1
|
Chai C, Yang X, Zheng Y, Bin Heyat MB, Li Y, Yang D, Chen YH, Sawan M. Multimodal fusion of magnetoencephalography and photoacoustic imaging based on optical pump: Trends for wearable and noninvasive Brain-Computer interface. Biosens Bioelectron 2025; 278:117321. [PMID: 40049046 DOI: 10.1016/j.bios.2025.117321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Revised: 02/19/2025] [Accepted: 02/26/2025] [Indexed: 03/30/2025]
Abstract
Wearable noninvasive brain-computer interface (BCI) technologies, such as electroencephalography (EEG) and functional near-infrared spectroscopy (fNIRS), have experienced significant progress since their inception. However, these technologies have not achieved revolutionary advancements, largely because of their inherently low signal-to-noise ratio and limited penetration depth. In recent years, the application of quantum-theory-based optically pumped (OP) technologies, particularly optical pumped magnetometers (OPMs) for magnetoencephalography (MEG) and photoacoustic imaging (PAI) utilizing OP pulsed laser sources, has opened new avenues for development in noninvasive BCIs. These advanced technologies have garnered considerable attention owing to their high sensitivity in tracking neural activity and detecting blood oxygen saturation. This paper represents the first attempt to discuss and compare technologies grounded in OP theory by examining the technical advantages of OPM-MEG and PAI over traditional EEG and fNIRS. Furthermore, the paper investigates the theoretical and structural feasibility of hardware reuse in OPM-MEG and PAI applications.
Collapse
Affiliation(s)
- Chengpeng Chai
- CenBRAIN Neurotech, School of Engineering, Westlake University, 600 Dunyu Road, Xihu District, Hangzhou, Zhejiang, 310030, China; Institute of Advanced Technology, Westlake Institute for Advanced Study, 18 Shilongshan Street, Xihu District, Hangzhou, Zhejiang, 310024, China
| | - Xi Yang
- CenBRAIN Neurotech, School of Engineering, Westlake University, 600 Dunyu Road, Xihu District, Hangzhou, Zhejiang, 310030, China; Institute of Advanced Technology, Westlake Institute for Advanced Study, 18 Shilongshan Street, Xihu District, Hangzhou, Zhejiang, 310024, China
| | - Yuqiao Zheng
- CenBRAIN Neurotech, School of Engineering, Westlake University, 600 Dunyu Road, Xihu District, Hangzhou, Zhejiang, 310030, China; Institute of Advanced Technology, Westlake Institute for Advanced Study, 18 Shilongshan Street, Xihu District, Hangzhou, Zhejiang, 310024, China
| | - Md Belal Bin Heyat
- CenBRAIN Neurotech, School of Engineering, Westlake University, 600 Dunyu Road, Xihu District, Hangzhou, Zhejiang, 310030, China; Institute of Advanced Technology, Westlake Institute for Advanced Study, 18 Shilongshan Street, Xihu District, Hangzhou, Zhejiang, 310024, China
| | - Yifan Li
- Faculty of Engineering, University of Bristol, Bristol, BS8 1QU, United Kingdom
| | - Dingbo Yang
- Department of Neurosurgery, Affiliated Hangzhou First People's Hospital, Westlake University School of Medicine, Hangzhou, 310000, China; Department of Neurosurgery, Nanjing Medical University Affiliated Hangzhou Hospital, Hangzhou First People's Hospital, Hangzhou, 310000, China
| | - Yun-Hsuan Chen
- CenBRAIN Neurotech, School of Engineering, Westlake University, 600 Dunyu Road, Xihu District, Hangzhou, Zhejiang, 310030, China; Institute of Advanced Technology, Westlake Institute for Advanced Study, 18 Shilongshan Street, Xihu District, Hangzhou, Zhejiang, 310024, China.
| | - Mohamad Sawan
- CenBRAIN Neurotech, School of Engineering, Westlake University, 600 Dunyu Road, Xihu District, Hangzhou, Zhejiang, 310030, China; Institute of Advanced Technology, Westlake Institute for Advanced Study, 18 Shilongshan Street, Xihu District, Hangzhou, Zhejiang, 310024, China.
| |
Collapse
|
2
|
Hussain SAH, Raza I, Hussain SA, Jamal MH, Gulrez T, Zia A. A mental state aware brain computer interface for adaptive control of electric powered wheelchair. Sci Rep 2025; 15:9880. [PMID: 40118966 PMCID: PMC11928582 DOI: 10.1038/s41598-024-82252-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Accepted: 12/03/2024] [Indexed: 03/24/2025] Open
Abstract
Brain-computer interfaces (BCI) provide a mobility solution for patients with various disabilities. However, BCI systems require further research to enhance their performance while incorporating the physical and behavioral states of patients into the system. As the principal users of a BCI system, patients with disabilities are emotionally sensitive, so a BCI device that adaptively adjusts to the psychological effects of the patient could provide the foundation for refining BCI applications. This paper focuses on the collection and realization of human electroencephalogram (EEG) signals data, obtained as a response to different psychological effects of sound stimuli. Filtration and pre-processing of the data set are achieved using the frequency-based distribution of EEG signals. Different machine learning tools and techniques are evaluated and applied to abstracted powerbands of psychological signals. The experimental results show that the proposed system predicts mental states with an average accuracy of 74.26%. In addition, an automated BCI system is developed to control an electric wheelchair (EPW) while responding to the mental state of the user with a contingency mechanism. The results show that such a system could be designed to make BCI systems more reliable, safe, adaptable, and responsive to emotions for sensitive paralytic patients. The system also shows a satisfactory True Positive Rate (TPR) and False Positive Rate (FPR) with an average time of 8.4 s to generate the interpretable brain signal from the user.
