1
|
Martinez-Gil J, Mokadem R, Küng J, Hameurlain A. Neurofuzzy semantic similarity measurement. DATA KNOWL ENG 2023. [DOI: 10.1016/j.datak.2023.102155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2023]
|
2
|
Martinez-Gil J. A comprehensive review of stacking methods for semantic similarity measurement. MACHINE LEARNING WITH APPLICATIONS 2022. [DOI: 10.1016/j.mlwa.2022.100423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
|
3
|
Lara-Clares A, Lastra-Díaz JJ, Garcia-Serrano A. A reproducible experimental survey on biomedical sentence similarity: A string-based method sets the state of the art. PLoS One 2022; 17:e0276539. [PMID: 36409715 PMCID: PMC9678326 DOI: 10.1371/journal.pone.0276539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Accepted: 10/08/2022] [Indexed: 11/22/2022] Open
Abstract
This registered report introduces the largest, and for the first time, reproducible experimental survey on biomedical sentence similarity with the following aims: (1) to elucidate the state of the art of the problem; (2) to solve some reproducibility problems preventing the evaluation of most current methods; (3) to evaluate several unexplored sentence similarity methods; (4) to evaluate for the first time an unexplored benchmark, called Corpus-Transcriptional-Regulation (CTR); (5) to carry out a study on the impact of the pre-processing stages and Named Entity Recognition (NER) tools on the performance of the sentence similarity methods; and finally, (6) to bridge the lack of software and data reproducibility resources for methods and experiments in this line of research. Our reproducible experimental survey is based on a single software platform, which is provided with a detailed reproducibility protocol and dataset as supplementary material to allow the exact replication of all our experiments and results. In addition, we introduce a new aggregated string-based sentence similarity method, called LiBlock, together with eight variants of current ontology-based methods, and a new pre-trained word embedding model trained on the full-text articles in the PMC-BioC corpus. Our experiments show that our novel string-based measure establishes the new state of the art in sentence similarity analysis in the biomedical domain and significantly outperforms all the methods evaluated herein, with the only exception of one ontology-based method. Likewise, our experiments confirm that the pre-processing stages, and the choice of the NER tool for ontology-based methods, have a very significant impact on the performance of the sentence similarity methods. We also detail some drawbacks and limitations of current methods, and highlight the need to refine the current benchmarks. Finally, a notable finding is that our new string-based method significantly outperforms all state-of-the-art Machine Learning (ML) models evaluated herein.
Collapse
Affiliation(s)
- Alicia Lara-Clares
- NLP & IR Research Group, E.T.S.I. Informática, Universidad Nacional de Educación a Distancia (UNED), Madrid, Spain
| | - Juan J. Lastra-Díaz
- NLP & IR Research Group, E.T.S.I. Informática, Universidad Nacional de Educación a Distancia (UNED), Madrid, Spain
| | - Ana Garcia-Serrano
- NLP & IR Research Group, E.T.S.I. Informática, Universidad Nacional de Educación a Distancia (UNED), Madrid, Spain
| |
Collapse
|
4
|
Martinez-Gil J, Chaves-Gonzalez JM. Sustainable semantic similarity assessment. JOURNAL OF INTELLIGENT & FUZZY SYSTEMS 2022. [DOI: 10.3233/jifs-220137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
The automatic semantic similarity assessment field has attracted much attention due to its impact on multiple areas of study. In addition, it is also relevant that recent advances in neural computation have taken the solutions to a higher stage. However, some inherent problems persist. For example, large amounts of data are still needed to train solutions, the interpretability of the trained models is not the most suitable one, and the energy consumption required to create the models seems out of control. Therefore, we propose a novel method to achieve significant results for a sustainable semantic similarity assessment, where accuracy, interpretability, and energy efficiency are equally important. We rely on a method based on multi-objective symbolic regression to generate a Pareto front of compromise solutions. After analyzing the output generated and comparing other relevant works published, our approach’s results seem to be promising.
