a proclivity for converging towards Local Optima (LO). To overcome these challenges, this study introduces an integrated approach that combines the Salp Swarm Algorithm (SSA), Slime Mould Algorithm (SMA) and Differential Evolution (DE) algorithm. In this manuscript, we introduce an innovative hybrid MIS model termed SDSSA, which leverages elements from the SSA, SMA and DE algorithms. The SDSSA model fundamentally relies on non-local means 2D histogram and 2D Kapur's entropy. To evaluate the proposed method effectively, we compare it initially with similar algorithms using the IEEE CEC2014 benchmark functions. The SDSSA showcases enhanced convergence velocity and precision relative to similar algorithms. Furthermore, this paper proposes an excellent MIS method. Subsequently, IS experiments were conducted separately at both low and high threshold levels. The test results demonstrate that the segmentation outcomes of MIS, at both low and high threshold levels, outperform other methods. This validates SDSSA as a superior segmentation technique that provides practical assistance for future research in breast cancer pathology image processing.
Collapse
Affiliation(s)
- Hongliang Guo
- College of Information Technology, Jilin Agricultural University, Changchun 130118, China.
| | - Mingyang Li
- College of Information Technology, Jilin Agricultural University, Changchun 130118, China.
| | - Hanbo Liu
- College of Information Technology, Jilin Agricultural University, Changchun 130118, China.
| | - Xiao Chen
- College of Information Technology, Jilin Agricultural University, Changchun 130118, China.
| | - Zhiqiang Cheng
- College of Resources and Environment, Jilin Agricultural University, Changchun 130118, China; Scientific and Technological Innovation Center of Health Products and Medical Materials with Characteristic Resources of Jilin Province, Changchun 130000, China.
| | - Xiaohua Li
- Library, Wenzhou University, Wenzhou, Zhejiang, 325035, China.
| | - Helong Yu
- College of Information Technology, Jilin Agricultural University, Changchun 130118, China.
| | - Qiuxiang He
- Department of Pathology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China.
| |
Collapse
|
2
|
Sports Feedback System Based on Video Digital Processing. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2022; 2022:2859567. [PMID: 35756411 PMCID: PMC9225899 DOI: 10.1155/2022/2859567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 04/22/2022] [Accepted: 05/03/2022] [Indexed: 11/26/2022]
Abstract
The current sports feedback system has high application value and is widely used in physical education courses, but it has problems such as large feedback error, long response time, and incomplete data, leading to poor effect of sports feedback system. In order to improve the effectiveness of sports feedback system, a sports feedback system based on video digital processing is designed. By constructing the overall architecture of video digital sports feedback system, the positioning module, interface module, power supply circuit module, sampling module, input module, signal extraction module, and video digital processing module are designed. Using information communication mechanism, TCP/IP network protocol, serial communication, and shared memory to improve video digital processing, experimental results show that the designed system has good error convergence of 0.1, short response time of 32 s, and high data integrity of 94%, which has strong practicability.
Collapse
|
3
|
Trust of Information during the Dissemination of Popular Science Web Videos in the New Media Era. COMPUTATIONAL INTELLIGENCE AND NEUROSCIENCE 2022; 2022:1746472. [PMID: 35665284 PMCID: PMC9159858 DOI: 10.1155/2022/1746472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 04/26/2022] [Accepted: 05/07/2022] [Indexed: 11/17/2022]
Abstract
Web videos have gradually replaced text, voice, pictures, and other information carriers to become an important way of information dissemination in the new media era. As digital technology brings a new dissemination ecology, the original dissemination trust theory and its framework are facing the crisis of explanatory power failure. This paper considers the popular science web video as an object of study. It analyses and interprets the development of popular science web videos based on the evolution of dissemination form and the basic principle of social trust, from perspectives such as mediology, informatics, and sociology. To maintain or improve the trust relationship in web videos, it's necessary to find positive incentive and reverse punishment, and establish a trust certification and regulation mechanism. In this way, active dissemination and sharing of information can be promoted for a more vigorous society and culture. Moreover, this paper explores a new way of web video development from the perspective of trust.