Collapse
Affiliation(s)
- Syed Abu Huraira Hussain
- Department of Technology Management, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
- Department of Computer Science, COMSATS University Islamabad, Lahore Campus, Lahore, 54000, Pakistan
| | - Imran Raza
- Department of Computer Science, COMSATS University Islamabad, Lahore Campus, Lahore, 54000, Pakistan
| | - Syed Asad Hussain
- Department of Computer Science, COMSATS University Islamabad, Lahore Campus, Lahore, 54000, Pakistan
| | - Muhammad Hasan Jamal
- Department of Computer Science, COMSATS University Islamabad, Lahore Campus, Lahore, 54000, Pakistan
| | - Tauseef Gulrez
- Faculty of Health Sciences, Curtin University, Perth, Australia
| | - Ali Zia
- The Australian National University, Canberra, Australia.
- School of Computing, Engineering and Mathematical Sciences, La Trobe Uniersity, Melbourne, Australia.
| |
Collapse
|
3
|
Liu K, Yang T, Yu Z, Yi W, Yu H, Wang G, Wu W. MSVTNet: Multi-Scale Vision Transformer Neural Network for EEG-Based Motor Imagery Decoding. IEEE J Biomed Health Inform 2024; 28:7126-7137. [PMID: 39190517 DOI: 10.1109/jbhi.2024.3450753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/29/2024]
Abstract
OBJECT Transformer-based neural networks have been applied to the electroencephalography (EEG) decoding for motor imagery (MI). However, most networks focus on applying the self-attention mechanism to extract global temporal information, while the cross-frequency coupling features between different frequencies have been neglected. Additionally, effectively integrating different neural networks poses challenges for the advanced design of decoding algorithms. METHODS This study proposes a novel end-to-end Multi-Scale Vision Transformer Neural Network (MSVTNet) for MI-EEG classification. MSVTNet first extracts local spatio-temporal features at different filtered scales through convolutional neural networks (CNNs). Then, these features are concatenated along the feature dimension to form local multi-scale spatio-temporal feature tokens. Finally, Transformers are utilized to capture cross-scale interaction information and global temporal correlations, providing more distinguishable feature embeddings for classification. Moreover, auxiliary branch loss is leveraged for intermediate supervision to ensure the effective integration of CNNs and Transformers. RESULTS The performance of MSVTNet was assessed through subject-dependent (session-dependent and session-independent) and subject-independent experiments on three MI datasets, i.e., the BCI competition IV 2a, 2b and OpenBMI datasets. The experimental results demonstrate that MSVTNet achieves state-of-the-art performance in all analyses. CONCLUSION MSVTNet shows superiority and robustness in enhancing MI decoding performance.
Collapse
|
4
|
Zhang J, Li J, Huang Z, Huang D, Yu H, Li Z. Recent Progress in Wearable Brain-Computer Interface (BCI) Devices Based on Electroencephalogram (EEG) for Medical Applications: A Review. HEALTH DATA SCIENCE 2023; 3:0096. [PMID: 38487198 PMCID: PMC10880169 DOI: 10.34133/hds.0096] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 10/19/2023] [Indexed: 03/17/2024]
Abstract
Importance: Brain-computer interface (BCI) decodes and converts brain signals into machine instructions to interoperate with the external world. However, limited by the implantation risks of invasive BCIs and the operational complexity of conventional noninvasive BCIs, applications of BCIs are mainly used in laboratory or clinical environments, which are not conducive to the daily use of BCI devices. With the increasing demand for intelligent medical care, the development of wearable BCI systems is necessary. Highlights: Based on the scalp-electroencephalogram (EEG), forehead-EEG, and ear-EEG, the state-of-the-art wearable BCI devices for disease management and patient assistance are reviewed. This paper focuses on the EEG acquisition equipment of the novel wearable BCI devices and summarizes the development direction of wearable EEG-based BCI devices. Conclusions: BCI devices play an essential role in the medical field. This review briefly summarizes novel wearable EEG-based BCIs applied in the medical field and the latest progress in related technologies, emphasizing its potential to help doctors, patients, and caregivers better understand and utilize BCI devices.
Collapse
Affiliation(s)
- Jiayan Zhang
- Beijing Advanced Innovation Center for Integrated Circuits, Beijing, China
- National Key Laboratory of Advanced Micro and Nano Manufacture Technology, School of Integrated Circuits,
Peking University, Beijing, China
| | - Junshi Li
- Beijing Advanced Innovation Center for Integrated Circuits, Beijing, China
- National Key Laboratory of Advanced Micro and Nano Manufacture Technology, School of Integrated Circuits,
Peking University, Beijing, China
| | - Zhe Huang
- Beijing Advanced Innovation Center for Integrated Circuits, Beijing, China
- National Key Laboratory of Advanced Micro and Nano Manufacture Technology, School of Integrated Circuits,
Peking University, Beijing, China
- Shenzhen Graduate School,
Peking University, Shenzhen, China
| | - Dong Huang
- Beijing Advanced Innovation Center for Integrated Circuits, Beijing, China
- National Key Laboratory of Advanced Micro and Nano Manufacture Technology, School of Integrated Circuits,
Peking University, Beijing, China
- School of Electronics,
Peking University, Beijing, China
| | - Huaiqiang Yu
- Sichuan Institute of Piezoelectric and Acousto-optic Technology, Chongqing, China
| | - Zhihong Li
- Beijing Advanced Innovation Center for Integrated Circuits, Beijing, China
- National Key Laboratory of Advanced Micro and Nano Manufacture Technology, School of Integrated Circuits,
Peking University, Beijing, China
| |
Collapse
|
5
|
Chowdhury RR, Muhammad Y, Adeel U. Enhancing Cross-Subject Motor Imagery Classification in EEG-Based Brain-Computer Interfaces by Using Multi-Branch CNN. SENSORS (BASEL, SWITZERLAND) 2023; 23:7908. [PMID: 37765965 PMCID: PMC10536894 DOI: 10.3390/s23187908] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 08/23/2023] [Accepted: 09/11/2023] [Indexed: 09/29/2023]
Abstract
A brain-computer interface (BCI) is a computer-based system that allows for communication between the brain and the outer world, enabling users to interact with computers using neural activity. This brain signal is obtained from electroencephalogram (EEG) signals. A significant obstacle to the development of BCIs based on EEG is the classification of subject-independent motor imagery data since EEG data are very individualized. Deep learning techniques such as the convolutional neural network (CNN) have illustrated their influence on feature extraction to increase classification accuracy. In this paper, we present a multi-branch (five branches) 2D convolutional neural network that employs several hyperparameters for every branch. The proposed model achieved promising results for cross-subject classification and outperformed EEGNet, ShallowConvNet, DeepConvNet, MMCNN, and EEGNet_Fusion on three public datasets. Our proposed model, EEGNet Fusion V2, achieves 89.6% and 87.8% accuracy for the actual and imagined motor activity of the eegmmidb dataset and scores of 74.3% and 84.1% for the BCI IV-2a and IV-2b datasets, respectively. However, the proposed model has a bit higher computational cost, i.e., it takes around 3.5 times more computational time per sample than EEGNet_Fusion.