Collapse
|
5
|
Xiang J, Zhang J, Zhao Y, Wu FX, Li M. Biomedical data, computational methods and tools for evaluating disease-disease associations. Brief Bioinform 2022; 23:6522999. [PMID: 35136949 DOI: 10.1093/bib/bbac006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 01/04/2022] [Accepted: 01/05/2022] [Indexed: 12/12/2022] Open
Abstract
In recent decades, exploring potential relationships between diseases has been an active research field. With the rapid accumulation of disease-related biomedical data, a lot of computational methods and tools/platforms have been developed to reveal intrinsic relationship between diseases, which can provide useful insights to the study of complex diseases, e.g. understanding molecular mechanisms of diseases and discovering new treatment of diseases. Human complex diseases involve both external phenotypic abnormalities and complex internal molecular mechanisms in organisms. Computational methods with different types of biomedical data from phenotype to genotype can evaluate disease-disease associations at different levels, providing a comprehensive perspective for understanding diseases. In this review, available biomedical data and databases for evaluating disease-disease associations are first summarized. Then, existing computational methods for disease-disease associations are reviewed and classified into five groups in terms of the usages of biomedical data, including disease semantic-based, phenotype-based, function-based, representation learning-based and text mining-based methods. Further, we summarize software tools/platforms for computation and analysis of disease-disease associations. Finally, we give a discussion and summary on the research of disease-disease associations. This review provides a systematic overview for current disease association research, which could promote the development and applications of computational methods and tools/platforms for disease-disease associations.
Collapse
Affiliation(s)
- Ju Xiang
- School of Computer Science and Engineering, Central South University, China
| | - Jiashuai Zhang
- Hunan Provincial Key Lab on Bioinformatics, School of Computer Science and Engineering, Central South University, Changsha, Hunan 410083, China
| | - Yichao Zhao
- School of Computer Science and Engineering, Central South University, China
| | - Fang-Xiang Wu
- Hunan Provincial Key Lab on Bioinformatics, School of Computer Science and Engineering, Central South University, Changsha, Hunan 410083, China
| | - Min Li
- Division of Biomedical Engineering and Department of Mechanical Engineering at University of Saskatchewan, Saskatoon, Canada
| |
Collapse
|
6
|
|
7
|
Lastra-Díaz JJ, Lara-Clares A, Garcia-Serrano A. HESML: a real-time semantic measures library for the biomedical domain with a reproducible survey. BMC Bioinformatics 2022; 23:23. [PMID: 34991460 PMCID: PMC8734250 DOI: 10.1186/s12859-021-04539-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Accepted: 12/15/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Ontology-based semantic similarity measures based on SNOMED-CT, MeSH, and Gene Ontology are being extensively used in many applications in biomedical text mining and genomics respectively, which has encouraged the development of semantic measures libraries based on the aforementioned ontologies. However, current state-of-the-art semantic measures libraries have some performance and scalability drawbacks derived from their ontology representations based on relational databases, or naive in-memory graph representations. Likewise, a recent reproducible survey on word similarity shows that one hybrid IC-based measure which integrates a shortest-path computation sets the state of the art in the family of ontology-based semantic measures. However, the lack of an efficient shortest-path algorithm for their real-time computation prevents both their practical use in any application and the use of any other path-based semantic similarity measure. RESULTS To bridge the two aforementioned gaps, this work introduces for the first time an updated version of the HESML Java software library especially designed for the biomedical domain, which implements the most efficient and scalable ontology representation reported in the literature, together with a new method for the approximation of the Dijkstra's algorithm for taxonomies, called Ancestors-based Shortest-Path Length (AncSPL), which allows the real-time computation of any path-based semantic similarity measure. CONCLUSIONS We introduce a set of reproducible benchmarks showing that HESML outperforms by several orders of magnitude the current state-of-the-art libraries in the three aforementioned biomedical ontologies, as well as the real-time performance and approximation quality of the new AncSPL shortest-path algorithm. Likewise, we show that AncSPL linearly scales regarding the dimension of the common ancestor subgraph regardless of the ontology size. Path-based measures based on the new AncSPL algorithm are up to six orders of magnitude faster than their exact implementation in large ontologies like SNOMED-CT and GO. Finally, we provide a detailed reproducibility protocol and dataset as supplementary material to allow the exact replication of all our experiments and results.
