1
|
Olšovská E, Čabanová K, Motyka O, Kryštofová HB, Matějková P, Voves J, Židlík V, Madeja R, Demel J, Halfar J, Kukutschová J. Simple method for quantification of metal-based particles in biopsy samples of patients with long bone implants - Pilot study. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2023; 103:104282. [PMID: 37769889 DOI: 10.1016/j.etap.2023.104282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 09/19/2023] [Accepted: 09/23/2023] [Indexed: 10/02/2023]
Abstract
The presence of particles fixed in tissue samples due to implant degradation or disintegration plays an important role in post-operative complications. The ability to determine the size, shape, chemical composition and, above all, the number of these particles can be used in many areas of medicine. This study presents a novel, simple metal-based particle detection method using scanning electron microscopy with energy dispersive spectrometer (SEM-EDS). The presence of metal particles in biopsy specimens from long bone nail-fixated implants (10 patients with titanium steel nails and 10 patients with stainless steel nails) was studied. The samples were analysed using automated area analysis based on image binarization and brightness to 255 grayscale. The results were supplemented with histological data and statistically analysed. The method based on the software used was found to be accurate and easy to use and, thus, appears to be very suitable for particle detection in similar samples.
Collapse
Affiliation(s)
- Eva Olšovská
- Nanotechnology Centre, CEET, VSB - Technical University of Ostrava, 17. listopadu 2172/15, Ostrava-Poruba 708 00, Czech Republic; Faculty of Material Science and Technology, Center for Advanced Innovation Technologies, VSB - Technical University of Ostrava, 17. listopadu 2172/15, Ostrava-Poruba 708 00, Czech Republic.
| | - Kristina Čabanová
- Faculty of Material Science and Technology, Center for Advanced Innovation Technologies, VSB - Technical University of Ostrava, 17. listopadu 2172/15, Ostrava-Poruba 708 00, Czech Republic; Faculty of Mining and Geology, VSB-Technical University of Ostrava, 17. listopadu 2172/15, Ostrava-Poruba 708 00, Czech Republic
| | - Oldřich Motyka
- Nanotechnology Centre, CEET, VSB - Technical University of Ostrava, 17. listopadu 2172/15, Ostrava-Poruba 708 00, Czech Republic; Faculty of Mining and Geology, VSB-Technical University of Ostrava, 17. listopadu 2172/15, Ostrava-Poruba 708 00, Czech Republic
| | - Hana Bielniková Kryštofová
- Faculty of Material Science and Technology, Center for Advanced Innovation Technologies, VSB - Technical University of Ostrava, 17. listopadu 2172/15, Ostrava-Poruba 708 00, Czech Republic; Institute of Molecular and Clinical Pathology and Medical Genetics, University Hospital Ostrava and Faculty of Medicine, 17. listopadu 1790/5, Ostrava-Poruba 708 52, Czech Republic; Institute of Emergency, Medicine Faculty of Medicine, University of Ostrava, Syllabova 19, Ostrava 703 00, Czech Republic
| | - Petra Matějková
- Faculty of Material Science and Technology, Center for Advanced Innovation Technologies, VSB - Technical University of Ostrava, 17. listopadu 2172/15, Ostrava-Poruba 708 00, Czech Republic
| | - Jiří Voves
- Department of Trauma Surgery, University Hospital Ostrava, 17. listopadu 1790/5, Ostrava-Poruba 708 52, Czech Republic; Institute of Emergency, Medicine Faculty of Medicine, University of Ostrava, Syllabova 19, Ostrava 703 00, Czech Republic
| | - Vladimír Židlík
- Institute of Molecular and Clinical Pathology and Medical Genetics, University Hospital Ostrava and Faculty of Medicine, 17. listopadu 1790/5, Ostrava-Poruba 708 52, Czech Republic; Institute of Emergency, Medicine Faculty of Medicine, University of Ostrava, Syllabova 19, Ostrava 703 00, Czech Republic
| | - Roman Madeja
- Department of Trauma Surgery, University Hospital Ostrava, 17. listopadu 1790/5, Ostrava-Poruba 708 52, Czech Republic; Institute of Emergency, Medicine Faculty of Medicine, University of Ostrava, Syllabova 19, Ostrava 703 00, Czech Republic
