1
|
Bertolotti P, Gallinardi F, Ghidoli M, Bertarelli C, Lanzani G, Paternò GM. Photocontrol of bacterial membrane potential regulates antibiotic persistence in B. subtilis. EUROPEAN PHYSICAL JOURNAL PLUS 2025; 140:336. [PMID: 40291950 PMCID: PMC12021945 DOI: 10.1140/epjp/s13360-025-06263-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/07/2025] [Accepted: 03/24/2025] [Indexed: 04/30/2025]
Abstract
Bacterial persistence and resistance to antibiotics pose critical challenges in healthcare and environmental contexts. Recent studies revealing that bacteria possess a dynamic electrical membrane potential open new avenues for influencing bacterial behaviour and drug susceptibility. In this work, we present a novel light-responsive strategy to modulate bacterial antibiotic persistence using Ziapin2, an azobenzene photoswitch previously shown to alter bacterial membrane potential. We selected two broad-spectrum antibiotics with distinct modes of action: Kanamycin, which requires cytosolic uptake to inhibit protein synthesis, and Ampicillin, which targets cell wall polymerization at the cell envelope, to probe the role of membrane potential in antibiotic efficacy. Our findings show that when Bacillus subtilis is exposed to Kanamycin and Ziapin2, photoactivation (470 nm) significantly impacts bacterial viability: under illumination, the previously lethal effects of Kanamycin are markedly reduced, suggesting that membrane potential changes drive altered antibiotic uptake or intracellular accumulation. In contrast, Ampicillin-treated samples remain largely unaffected by light-induced membrane modulation, consistent with its action at the external cell envelope. Taken together, these results indicate that membrane potential manipulation can selectively influence the activity of antibiotics whose intracellular uptake is critical to their function. This proof-of-concept study underscores the potential of non-genetic, light-based interventions to modulate bacterial susceptibility in real time. Future work will expand this approach by exploring additional antibiotic classes and novel azobenzene derivatives, ultimately advancing our understanding of bacterial bioelectric regulation and its applications in antimicrobial therapies.
Collapse
Affiliation(s)
- Pietro Bertolotti
- Center for Nanoscience and Technology, Istituto Italiano di Tecnologia, Via Rubattino 81, 20134 Milan, Italy
- Department of Electronics, Information and Bioengineering, Politecnico di Milano, Via Ponzio 34/5, 20133 Milan, Italy
| | - Federico Gallinardi
- Center for Nanoscience and Technology, Istituto Italiano di Tecnologia, Via Rubattino 81, 20134 Milan, Italy
- Department of Biotechnology and Bioscience, Università di Milano – Bicocca, Building U3 – BIOS, Piazza della Scienza 2, 20126 Milan, Italy
| | - Marta Ghidoli
- Department of Chemistry, Materials and Chemical Engineering, “Giulio Natta” Politecnico di Milano, Piazza Leonardo Da Vinci 32, 20133 Milan, Italy
| | - Chiara Bertarelli
- Department of Chemistry, Materials and Chemical Engineering, “Giulio Natta” Politecnico di Milano, Piazza Leonardo Da Vinci 32, 20133 Milan, Italy
| | - Guglielmo Lanzani
- Center for Nanoscience and Technology, Istituto Italiano di Tecnologia, Via Rubattino 81, 20134 Milan, Italy
- Department of Physics, Politecnico di Milano, Piazza Leonardo Da Vinci 32, 20133 Milan, Italy
| | - Giuseppe Maria Paternò
- Center for Nanoscience and Technology, Istituto Italiano di Tecnologia, Via Rubattino 81, 20134 Milan, Italy
- Department of Physics, Politecnico di Milano, Piazza Leonardo Da Vinci 32, 20133 Milan, Italy
| |
Collapse
|
2
|
Monk T, Dennler N, Ralph N, Rastogi S, Afshar S, Urbizagastegui P, Jarvis R, van Schaik A, Adamatzky A. Electrical Signaling Beyond Neurons. Neural Comput 2024; 36:1939-2029. [PMID: 39141803 DOI: 10.1162/neco_a_01696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 05/21/2024] [Indexed: 08/16/2024]
Abstract