Collapse
Affiliation(s)
- Juan J. Lastra-Díaz
- NLP & IR Research Group, E.T.S.I. Informática, Universidad Nacional de Educación a Distancia (UNED), C/Juan del Rosal 16, 28040 Madrid, Spain
| | - Alicia Lara-Clares
- NLP & IR Research Group, E.T.S.I. Informática, Universidad Nacional de Educación a Distancia (UNED), C/Juan del Rosal 16, 28040 Madrid, Spain
| | - Ana Garcia-Serrano
- NLP & IR Research Group, E.T.S.I. Informática, Universidad Nacional de Educación a Distancia (UNED), C/Juan del Rosal 16, 28040 Madrid, Spain
| |
Collapse
|
8
|
Martinez-Gil J, Chaves-Gonzalez JM. Semantic similarity controllers: On the trade-off between accuracy and interpretability. Knowl Based Syst 2021. [DOI: 10.1016/j.knosys.2021.107609] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
9
|
Lara-Clares A, Lastra-Díaz JJ, Garcia-Serrano A. Protocol for a reproducible experimental survey on biomedical sentence similarity. PLoS One 2021; 16:e0248663. [PMID: 33760855 PMCID: PMC7990182 DOI: 10.1371/journal.pone.0248663] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Accepted: 03/02/2021] [Indexed: 11/28/2022] Open
Abstract
Measuring semantic similarity between sentences is a significant task in the fields of Natural Language Processing (NLP), Information Retrieval (IR), and biomedical text mining. For this reason, the proposal of sentence similarity methods for the biomedical domain has attracted a lot of attention in recent years. However, most sentence similarity methods and experimental results reported in the biomedical domain cannot be reproduced for multiple reasons as follows: the copying of previous results without confirmation, the lack of source code and data to replicate both methods and experiments, and the lack of a detailed definition of the experimental setup, among others. As a consequence of this reproducibility gap, the state of the problem can be neither elucidated nor new lines of research be soundly set. On the other hand, there are other significant gaps in the literature on biomedical sentence similarity as follows: (1) the evaluation of several unexplored sentence similarity methods which deserve to be studied; (2) the evaluation of an unexplored benchmark on biomedical sentence similarity, called Corpus-Transcriptional-Regulation (CTR); (3) a study on the impact of the pre-processing stage and Named Entity Recognition (NER) tools on the performance of the sentence similarity methods; and finally, (4) the lack of software and data resources for the reproducibility of methods and experiments in this line of research. Identified these open problems, this registered report introduces a detailed experimental setup, together with a categorization of the literature, to develop the largest, updated, and for the first time, reproducible experimental survey on biomedical sentence similarity. Our aforementioned experimental survey will be based on our own software replication and the evaluation of all methods being studied on the same software platform, which will be specially developed for this work, and it will become the first publicly available software library for biomedical sentence similarity. Finally, we will provide a very detailed reproducibility protocol and dataset as supplementary material to allow the exact replication of all our experiments and results.
Collapse
Affiliation(s)
- Alicia Lara-Clares
- NLP & IR Research Group, E.T.S.I. Informática, Universidad Nacional de Educación a Distancia (UNED), Madrid, Spain
| | - Juan J. Lastra-Díaz
- NLP & IR Research Group, E.T.S.I. Informática, Universidad Nacional de Educación a Distancia (UNED), Madrid, Spain
| | - Ana Garcia-Serrano
- NLP & IR Research Group, E.T.S.I. Informática, Universidad Nacional de Educación a Distancia (UNED), Madrid, Spain
| |
Collapse
|
10
|
A large reproducible benchmark of ontology-based methods and word embeddings for word similarity. INFORM SYST 2021. [DOI: 10.1016/j.is.2020.101636] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
11
|
Malandri L, Mercorio F, Mezzanzanica M, Nobani N. MEET-LM: A method for embeddings evaluation for taxonomic data in the labour market. COMPUT IND 2021. [DOI: 10.1016/j.compind.2020.103341] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
12
|
|
13
|
Abstract
Abstract
Ontology matching aims at discovering mappings between the entities of two ontologies. It plays an important role in the integration of heterogeneous data sources that are described by ontologies. Interactive ontology matching involves domain experts in the matching process. In some approaches, the expert provides feedback about mappings between ontology entities, that is, these approaches select mappings to present to the expert who replies which of them should be accepted or rejected, so taking advantage of the knowledge of domain experts towards finding an alignment. In this paper, we present Alin, an interactive ontology matching approach which uses expert feedback not only to approve or reject selected mappings but also to dynamically improve the set of selected mappings, that is, to interactively include and to exclude mappings from it. This additional use for expert answers aims at increasing in the benefit brought by each expert answer. For this purpose, Alin uses four techniques. Two techniques were used in the previous versions of Alin to dynamically select concept and attribute mappings. Two new techniques are introduced in this paper: one to dynamically select relationship mappings and another one to dynamically reject inconsistent selected mappings using anti-patterns. We compared Alin with state-of-the-art tools, showing that it generates alignment of comparable quality.