| | - Jiří Demel
- Department of Trauma Surgery, University Hospital Ostrava, 17. listopadu 1790/5, Ostrava-Poruba 708 52, Czech Republic; Institute of Emergency, Medicine Faculty of Medicine, University of Ostrava, Syllabova 19, Ostrava 703 00, Czech Republic; Faculty of Medicine, Masaryk University, Kamenice 753/5, Brno 625 00, Czech Republic
| | - Jan Halfar
- Faculty of Material Science and Technology, Center for Advanced Innovation Technologies, VSB - Technical University of Ostrava, 17. listopadu 2172/15, Ostrava-Poruba 708 00, Czech Republic; Faculty of Mining and Geology, VSB-Technical University of Ostrava, 17. listopadu 2172/15, Ostrava-Poruba 708 00, Czech Republic
| | - Jana Kukutschová
- Faculty of Material Science and Technology, Center for Advanced Innovation Technologies, VSB - Technical University of Ostrava, 17. listopadu 2172/15, Ostrava-Poruba 708 00, Czech Republic
| |
Collapse
|
2
|
Hubert V, Hristovska I, Karpati S, Benkeder S, Dey A, Dumot C, Amaz C, Chounlamountri N, Watrin C, Comte J, Chauveau F, Brun E, Marche P, Lerouge F, Parola S, Berthezène Y, Vorup‐Jensen T, Pascual O, Wiart M. Multimodal Imaging with NanoGd Reveals Spatiotemporal Features of Neuroinflammation after Experimental Stroke. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:e2101433. [PMID: 34197055 PMCID: PMC8425862 DOI: 10.1002/advs.202101433] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 05/12/2021] [Indexed: 05/09/2023]
Abstract
The purpose of this study is to propose and validate a preclinical in vivo magnetic resonance imaging (MRI) tool to monitor neuroinflammation following ischemic stroke, based on injection of a novel multimodal nanoprobe, NanoGd, specifically designed for internalization by phagocytic cells. First, it is verified that NanoGd is efficiently internalized by microglia in vitro. In vivo MRI coupled with intravenous injection of NanoGd in a permanent middle cerebral artery occlusion mouse model results in hypointense signals in the ischemic lesion. In these mice, longitudinal two-photon intravital microscopy shows NanoGd internalization by activated CX3CR1-GFP/+ cells. Ex vivo analysis, including phase contrast imaging with synchrotron X-ray, histochemistry, and transmission electron microscopy corroborate NanoGd accumulation within the ischemic lesion and uptake by immune phagocytic cells. Taken together, these results confirm the potential of NanoGd-enhanced MRI as an imaging biomarker of neuroinflammation at the subacute stage of ischemic stroke. As far as it is known, this work is the first to decipher the working mechanism of MR signals induced by a nanoparticle passively targeted at phagocytic cells by performing intravital microscopy back-to-back with MRI. Furthermore, using a gadolinium-based rather than an iron-based contrast agent raises future perspectives for the development of molecular imaging with emerging computed tomography technologies.
Collapse
Affiliation(s)
- Violaine Hubert
- Univ‐LyonIRIS TeamCarMeN LaboratoryInserm U1060INRA U1397INSA LyonUniversité Claude Bernard Lyon 1Groupement Hospitalier Est59 bd. PinelBron69500France
| | - Ines Hristovska
- SYNATAC TeamInstitut NeuroMyoGèneUniversité Claude Bernard Lyon 1CNRS UMR 5310, INSERM U1217Faculté de Médecine et de Pharmacie8 avenue RockefellerLyon69008France
| | - Szilvia Karpati
- Université de LyonÉcole Normale Supérieure de LyonCNRS UMR 5182Université Claude Bernard Lyon 1Laboratoire de ChimieLyonF69342France
| | - Sarah Benkeder
- SYNATAC TeamInstitut NeuroMyoGèneUniversité Claude Bernard Lyon 1CNRS UMR 5310, INSERM U1217Faculté de Médecine et de Pharmacie8 avenue RockefellerLyon69008France
| | - Arindam Dey
- Institut pour l'Avancée des BiosciencesCentre de Recherche UGA / Inserm U 1209 / CNRS UMR 5309Site Santé ‐ Allée des AlpesLa Tronche38700France
| | - Chloé Dumot
- Univ‐LyonIRIS TeamCarMeN LaboratoryInserm U1060INRA U1397INSA LyonUniversité Claude Bernard Lyon 1Groupement Hospitalier Est59 bd. PinelBron69500France
| | - Camille Amaz