Collapse
|
4
|
Xia J, Wang Z, Yang D, Li R, Liang G, Chen H, Heidari AA, Turabieh H, Mafarja M, Pan Z. Performance optimization of support vector machine with oppositional grasshopper optimization for acute appendicitis diagnosis. Comput Biol Med 2022; 143:105206. [PMID: 35101730 DOI: 10.1016/j.compbiomed.2021.105206] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 12/27/2021] [Accepted: 12/30/2021] [Indexed: 12/13/2022]
Abstract
Preoperative differentiation of complicated and uncomplicated appendicitis is challenging. The research goal was to construct a new intelligent diagnostic rule that is accurate, fast, noninvasive, and cost-effective, distinguishing between complicated and uncomplicated appendicitis. Overall, 298 patients with acute appendicitis from the Wenzhou Central Hospital were recruited, and information on their demographic characteristics, clinical findings, and laboratory data was retrospectively reviewed and applied in this study. First, the most significant variables, including C-reactive protein (CRP), heart rate, body temperature, and neutrophils discriminating complicated from uncomplicated appendicitis, were identified using random forest analysis. Second, an improved grasshopper optimization algorithm-based support vector machine was used to construct the diagnostic model to discriminate complicated appendicitis (CAP) from uncomplicated appendicitis (UAP). The resultant optimal model can produce an average of 83.56% accuracy, 81.71% sensitivity, 85.33% specificity, and 0.6732 Matthews correlation coefficients. Based on existing routinely available markers, the proposed intelligent diagnosis model is highly reliable. Thus, the model can potentially be used to assist doctors in making correct clinical decisions.
Collapse
Affiliation(s)
- Jianfu Xia
- Department of General Surgery, The Second Affiliated Hospital of Shanghai University (Wenzhou Central Hospital), Wenzhou, Zhejiang, 325000, China.
| | - Zhifei Wang
- Department of Hepatobiliary, Pancreatic and Minimally Invasive Surgery, Zhejiang Provincial People's Hospital, Hangzhou, 310014, China.
| | - Daqing Yang
- Department of General Surgery, The Second Affiliated Hospital of Shanghai University (Wenzhou Central Hospital), Wenzhou, Zhejiang, 325000, China.
| | - Rizeng Li
- Department of General Surgery, The Second Affiliated Hospital of Shanghai University (Wenzhou Central Hospital), Wenzhou, Zhejiang, 325000, China.
| | - Guoxi Liang
- Department of Information Technology, Wenzhou Polytechnic, Wenzhou, 325035, China.
| | - Huiling Chen
- Department of Computer Science and Artificial Intelligence, Wenzhou University, Wenzhou, 325035, China.
| | - Ali Asghar Heidari
- Department of Computer Science and Artificial Intelligence, Wenzhou University, Wenzhou, 325035, China.
| | - Hamza Turabieh
- Department of Information Technology, College of Computers and Information Technology, Taif University, P.O. Box 11099, Taif, 21944, Taif, Saudi Arabia.
| | - Majdi Mafarja
- Department of Computer Science, Birzeit University, Birzeit, 72439, Palestine.
| | - Zhifang Pan
- The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, PR China.
| |
Collapse
|
5
|
Chen X, Huang H, Heidari AA, Sun C, Lv Y, Gui W, Liang G, Gu Z, Chen H, Li C, Chen P. An efficient multilevel thresholding image segmentation method based on the slime mould algorithm with bee foraging mechanism: A real case with lupus nephritis images. Comput Biol Med 2022; 142:105179. [DOI: 10.1016/j.compbiomed.2021.105179] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Revised: 12/24/2021] [Accepted: 12/24/2021] [Indexed: 02/01/2023]
|
6
|
Su H, Zhao D, Yu F, Heidari AA, Zhang Y, Chen H, Li C, Pan J, Quan S. Horizontal and vertical search artificial bee colony for image segmentation of COVID-19 X-ray images. Comput Biol Med 2022; 142:105181. [PMID: 35016099 PMCID: PMC9749108 DOI: 10.1016/j.compbiomed.2021.105181] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Revised: 12/20/2021] [Accepted: 12/24/2021] [Indexed: 11/03/2022]
Abstract
The artificial bee colony algorithm (ABC) has been successfully applied to various optimization problems, but the algorithm still suffers from slow convergence and poor quality of optimal solutions in the optimization process. Therefore, in this paper, an improved ABC (CCABC) based on a horizontal search mechanism and a vertical search mechanism is proposed to improve the algorithm's performance. In addition, this paper also presents a multilevel thresholding image segmentation (MTIS) method based on CCABC to enhance the effectiveness of the multilevel thresholding image segmentation method. To verify the performance of the proposed CCABC algorithm and the performance of the improved image segmentation method. First, this paper demonstrates the performance of the CCABC algorithm itself by comparing CCABC with 15 algorithms of the same type using 30 benchmark functions. Then, this paper uses the improved multi-threshold segmentation method for the segmentation of COVID-19 X-ray images and compares it with other similar plans in detail. Finally, this paper confirms that the incorporation of CCABC in MTIS is very effective by analyzing appropriate evaluation criteria and affirms that the new MTIS method has a strong segmentation performance.