Collapse
Affiliation(s)
- Radia Rayan Chowdhury
- Department of Computing & Games, School of Computing, Engineering & Digital Technologies, Teesside University, Middlesbrough TS1 3BX, UK
| | - Yar Muhammad
- Department of Computing & Games, School of Computing, Engineering & Digital Technologies, Teesside University, Middlesbrough TS1 3BX, UK
- Department of Computer Science, School of Physics, Engineering & Computer Science, University of Hertfordshire, Hatfield AL10 9AB, UK
| | - Usman Adeel
- Department of Computing & Games, School of Computing, Engineering & Digital Technologies, Teesside University, Middlesbrough TS1 3BX, UK
| |
Collapse
|
6
|
Velasco I, Sipols A, De Blas CS, Pastor L, Bayona S. Motor imagery EEG signal classification with a multivariate time series approach. Biomed Eng Online 2023; 22:29. [PMID: 36959601 PMCID: PMC10035287 DOI: 10.1186/s12938-023-01079-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 02/10/2023] [Indexed: 03/25/2023] Open
Abstract
BACKGROUND Electroencephalogram (EEG) signals record electrical activity on the scalp. Measured signals, especially EEG motor imagery signals, are often inconsistent or distorted, which compromises their classification accuracy. Achieving a reliable classification of motor imagery EEG signals opens the door to possibilities such as the assessment of consciousness, brain computer interfaces or diagnostic tools. We seek a method that works with a reduced number of variables, in order to avoid overfitting and to improve interpretability. This work aims to enhance EEG signal classification accuracy by using methods based on time series analysis. Previous work on this line, usually took a univariate approach, thus losing the possibility to take advantage of the correlation information existing within the time series provided by the different electrodes. To overcome this problem, we propose a multivariate approach that can fully capture the relationships among the different time series included in the EEG data. To perform the multivariate time series analysis, we use a multi-resolution analysis approach based on the discrete wavelet transform, together with a stepwise discriminant that selects the most discriminant variables provided by the discrete wavelet transform analysis RESULTS: Applying this methodology to EEG data to differentiate between the motor imagery tasks of moving either hands or feet has yielded very good classification results, achieving in some cases up to 100% of accuracy for this 2-class pre-processed dataset. Besides, the fact that these results were achieved using a reduced number of variables (55 out of 22,176) can shed light on the relevance and impact of those variables. CONCLUSIONS This work has a potentially large impact, as it enables classification of EEG data based on multivariate time series analysis in an interpretable way with high accuracy. The method allows a model with a reduced number of features, facilitating its interpretability and improving overfitting. Future work will extend the application of this classification method to help in diagnosis procedures for detecting brain pathologies and for its use in brain computer interfaces. In addition, the results presented here suggest that this method could be applied to other fields for the successful analysis of multivariate temporal data.
Collapse
Affiliation(s)
- I Velasco
- Department of Computer Science and Statistics, Rey Juan Carlos University, Madrid, Spain.