- Clinical Investigation CenterHospices Civils de LyonLouis Pradel Hospital28 avenue Doyen LépineBron69500France
| | - Naura Chounlamountri
- SYNATAC TeamInstitut NeuroMyoGèneUniversité Claude Bernard Lyon 1CNRS UMR 5310, INSERM U1217Faculté de Médecine et de Pharmacie8 avenue RockefellerLyon69008France
| | - Chantal Watrin
- SYNATAC TeamInstitut NeuroMyoGèneUniversité Claude Bernard Lyon 1CNRS UMR 5310, INSERM U1217Faculté de Médecine et de Pharmacie8 avenue RockefellerLyon69008France
| | - Jean‐Christophe Comte
- FORGETTING TeamLyon Neuroscience Research Center (CRNL)CNRS UMR5292INSERM U1028Université Claude Bernard Lyon 1Centre Hospitalier Le Vinatier ‐ Bâtiment 462 ‐ Neurocampus Michel Jouvet95 boulevard PinelBron69675France
| | - Fabien Chauveau
- Université de LyonLyon Neuroscience Research Center (CRNL)CNRS UMR5292INSERM U1028Université Claude Bernard Lyon 1Groupement Hospitalier Est ‐ CERMEP59 bd PinelBron Cedex69677France
| | - Emmanuel Brun
- Synchrotron Radiation for Biomedical Research (STROBE)UA7 INSERMUniversité Grenoble AlpesMedical Beamline at the European Synchrotron Radiation Facility71 Avenue des MartyrsGrenoble Cedex 938043France
| | - Patrice Marche
- Institut pour l'Avancée des BiosciencesCentre de Recherche UGA / Inserm U 1209 / CNRS UMR 5309Site Santé ‐ Allée des AlpesLa Tronche38700France
| | - Fréderic Lerouge
- Université de LyonÉcole Normale Supérieure de LyonCNRS UMR 5182Université Claude Bernard Lyon 1Laboratoire de ChimieLyonF69342France
| | - Stéphane Parola
- Université de LyonÉcole Normale Supérieure de LyonCNRS UMR 5182Université Claude Bernard Lyon 1Laboratoire de ChimieLyonF69342France
| | - Yves Berthezène
- Univ‐LyonCreatis LaboratoryCNRS UMR5220Inserm U1044INSA LyonVilleurbanne Cedex69621France
| | - Thomas Vorup‐Jensen
- Department of BiomedicineBiophysical Immunology LaboratoryAarhus UniversityAarhus CDK‐8000Denmark
| | - Olivier Pascual
- SYNATAC TeamInstitut NeuroMyoGèneUniversité Claude Bernard Lyon 1CNRS UMR 5310, INSERM U1217Faculté de Médecine et de Pharmacie8 avenue RockefellerLyon69008France
| | - Marlène Wiart
- Univ‐LyonIRIS TeamCarMeN LaboratoryInserm U1060INRA U1397INSA LyonUniversité Claude Bernard Lyon 1Groupement Hospitalier Est59 bd. PinelBron69500France
| |
Collapse
|
3
|
MRI coupled with clinically-applicable iron oxide nanoparticles reveals choroid plexus involvement in a murine model of neuroinflammation. Sci Rep 2019; 9:10046. [PMID: 31296913 PMCID: PMC6624288 DOI: 10.1038/s41598-019-46566-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Accepted: 06/25/2019] [Indexed: 02/06/2023] Open
Abstract
Choroid plexus (ChPs) are involved in the early inflammatory response that occurs in many brain disorders. However, the activation of immune cells within the ChPs in response to neuroinflammation is still largely unexplored in-vivo. There is therefore a crucial need for developing imaging tool that would allow the non-invasive monitoring of ChP involvement in these diseases. Magnetic resonance imaging (MRI) coupled with superparamagnetic particles of iron oxide (SPIO) is a minimally invasive technique allowing to track phagocytic cells in inflammatory diseases. Our aim was to investigate the potential of ultrasmall SPIO (USPIO)-enhanced MRI to monitor ChP involvement in-vivo in a mouse model of neuroinflammation obtained by intraperitoneal administration of lipopolysaccharide. Using high resolution MRI, we identified marked USPIO-related signal drops in the ChPs of animals with neuroinflammation compared to controls. We confirmed these results quantitatively using a 4-points grading system. Ex-vivo analysis confirmed USPIO accumulation within the ChP stroma and their uptake by immune cells. We validated the translational potential of our approach using the clinically-applicable USPIO Ferumoxytol. MR imaging of USPIO accumulation within the ChPs may serve as an imaging biomarker to study ChP involvement in neuroinflammatory disorders that could be applied in a straightforward way in clinical practice.
Collapse
|