Collapse
Affiliation(s)
- Hang Su
- College of Computer Science and Technology, Changchun Normal University, Changchun, Jilin, 130032, China.
| | - Dong Zhao
- College of Computer Science and Technology, Changchun Normal University, Changchun, Jilin, 130032, China.
| | - Fanhua Yu
- College of Computer Science and Technology, Changchun Normal University, Changchun, Jilin, 130032, China.
| | - Ali Asghar Heidari
- School of Surveying and Geospatial Engineering, College of Engineering, University of Tehran, Tehran, Iran.
| | - Yu Zhang
- College of Computer Science and Technology, Changchun Normal University, Changchun, Jilin, 130032, China.
| | - Huiling Chen
- College of Computer Science and Artificial Intelligence, Wenzhou University, Wenzhou, Zhejiang, 325035, China.
| | - Chengye Li
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China.
| | - Jingye Pan
- Department of Intensive Care Unit, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China; Key Laboratory of Intelligent Treatment and Life Support for Critical Diseases of Zhejiang Provincial, Wenzhou, Zhejiang, 325000, China; Wenzhou Key Laboratory of Critical Care and Artificial Intelligence, Wenzhou, Zhejiang, 325000, China.
| | - Shichao Quan
- Department of General Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China; Department of Big Data in Health Science, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China; Zhejiang Engineering Research Center for Hospital Emergency and Process Digitization, Wenzhou, Zhejiang, 325000, China.
| |
Collapse
|
7
|
Hu J, Han Z, Heidari AA, Shou Y, Ye H, Wang L, Huang X, Chen H, Chen Y, Wu P. Detection of COVID-19 severity using blood gas analysis parameters and Harris hawks optimized extreme learning machine. Comput Biol Med 2022; 142:105166. [PMID: 35077935 PMCID: PMC8701842 DOI: 10.1016/j.compbiomed.2021.105166] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Revised: 12/20/2021] [Accepted: 12/20/2021] [Indexed: 01/08/2023]
Abstract
Coronavirus disease-2019 (COVID-19) has made the world more cautious about widespread viruses, and a tragic pandemic that was caused by a novel coronavirus has harmed human beings in recent years. The new coronavirus pneumonia outbreak is spreading rapidly worldwide. We collect arterial blood samples from 51 patients with a COVID-19 diagnosis. Blood gas analysis is performed using a Siemens RAPID Point 500 blood gas analyzer. To accurately determine the factors that play a decisive role in the early recognition and discrimination of COVID-19 severity, a prediction framework that is based on an improved binary Harris hawk optimization (HHO) algorithm in combination with a kernel extreme learning machine is proposed in this paper. This method uses specular reflection learning to improve the original HHO algorithm and is referred to as HHOSRL. The experimental results show that the selected indicators, such as age, partial pressure of oxygen, oxygen saturation, sodium ion concentration, and lactic acid, are essential for the early accurate assessment of COVID-19 severity by the proposed feature selection method. The simulation results show that the established methodlogy can achieve promising performance. We believe that our proposed model provides an effective strategy for accurate early assessment of COVID-19 and distinguishing disease severity. The codes of HHO will be updated in https://aliasgharheidari.com/HHO.html.
Collapse
Affiliation(s)
- Jiao Hu
- Department of Computer Science and Artificial Intelligence, Wenzhou University, Wenzhou, 325035, China.
| | - Zhengyuan Han
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, PR China.
| | - Ali Asghar Heidari
- School of Surveying and Geospatial Engineering, College of Engineering, University of Tehran, Tehran, Iran.
| | - Yeqi Shou
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, PR China.
| | - Hua Ye
- Department of Pulmonary and Critical Care Medicine, Affiliated Yueqing Hospital, Wenzhou Medical University, Yueqing, 325600, China.
| | - Liangxing Wang
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, PR China.
| | - Xiaoying Huang
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, PR China.
| | - Huiling Chen
- Department of Computer Science and Artificial Intelligence, Wenzhou University, Wenzhou, 325035, China.
| | - Yanfan Chen
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, PR China.
| | - Peiliang Wu
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, PR China.
| |
Collapse
|
8
|
Jaafari A, Panahi M, Mafi-Gholami D, Rahmati O, Shahabi H, Shirzadi A, Lee S, Bui DT, Pradhan B. Swarm intelligence optimization of the group method of data handling using the cuckoo search and whale optimization algorithms to model and predict landslides. Appl Soft Comput 2022. [DOI: 10.1016/j.asoc.2021.108254] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|