| | - A Sipols
- Department of Applied Mathematics, Science and Engineering of Materials and Electronic Technology, Rey Juan Carlos University, Madrid, Spain
| | - C Simon De Blas
- Department of Computer Science and Statistics, Rey Juan Carlos University, Madrid, Spain
| | - L Pastor
- Department of Computer Science and Statistics, Rey Juan Carlos University, Madrid, Spain
- Center for Computational Simulation, Universidad Politecnica de Madrid, Madrid, Spain
| | - S Bayona
- Department of Computer Science and Statistics, Rey Juan Carlos University, Madrid, Spain
- Center for Computational Simulation, Universidad Politecnica de Madrid, Madrid, Spain
| |
Collapse
|
7
|
Kansal S, Garg D, Upadhyay A, Mittal S, Talwar GS. A novel deep learning approach to predict subject arm movements from EEG-based signals. Neural Comput Appl 2023. [DOI: 10.1007/s00521-023-08310-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
8
|
Havaei P, Zekri M, Mahmoudzadeh E, Rabbani H. An efficient deep learning framework for P300 evoked related potential detection in EEG signal. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2023; 229:107324. [PMID: 36586179 DOI: 10.1016/j.cmpb.2022.107324] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 11/20/2022] [Accepted: 12/22/2022] [Indexed: 06/17/2023]
Abstract
BACKGROUND Incorporating the time-frequency localization properties of Gabor transform (GT), the complexity understandings of convolutional neural network (CNN), and histogram of oriented gradients (HOG) efficacy in distinguishing positive peaks can exhibit their characteristics to reveal an effective solution in the detection of P300 evoked related potential (ERP). By applying a drastic number of convolutional layers, the majority of deep networks elicit sufficient properties for the output determination, leading to gigantic and time-consuming structures. In this paper, we propose a novel deep learning framework by the combination of tuned GT, and modified HOG with the CNN as "TGT-MHOG-CNN" for detection of P300 ERP in EEG signal. METHOD In the proposed method, GT is tuned based on triangular function for EEG signals, and then spectrograms including time-frequency information are captured. The function's parameters are justified to differentiate the signals with the P300 component. Furthermore, HOG is modified (MHOG) for the 2-D EEG signal, and consequently, gradients patterns are extracted for the target potentials. MHOG is potent in distinguishing the positive peak in the general waveform; however, GT unravels time-frequency information, which is ignored in the gradient histogram. These outputs of GT and MHOG do not share the same nature in the images nor overlap. Therefore, more extensive information is reached without redundancy or excessive information by fusing them. Combining GT and MHOG provides different patterns which benefit CNN for more precise detection. Consequently, TGT-MHOG-CNN ends in a more straightforward structure than other networks, and therefore, the whole performance is acceptable with faster rates and very high accuracy. RESULTS BCI Competition II and III datasets are used to evaluate the performance of the proposed method. These datasets include a complete record for P300 ERP with BCI2000 using a paradigm, and it has numerous noises, including power and muscle-based noises. The objective is to predict the correct character in each provided character selection epochs. Compared to state-of-the-art methods, simulation results indicate striking abilities of the proposed framework for P300 ERP detection. Our best record reached the P300 ERP classification rates of over 98.7% accuracy and 98.7% precision for BCI Competition II and 99% accuracy and 100% precision for BCI Competition III datasets, with superiority in execution time for the mentioned datasets.
Collapse
Affiliation(s)
- Pedram Havaei
- Department of Electrical and Computer Engineering, Isfahan University of Technology, Isfahan 84156-83111, Iran; Medical Image and Signal Processing Research Center, Isfahan University of Medical Sciences, Isfahan, Iran.
| | - Maryam Zekri
- Department of Electrical and Computer Engineering, Isfahan University of Technology, Isfahan 84156-83111, Iran; Medical Image and Signal Processing Research Center, Isfahan University of Medical Sciences, Isfahan, Iran.
| | - Elham Mahmoudzadeh
- Department of Electrical and Computer Engineering, Isfahan University of Technology, Isfahan 84156-83111, Iran.
| | - Hossein Rabbani
- Medical Image and Signal Processing Research Center, Isfahan University of Medical Sciences, Isfahan, Iran; School of Advanced Technologies In Medicine, Isfahan University of Medical Sciences, Isfahan, Iran.
| |
Collapse
|
9
|
Hossain KM, Islam MA, Hossain S, Nijholt A, Ahad MAR. Status of deep learning for EEG-based brain-computer interface applications. Front Comput Neurosci 2023; 16:1006763. [PMID: 36726556 PMCID: PMC9885375 DOI: 10.3389/fncom.2022.1006763] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 12/23/2022] [Indexed: 01/18/2023] Open
Abstract
In the previous decade, breakthroughs in the central nervous system bioinformatics and computational innovation have prompted significant developments in brain-computer interface (BCI), elevating it to the forefront of applied science and research. BCI revitalization enables neurorehabilitation strategies for physically disabled patients (e.g., disabled patients and hemiplegia) and patients with brain injury (e.g., patients with stroke). Different methods have been developed for electroencephalogram (EEG)-based BCI applications. Due to the lack of a large set of EEG data, methods using matrix factorization and machine learning were the most popular. However, things have changed recently because a number of large, high-quality EEG datasets are now being made public and used in deep learning-based BCI applications. On the other hand, deep learning is demonstrating great prospects for solving complex relevant tasks such as motor imagery classification, epileptic seizure detection, and driver attention recognition using EEG data. Researchers are doing a lot of work on deep learning-based approaches in the BCI field right now. Moreover, there is a great demand for a study that emphasizes only deep learning models for EEG-based BCI applications. Therefore, we introduce this study to the recent proposed deep learning-based approaches in BCI using EEG data (from 2017 to 2022). The main differences, such as merits, drawbacks, and applications are introduced. Furthermore, we point out current challenges and the directions for future studies. We argue that this review study will help the EEG research community in their future research.