Collapse
|
14
|
|
15
|
Semantic association computation: a comprehensive survey. Artif Intell Rev 2019. [DOI: 10.1007/s10462-019-09781-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
16
|
Zhu X, Guo Q, Zhang B, Li F. An efficient approach for measuring semantic relatedness using Wikipedia bidirectional links. APPL INTELL 2019. [DOI: 10.1007/s10489-019-01452-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
17
|
Lastra-Díaz JJ, Goikoetxea J, Hadj Taieb MA, García-Serrano A, Aouicha MB, Agirre E. Reproducibility dataset for a large experimental survey on word embeddings and ontology-based methods for word similarity. Data Brief 2019; 26:104432. [PMID: 31516953 PMCID: PMC6736772 DOI: 10.1016/j.dib.2019.104432] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2019] [Revised: 08/11/2019] [Accepted: 08/16/2019] [Indexed: 10/26/2022] Open
Abstract
This data article introduces a reproducibility dataset with the aim of allowing the exact replication of all experiments, results and data tables introduced in our companion paper (Lastra-Díaz et al., 2019), which introduces the largest experimental survey on ontology-based semantic similarity methods and Word Embeddings (WE) for word similarity reported in the literature. The implementation of all our experiments, as well as the gathering of all raw data derived from them, was based on the software implementation and evaluation of all methods in HESML library (Lastra-Díaz et al., 2017), and their subsequent recording with Reprozip (Chirigati et al., 2016). Raw data is made up by a collection of data files gathering the raw word-similarity values returned by each method for each word pair evaluated in any benchmark. Raw data files were processed by running a R-language script with the aim of computing all evaluation metrics reported in (Lastra-Díaz et al., 2019), such as Pearson and Spearman correlation, harmonic score and statistical significance p-values, as well as to generate automatically all data tables shown in our companion paper. Our dataset provides all input data files, resources and complementary software tools to reproduce from scratch all our experimental data, statistical analysis and reported data. Finally, our reproducibility dataset provides a self-contained experimentation platform which allows to run new word similarity benchmarks by setting up new experiments including other unconsidered methods or word similarity benchmarks.
Collapse
Affiliation(s)
- Juan J. Lastra-Díaz
- NLP & IR Research Group, ETSI de Informática (UNED), Universidad Nacional de Educación a Distancia, Juan Del Rosal 16, 28040, Madrid, Spain
| | - Josu Goikoetxea
- IXA NLP Group, Faculty of Informatics, UPV/EHU∖∖ Manuel Lardizabal 1, 20018, Donostia, Basque Country, Spain
| | | | - Ana García-Serrano
- NLP & IR Research Group, ETSI de Informática (UNED), Universidad Nacional de Educación a Distancia, Juan Del Rosal 16, 28040, Madrid, Spain
| | | | - Eneko Agirre
- IXA NLP Group, Faculty of Informatics, UPV/EHU∖∖ Manuel Lardizabal 1, 20018, Donostia, Basque Country, Spain
| |
Collapse
|
18
|
Fariña A, Martínez-Prieto MA, Claude F, Navarro G, Lastra-Díaz JJ, Prezza N, Seco D. On the reproducibility of experiments of indexing repetitive document collections. INFORM SYST 2019. [DOI: 10.1016/j.is.2019.03.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
19
|
Likavec S, Lombardi I, Cena F. Sigmoid similarity - a new feature-based similarity measure. Inf Sci (N Y) 2019. [DOI: 10.1016/j.ins.2018.12.018] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
20
|
Gao W, L.G. Guirao J, Basavanagoud B, Wu J. Partial multi-dividing ontology learning algorithm. Inf Sci (N Y) 2018. [DOI: 10.1016/j.ins.2018.07.049] [Citation(s) in RCA: 148] [Impact Index Per Article: 21.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
21
|
Zhang M, Wang J, Wang W. HeteRank: A general similarity measure in heterogeneous information networks by integrating multi-type relationships. Inf Sci (N Y) 2018. [DOI: 10.1016/j.ins.2018.04.022] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
22
|
Sánchez D, Martínez-Sanahuja L, Batet M. Survey and evaluation of web search engine hit counts as research tools in computational linguistics. INFORM SYST 2018. [DOI: 10.1016/j.is.2017.12.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|