1
|
Huang W, Zhang J, Yang L, Hu Y, Leng X, Liu Y, Jin H, Tang Y, Wang J, Liu X, Guo Y, Ye C, Feng Y, Xiang J, Tang L, Du C. Accuracy of intravascular ultrasound-derived virtual fractional flow reserve (FFR) and FFR derived from computed tomography for functional assessment of coronary artery disease. Biomed Eng Online 2023; 22:64. [PMID: 37370077 PMCID: PMC10303302 DOI: 10.1186/s12938-023-01122-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Accepted: 05/28/2023] [Indexed: 06/29/2023] Open
Abstract
BACKGROUND Coronary computed tomography-derived fractional flow reserve (CT-FFR) and intravascular ultrasound-derived fractional flow reserve (IVUS-FFR) are two functional assessment methods for coronary stenoses. However, the calculation algorithms for these methods differ significantly. This study aimed to compare the diagnostic performance of CT-FFR and IVUS-FFR using invasive fractional flow reserve (FFR) as the reference standard. METHODS Six hundred and seventy patients (698 lesions) with known or suspected coronary artery disease were screened for this retrospective analysis between January 2020 and July 2021. A total of 40 patients (41 lesions) underwent intravascular ultrasound (IVUS) and FFR evaluations within six months after completing coronary CT angiography were included. Two novel CFD-based models (AccuFFRct and AccuFFRivus) were used to compute the CT-FFR and IVUS-FFR values, respectively. The invasive FFR ≤ 0.80 was used as the reference standard for evaluating the diagnostic performance of CT-FFR and IVUS-FFR. RESULTS Both AccuFFRivus and AccuFFRct demonstrated a strong correlation with invasive FFR (R = 0.7913, P < 0.0001; and R = 0.6296, P < 0.0001), and both methods showed good agreement with FFR. The area under the receiver operating characteristic curve was 0.960 (P < 0.001) for AccuFFRivus and 0.897 (P < 0.001) for AccuFFRct in predicting FFR ≤ 0.80. FFR ≤ 0.80 were predicted with high sensitivity (96.6%), specificity (85.7%), and the Youden index (0.823) using the same cutoff value of 0.80 for AccuFFRivus. A good diagnostic performance (sensitivity 89.7%, specificity 85.7%, and Youden index 0.754) was also demonstrated by AccuFFRct. CONCLUSIONS AccuFFRivus, computed from IVUS images, exhibited a high diagnostic performance for detecting myocardial ischemia. It demonstrated better diagnostic power than AccuFFRct, and could serve as an accurate computational tool for ischemia diagnosis and assist in clinical decision-making.
Collapse
Affiliation(s)
- Wenhao Huang
- Department of Medicine, The Second College of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, China
| | - Jingyuan Zhang
- Department of Medicine, The Second College of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, China
| | - Lin Yang
- Department of Geriatrics, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yumeng Hu
- ArteryFlow Technology Co., Ltd., Hangzhou, China
| | | | - Yajun Liu
- Department of Medicine, The Second College of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, China
| | - Hongfeng Jin
- Department of Cardiology, Zhejiang Hospital, Hangzhou, China
| | - Yiming Tang
- Department of Cardiology, Zhejiang Hospital, Hangzhou, China
| | - Jiangting Wang
- Department of Cardiology, Zhejiang Hospital, Hangzhou, China
| | - Xiaowei Liu
- Department of Cardiology, Zhejiang Hospital, Hangzhou, China
| | - Yitao Guo
- Department of Cardiology, Zhejiang Hospital, Hangzhou, China
| | - Chen Ye
- Department of Cardiology, Zhejiang Hospital, Hangzhou, China
| | - Yue Feng
- Department of Radiology, Zhejiang Hospital, Hangzhou, China
| | | | - Lijiang Tang
- Department of Cardiology, Zhejiang Hospital, Hangzhou, China.
| | - Changqing Du
- Department of Cardiology, Zhejiang Hospital, Hangzhou, China.
| |
Collapse
|
2
|
Zhao FJ, Fan SQ, Ren JF, von Deneen KM, He XW, Chen XL. Machine learning for diagnosis of coronary artery disease in computed tomography angiography: A survey. Artif Intell Med Imaging 2020; 1:31-39. [DOI: 10.35711/aimi.v1.i1.31] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 06/12/2020] [Accepted: 06/16/2020] [Indexed: 02/06/2023] Open
Abstract
Coronary artery disease (CAD) has become a major illness endangering human health. It mainly manifests as atherosclerotic plaques, especially vulnerable plaques without obvious symptoms in the early stage. Once a rupture occurs, it will lead to severe coronary stenosis, which in turn may trigger a major adverse cardiovascular event. Computed tomography angiography (CTA) has become a standard diagnostic tool for early screening of coronary plaque and stenosis due to its advantages in high resolution, noninvasiveness, and three-dimensional imaging. However, manual examination of CTA images by radiologists has been proven to be tedious and time-consuming, which might also lead to intra- and interobserver errors. Nowadays, many machine learning algorithms have enabled the (semi-)automatic diagnosis of CAD by extracting quantitative features from CTA images. This paper provides a survey of these machine learning algorithms for the diagnosis of CAD in CTA images, including coronary artery extraction, coronary plaque detection, vulnerable plaque identification, and coronary stenosis assessment. Most included articles were published within this decade and are found in the Web of Science. We wish to give readers a glimpse of the current status, challenges, and perspectives of these machine learning-based analysis methods for automatic CAD diagnosis.
Collapse
Affiliation(s)
- Feng-Jun Zhao
- School of Information Science and Technology, Northwest University, Xi’an 710069, Shaanxi Province, China
- Xi’an Key Lab of Radiomics and Intelligent Perception, Northwest University, Xi’an 710069, Shaanxi Province, China
| | - Si-Qi Fan
- School of Information Science and Technology, Northwest University, Xi’an 710069, Shaanxi Province, China
- Xi’an Key Lab of Radiomics and Intelligent Perception, Northwest University, Xi’an 710069, Shaanxi Province, China
| | - Jing-Fang Ren
- School of Information Science and Technology, Northwest University, Xi’an 710069, Shaanxi Province, China
- Xi’an Key Lab of Radiomics and Intelligent Perception, Northwest University, Xi’an 710069, Shaanxi Province, China
| | - Karen M von Deneen
- Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, School of Life Science and Technology, Xidian University, Xi’an 710126, Shaanxi Province, China
| | - Xiao-Wei He
- School of Information Science and Technology, Northwest University, Xi’an 710069, Shaanxi Province, China
- Xi’an Key Lab of Radiomics and Intelligent Perception, Northwest University, Xi’an 710069, Shaanxi Province, China
| | - Xue-Li Chen
- Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, School of Life Science and Technology, Xidian University, Xi’an 710126, Shaanxi Province, China
| |
Collapse
|