Collapse
Affiliation(s)
- Khondoker Murad Hossain
- Department of Computer Science and Electrical Engineering, University of Maryland Baltimore County, Baltimore, MD, United States
| | - Md. Ariful Islam
- Department of Robotics and Mechatronics Engineering, University of Dhaka, Dhaka, Bangladesh
| | | | - Anton Nijholt
- Human Media Interaction, University of Twente, Enschede, Netherlands
| | - Md Atiqur Rahman Ahad
- Department of Computer Science and Digital Technology, University of East London, London, United Kingdom,*Correspondence: Md Atiqur Rahman Ahad ✉
| |
Collapse
|
10
|
Moly A, Aksenov A, Martel F, Aksenova T. Online adaptive group-wise sparse Penalized Recursive Exponentially Weighted N-way Partial Least Square for epidural intracranial BCI. Front Hum Neurosci 2023; 17:1075666. [PMID: 36950147 PMCID: PMC10025377 DOI: 10.3389/fnhum.2023.1075666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 02/03/2023] [Indexed: 03/08/2023] Open
Abstract
Introduction Motor Brain-Computer Interfaces (BCIs) create new communication pathways between the brain and external effectors for patients with severe motor impairments. Control of complex effectors such as robotic arms or exoskeletons is generally based on the real-time decoding of high-resolution neural signals. However, high-dimensional and noisy brain signals pose challenges, such as limitations in the generalization ability of the decoding model and increased computational demands. Methods The use of sparse decoders may offer a way to address these challenges. A sparsity-promoting penalization is a common approach to obtaining a sparse solution. BCI features are naturally structured and grouped according to spatial (electrodes), frequency, and temporal dimensions. Applying group-wise sparsity, where the coefficients of a group are set to zero simultaneously, has the potential to decrease computational time and memory usage, as well as simplify data transfer. Additionally, online closed-loop decoder adaptation (CLDA) is known to be an efficient procedure for BCI decoder training, taking into account neuronal feedback. In this study, we propose a new algorithm for online closed-loop training of group-wise sparse multilinear decoders using L p -Penalized Recursive Exponentially Weighted N-way Partial Least Square (PREW-NPLS). Three types of sparsity-promoting penalization were explored using L p with p = 0., 0.5, and 1. Results The algorithms were tested offline in a pseudo-online manner for features grouped by spatial dimension. A comparison study was conducted using an epidural ECoG dataset recorded from a tetraplegic individual during long-term BCI experiments for controlling a virtual avatar (left/right-hand 3D translation). Novel algorithms showed comparable or better decoding performance than conventional REW-NPLS, which was achieved with sparse models. The proposed algorithms are compatible with real-time CLDA. Discussion The proposed algorithm demonstrated good performance while drastically reducing the computational load and the memory consumption. However, the current study is limited to offline computation on data recorded with a single patient, with penalization restricted to the spatial domain only.
Collapse
Affiliation(s)
- Alexandre Moly
- Université Grenoble Alpes, CEA, LETI, Clinatec, Grenoble, France
| | | | - Félix Martel
- Université Grenoble Alpes, CEA, LETI, Clinatec, Grenoble, France
| | - Tetiana Aksenova
- Université Grenoble Alpes, CEA, LETI, Clinatec, Grenoble, France
- *Correspondence: Tetiana Aksenova
| |
Collapse
|
11
|
Abstract
In brain–computer interfaces (BCIs), it is crucial to process brain signals to improve the accuracy of the classification of motor movements. Machine learning (ML) algorithms such as artificial neural networks (ANNs), linear discriminant analysis (LDA), decision tree (D.T.), K-nearest neighbor (KNN), naive Bayes (N.B.), and support vector machine (SVM) have made significant progress in classification issues. This paper aims to present a signal processing analysis of electroencephalographic (EEG) signals among different feature extraction techniques to train selected classification algorithms to classify signals related to motor movements. The motor movements considered are related to the left hand, right hand, both fists, feet, and relaxation, making this a multiclass problem. In this study, nine ML algorithms were trained with a dataset created by the feature extraction of EEG signals.The EEG signals of 30 Physionet subjects were used to create a dataset related to movement. We used electrodes C3, C1, CZ, C2, and C4 according to the standard 10-10 placement. Then, we extracted the epochs of the EEG signals and applied tone, amplitude levels, and statistical techniques to obtain the set of features. LabVIEW™2015 version custom applications were used for reading the EEG signals; for channel selection, noise filtering, band selection, and feature extraction operations; and for creating the dataset. MATLAB 2021a was used for training, testing, and evaluating the performance metrics of the ML algorithms. In this study, the model of Medium-ANN achieved the best performance, with an AUC average of 0.9998, Cohen’s Kappa coefficient of 0.9552, a Matthews correlation coefficient of 0.9819, and a loss of 0.0147. These findings suggest the applicability of our approach to different scenarios, such as implementing robotic prostheses, where the use of superficial features is an acceptable option when resources are limited, as in embedded systems or edge computing devices.
Collapse
|
12
|
Manual 3D Control of an Assistive Robotic Manipulator Using Alpha Rhythms and an Auditory Menu: A Proof-of-Concept. SIGNALS 2022. [DOI: 10.3390/signals3020024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Brain–Computer Interfaces (BCIs) have been regarded as potential tools for individuals with severe motor disabilities, such as those with amyotrophic lateral sclerosis, that render interfaces that rely on movement unusable. This study aims to develop a dependent BCI system for manual end-point control of a robotic arm. A proof-of-concept system was devised using parieto-occipital alpha wave modulation and a cyclic menu with auditory cues. Users choose a movement to be executed and asynchronously stop said action when necessary. Tolerance intervals allowed users to cancel or confirm actions. Eight able-bodied subjects used the system to perform a pick-and-place task. To investigate the potential learning effects, the experiment was conducted twice over the course of two consecutive days. Subjects obtained satisfactory completion rates (84.0 ± 15.0% and 74.4 ± 34.5% for the first and second day, respectively) and high path efficiency (88.9 ± 11.7% and 92.2 ± 9.6%). Subjects took on average 439.7 ± 203.3 s to complete each task, but the robot was only in motion 10% of the time. There was no significant difference in performance between both days. The developed control scheme provided users with intuitive control, but a considerable amount of time is spent waiting for the right target (auditory cue). Implementing other brain signals may increase its speed.
Collapse
|
13
|
A Brain-Computer Interface for Teleoperation of a Semiautonomous Mobile Robotic Assistive System Using SLAM. JOURNAL OF ROBOTICS 2022. [DOI: 10.1155/2022/6178917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The proposed assistive hybrid brain-computer interface (BCI) semiautonomous mobile robotic arm demonstrates a design that is (1) adaptable by observing environmental changes with sensors and deploying alternate solutions and (2) versatile by receiving commands from the user’s brainwave signals through a noninvasive electroencephalogram cap. Composed of three integrated subsystems, a hybrid BCI controller, an omnidirectional mobile base, and a robotic arm, the proposed robot has commands mapped to the user’s brainwaves related to a set of specific physical or mental tasks. The implementation of sensors and the camera systems enable both the mobile base and the arm to be semiautonomous. The mobile base’s SLAM algorithm has obstacle avoidance capability and path planning to assist the robot maneuver safely. The robot arm calculates and deploys the necessary joint movement to pick up or drop off a desired object selected by the user via a brainwave controlled cursor on a camera feed. Validation, testing, and implementation of the subsystems were conducted using Gazebo. Communication between the BCI controller and the subsystems is tested independently. A loop of prerecorded brainwave data related to each specific task is used to ensure that the mobile base command is executed; the same prerecorded file is used to move the robot arm cursor and initiate a pick-up or drop-off action. A final system test is conducted where the BCI controller input moves the cursor and selects a goal point. Successful virtual demonstrations of the assistive robotic arm show the feasibility of restoring movement capability and autonomy for a disabled user.
Collapse
|
14
|
Jang JW, Kang YN, Seo HW, Kim B, Choe HK, Park SH, Lee MG, Kim S. Long-term in-vivorecording performance of flexible penetrating microelectrode arrays. J Neural Eng 2021; 18. [PMID: 34795067 DOI: 10.1088/1741-2552/ac3656] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 11/02/2021] [Indexed: 11/12/2022]
Abstract
Objective. Neural interfaces are an essential tool to enable the human body to directly communicate with machines such as computers or prosthetic robotic arms. Since invasive electrodes can be located closer to target neurons, they have advantages such as precision in stimulation and high signal-to-noise ratio (SNR) in recording, while they often exhibit unstable performance in long-termin-vivoimplantation because of the tissue damage caused by the electrodes insertion. In the present study, we investigated the electrical functionality of flexible penetrating microelectrode arrays (FPMAs) up to 3 months inin-vivoconditions.Approach. Thein-vivoexperiment was performed by implanting FPMAs in five rats. Thein-vivoimpedance as well as the action potential (AP) amplitude and SNR were analyzed over weeks. Additionally, APs were tracked over time to investigate the possibility of single neuron recording.Main results. It was observed that the FPMAs exhibited dramatic increases in impedance for the first 4 weeks after implantation, accompanied by decreases in AP amplitude. However, the increase/decrease in AP amplitude was always accompanied by the increase/decrease in background noise, resulting in quite consistently maintained SNRs. After 4 weeks of implantation, we observed two distinctive issues regarding long-term implantation, each caused by chronic tissue responses or by the delamination of insulation layer. The results demonstrate that the FPMAs successfully recorded neuronal signals up to 12 weeks, with very stably maintained SNRs, reduced by only 16.1% on average compared to the first recordings, although biological tissue reactions or physical degradation of the FPMA were present.Significance. The fabricated FPMAs successfully recorded intracortical signals for 3 months. The SNR was maintained up to 3 months and the chronic function of FPMA was comparable with other silicon based implantable electrodes.
Collapse
Affiliation(s)
- Jae-Won Jang
- Department of Robotics Engineering, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, Republic of Korea
| | - Yoo Na Kang
- Department of Medical Assistant Robot, Korea Institute of Machinery and Materials (KIMM), Daegu, Republic of Korea
| | - Hee Won Seo
- Department of Robotics Engineering, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, Republic of Korea
| | - Boil Kim
- Department of Brain and Cognitive Sciences, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, Republic of Korea
| | - Han Kyoung Choe
- Department of Brain and Cognitive Sciences, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, Republic of Korea
| | - Sang Hyun Park
- Department of Robotics Engineering, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, Republic of Korea
| | - Maan-Gee Lee
- Department of Pharmacology, School of MedicineKyungpook National University, Daegu, Republic of Korea.,Brain Science and Engineering Institute, Kyungpook National University, Daegu, Republic of Korea
| | - Sohee Kim
- Department of Robotics Engineering, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, Republic of Korea
| |
Collapse
|
15
|
Mridha MF, Das SC, Kabir MM, Lima AA, Islam MR, Watanobe Y. Brain-Computer Interface: Advancement and Challenges. SENSORS 2021; 21:s21175746. [PMID: 34502636 PMCID: PMC8433803 DOI: 10.3390/s21175746] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Revised: 08/15/2021] [Accepted: 08/20/2021] [Indexed: 02/04/2023]
Abstract
Brain-Computer Interface (BCI) is an advanced and multidisciplinary active research domain based on neuroscience, signal processing, biomedical sensors, hardware, etc. Since the last decades, several groundbreaking research has been conducted in this domain. Still, no comprehensive review that covers the BCI domain completely has been conducted yet. Hence, a comprehensive overview of the BCI domain is presented in this study. This study covers several applications of BCI and upholds the significance of this domain. Then, each element of BCI systems, including techniques, datasets, feature extraction methods, evaluation measurement matrices, existing BCI algorithms, and classifiers, are explained concisely. In addition, a brief overview of the technologies or hardware, mostly sensors used in BCI, is appended. Finally, the paper investigates several unsolved challenges of the BCI and explains them with possible solutions.
Collapse
Affiliation(s)
- M. F. Mridha
- Department of Computer Science and Engineering, Bangladesh University of Business and Technology, Dhaka 1216, Bangladesh; (M.F.M.); (S.C.D.); (M.M.K.); (A.A.L.)
| | - Sujoy Chandra Das
- Department of Computer Science and Engineering, Bangladesh University of Business and Technology, Dhaka 1216, Bangladesh; (M.F.M.); (S.C.D.); (M.M.K.); (A.A.L.)
| | - Muhammad Mohsin Kabir
- Department of Computer Science and Engineering, Bangladesh University of Business and Technology, Dhaka 1216, Bangladesh; (M.F.M.); (S.C.D.); (M.M.K.); (A.A.L.)
| | - Aklima Akter Lima
- Department of Computer Science and Engineering, Bangladesh University of Business and Technology, Dhaka 1216, Bangladesh; (M.F.M.); (S.C.D.); (M.M.K.); (A.A.L.)
| | - Md. Rashedul Islam
- Department of Computer Science and Engineering, University of Asia Pacific, Dhaka 1216, Bangladesh
- Correspondence:
| | - Yutaka Watanobe
- Department of Computer Science and Engineering, University of Aizu, Aizu-Wakamatsu 965-8580, Japan;
| |
Collapse
|
16
|
Tensor-based dynamic brain functional network for motor imagery classification. Biomed Signal Process Control 2021. [DOI: 10.1016/j.bspc.2021.102940] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
17
|
Jamil N, Belkacem AN, Ouhbi S, Lakas A. Noninvasive Electroencephalography Equipment for Assistive, Adaptive, and Rehabilitative Brain-Computer Interfaces: A Systematic Literature Review. SENSORS (BASEL, SWITZERLAND) 2021; 21:4754. [PMID: 34300492 PMCID: PMC8309653 DOI: 10.3390/s21144754] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Revised: 06/28/2021] [Accepted: 07/09/2021] [Indexed: 11/30/2022]
Abstract
Humans interact with computers through various devices. Such interactions may not require any physical movement, thus aiding people with severe motor disabilities in communicating with external devices. The brain-computer interface (BCI) has turned into a field involving new elements for assistive and rehabilitative technologies. This systematic literature review (SLR) aims to help BCI investigator and investors to decide which devices to select or which studies to support based on the current market examination. This examination of noninvasive EEG devices is based on published BCI studies in different research areas. In this SLR, the research area of noninvasive BCIs using electroencephalography (EEG) was analyzed by examining the types of equipment used for assistive, adaptive, and rehabilitative BCIs. For this SLR, candidate studies were selected from the IEEE digital library, PubMed, Scopus, and ScienceDirect. The inclusion criteria (IC) were limited to studies focusing on applications and devices of the BCI technology. The data used herein were selected using IC and exclusion criteria to ensure quality assessment. The selected articles were divided into four main research areas: education, engineering, entertainment, and medicine. Overall, 238 papers were selected based on IC. Moreover, 28 companies were identified that developed wired and wireless equipment as means of BCI assistive technology. The findings of this review indicate that the implications of using BCIs for assistive, adaptive, and rehabilitative technologies are encouraging for people with severe motor disabilities and healthy people. With an increasing number of healthy people using BCIs, other research areas, such as the motivation of players when participating in games or the security of soldiers when observing certain areas, can be studied and collaborated using the BCI technology. However, such BCI systems must be simple (wearable), convenient (sensor fabrics and self-adjusting abilities), and inexpensive.
Collapse
Affiliation(s)
- Nuraini Jamil
- Department of Computer Science and Software Engineering, College of Information Technology, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates; (N.J.); (S.O.)
| | - Abdelkader Nasreddine Belkacem
- Department of Computer and Network Engineering, College of Information Technology, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates;
| | - Sofia Ouhbi
- Department of Computer Science and Software Engineering, College of Information Technology, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates; (N.J.); (S.O.)
| | - Abderrahmane Lakas
- Department of Computer and Network Engineering, College of Information Technology, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates;
| |
Collapse
|
18
|
|
19
|
Roy G, Bhoi A, Bhaumik S. A Comparative Approach for MI-Based EEG Signals Classification Using Energy, Power and Entropy. Ing Rech Biomed 2021. [DOI: 10.1016/j.irbm.2021.02.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
20
|
Baniqued PDE, Stanyer EC, Awais M, Alazmani A, Jackson AE, Mon-Williams MA, Mushtaq F, Holt RJ. Brain-computer interface robotics for hand rehabilitation after stroke: a systematic review. J Neuroeng Rehabil 2021; 18:15. [PMID: 33485365 PMCID: PMC7825186 DOI: 10.1186/s12984-021-00820-8] [Citation(s) in RCA: 83] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Accepted: 01/12/2021] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Hand rehabilitation is core to helping stroke survivors regain activities of daily living. Recent studies have suggested that the use of electroencephalography-based brain-computer interfaces (BCI) can promote this process. Here, we report the first systematic examination of the literature on the use of BCI-robot systems for the rehabilitation of fine motor skills associated with hand movement and profile these systems from a technical and clinical perspective. METHODS A search for January 2010-October 2019 articles using Ovid MEDLINE, Embase, PEDro, PsycINFO, IEEE Xplore and Cochrane Library databases was performed. The selection criteria included BCI-hand robotic systems for rehabilitation at different stages of development involving tests on healthy participants or people who have had a stroke. Data fields include those related to study design, participant characteristics, technical specifications of the system, and clinical outcome measures. RESULTS 30 studies were identified as eligible for qualitative review and among these, 11 studies involved testing a BCI-hand robot on chronic and subacute stroke patients. Statistically significant improvements in motor assessment scores relative to controls were observed for three BCI-hand robot interventions. The degree of robot control for the majority of studies was limited to triggering the device to perform grasping or pinching movements using motor imagery. Most employed a combination of kinaesthetic and visual response via the robotic device and display screen, respectively, to match feedback to motor imagery. CONCLUSION 19 out of 30 studies on BCI-robotic systems for hand rehabilitation report systems at prototype or pre-clinical stages of development. We identified large heterogeneity in reporting and emphasise the need to develop a standard protocol for assessing technical and clinical outcomes so that the necessary evidence base on efficiency and efficacy can be developed.
Collapse
Affiliation(s)
| | - Emily C Stanyer
- School of Psychology, University of Leeds, Leeds, LS2 9JZ, UK
| | - Muhammad Awais
- School of Psychology, University of Leeds, Leeds, LS2 9JZ, UK
| | - Ali Alazmani
- School of Mechanical Engineering, University of Leeds, Leeds, LS2 9JT, UK
| | - Andrew E Jackson
- School of Mechanical Engineering, University of Leeds, Leeds, LS2 9JT, UK
| | | | - Faisal Mushtaq
- School of Psychology, University of Leeds, Leeds, LS2 9JZ, UK.
| | - Raymond J Holt
- School of Mechanical Engineering, University of Leeds, Leeds, LS2 9JT, UK
| |
Collapse
|
21
|
Rashid M, Sulaiman N, P P Abdul Majeed A, Musa RM, Ab Nasir AF, Bari BS, Khatun S. Current Status, Challenges, and Possible Solutions of EEG-Based Brain-Computer Interface: A Comprehensive Review. Front Neurorobot 2020; 14:25. [PMID: 32581758 PMCID: PMC7283463 DOI: 10.3389/fnbot.2020.00025] [Citation(s) in RCA: 144] [Impact Index Per Article: 28.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Accepted: 04/08/2020] [Indexed: 12/12/2022] Open
Abstract
Brain-Computer Interface (BCI), in essence, aims at controlling different assistive devices through the utilization of brain waves. It is worth noting that the application of BCI is not limited to medical applications, and hence, the research in this field has gained due attention. Moreover, the significant number of related publications over the past two decades further indicates the consistent improvements and breakthroughs that have been made in this particular field. Nonetheless, it is also worth mentioning that with these improvements, new challenges are constantly discovered. This article provides a comprehensive review of the state-of-the-art of a complete BCI system. First, a brief overview of electroencephalogram (EEG)-based BCI systems is given. Secondly, a considerable number of popular BCI applications are reviewed in terms of electrophysiological control signals, feature extraction, classification algorithms, and performance evaluation metrics. Finally, the challenges to the recent BCI systems are discussed, and possible solutions to mitigate the issues are recommended.
Collapse
Affiliation(s)
- Mamunur Rashid
- Faculty of Electrical & Electronics Engineering Technology, Universiti Malaysia Pahang, Pekan, Malaysia
| | - Norizam Sulaiman
- Faculty of Electrical & Electronics Engineering Technology, Universiti Malaysia Pahang, Pekan, Malaysia
| | - Anwar P P Abdul Majeed
- Innovative Manufacturing, Mechatronics and Sports Laboratory, Faculty of Manufacturing and Mechatronic Engineering Technology, Universiti Malaysia Pahang, Pekan, Malaysia
| | - Rabiu Muazu Musa
- Centre for Fundamental and Continuing Education, Universiti Malaysia Terengganu, Kuala Nerus, Malaysia
| | - Ahmad Fakhri Ab Nasir
- Innovative Manufacturing, Mechatronics and Sports Laboratory, Faculty of Manufacturing and Mechatronic Engineering Technology, Universiti Malaysia Pahang, Pekan, Malaysia
| | - Bifta Sama Bari
- Faculty of Electrical & Electronics Engineering Technology, Universiti Malaysia Pahang, Pekan, Malaysia
| | - Sabira Khatun
- Faculty of Electrical & Electronics Engineering Technology, Universiti Malaysia Pahang, Pekan, Malaysia
| |
Collapse
|
22
|
Kundu S, Ari S. A Deep Learning Architecture for P300 Detection with Brain-Computer Interface Application. Ing Rech Biomed 2020. [DOI: 10.1016/j.irbm.2019.08.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
23
|
Abstract
Brain computer interface (BCI) adopts human brain signals to control external devices directly without using normal neural pathway. Recent study has explored many applications, such as controlling a teleoperation robot by electroencephalography (EEG) signals. However, utilizing the motor imagery EEG-based BCI to perform teleoperation for reach and grasp task still has many difficulties, especially in continuous multidimensional control of robot and tactile feedback. In this research, a motor imagery EEG-based continuous teleoperation robot control system with tactile feedback was proposed. Firstly, mental imagination of different hand movements was translated into continuous command to control the remote robotic arm to reach the hover area of the target through a wireless local area network (LAN). Then, the robotic arm automatically completed the task of grasping the target. Meanwhile, the tactile information of remote robotic gripper was detected and converted to the feedback command. Finally, the vibrotactile stimulus was supplied to users to improve their telepresence. Experimental results demonstrate the feasibility of using the motor imagery EEG acquired by wireless portable equipment to realize the continuous teleoperation robot control system to finish the reach and grasp task. The average two-dimensional continuous control success rates for online Task 1 and Task 2 of the six subjects were 78.0% ± 6.1% and 66.2% ± 6.0%, respectively. Furthermore, compared with the traditional EEG triggered robot control using the predefined trajectory, the continuous fully two-dimensional control can not only improve the teleoperation robot system’s efficiency but also give the subject a more natural control which is critical to human–machine interaction (HMI). In addition, vibrotactile stimulus can improve the operator’s telepresence and task performance.
Collapse
|
24
|
Verwulgen S, Lacko D, Justine H, Kustermans S, Moons S, Thys F, Zelck S, Vaes K, Huysmans T, Vleugels J, Truijen S. Determining Comfortable Pressure Ranges for Wearable EEG Headsets. ADVANCES IN HUMAN FACTORS IN WEARABLE TECHNOLOGIES AND GAME DESIGN 2019. [DOI: 10.1007/978-3-319-94619-1_2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|