Neural action potentials (APs) are difficult to interpret as signal encoders and/or computational primitives. Their relationships with stimuli and behaviors are obscured by the staggering complexity of nervous systems themselves. We can reduce this complexity by observing that "simpler" neuron-less organisms also transduce stimuli into transient electrical pulses that affect their behaviors. Without a complicated nervous system, APs are often easier to understand as signal/response mechanisms. We review examples of nonneural stimulus transductions in domains of life largely neglected by theoretical neuroscience: bacteria, protozoans, plants, fungi, and neuron-less animals. We report properties of those electrical signals-for example, amplitudes, durations, ionic bases, refractory periods, and particularly their ecological purposes. We compare those properties with those of neurons to infer the tasks and selection pressures that neurons satisfy. Throughout the tree of life, nonneural stimulus transductions time behavioral responses to environmental changes. Nonneural organisms represent the presence or absence of a stimulus with the presence or absence of an electrical signal. Their transductions usually exhibit high sensitivity and specificity to a stimulus, but are often slow compared to neurons. Neurons appear to be sacrificing the specificity of their stimulus transductions for sensitivity and speed. We interpret cellular stimulus transductions as a cell's assertion that it detected something important at that moment in time. In particular, we consider neural APs as fast but noisy detection assertions. We infer that a principal goal of nervous systems is to detect extremely weak signals from noisy sensory spikes under enormous time pressure. We discuss neural computation proposals that address this goal by casting neurons as devices that implement online, analog, probabilistic computations with their membrane potentials. Those proposals imply a measurable relationship between afferent neural spiking statistics and efferent neural membrane electrophysiology.
Collapse
Affiliation(s)
- Travis Monk
- International Centre for Neuromorphic Systems, MARCS Institute, Western Sydney University, Sydney, NSW 2747, Australia
| | - Nik Dennler
- International Centre for Neuromorphic Systems, MARCS Institute, Western Sydney University, Sydney, NSW 2747, Australia
- Biocomputation Group, University of Hertfordshire, Hatfield, Hertfordshire AL10 9AB, U.K.
| | - Nicholas Ralph
- International Centre for Neuromorphic Systems, MARCS Institute, Western Sydney University, Sydney, NSW 2747, Australia
| | - Shavika Rastogi
- International Centre for Neuromorphic Systems, MARCS Institute, Western Sydney University, Sydney, NSW 2747, Australia
- Biocomputation Group, University of Hertfordshire, Hatfield, Hertfordshire AL10 9AB, U.K.
| | - Saeed Afshar
- International Centre for Neuromorphic Systems, MARCS Institute, Western Sydney University, Sydney, NSW 2747, Australia
| | - Pablo Urbizagastegui
- International Centre for Neuromorphic Systems, MARCS Institute, Western Sydney University, Sydney, NSW 2747, Australia
| | - Russell Jarvis
- International Centre for Neuromorphic Systems, MARCS Institute, Western Sydney University, Sydney, NSW 2747, Australia
| | - André van Schaik
- International Centre for Neuromorphic Systems, MARCS Institute, Western Sydney University, Sydney, NSW 2747, Australia
| | - Andrew Adamatzky
- Unconventional Computing Laboratory, University of the West of England, Bristol BS16 1QY, U.K.
| |
Collapse
|
3
|
de Souza-Guerreiro TC, Huan Bacellar L, da Costa TS, Edwards CLA, Tasic L, Asally M. Membrane potential dynamics unveil the promise of bioelectrical antimicrobial susceptibility Testing (BeAST) for anti-fungal screening. mBio 2024; 15:e0130224. [PMID: 39041802 PMCID: PMC11323469 DOI: 10.1128/mbio.01302-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 06/30/2024] [Indexed: 07/24/2024] Open
Abstract
Membrane potential is a useful marker for antimicrobial susceptibility testing (AST) due to its fundamental roles in cell function. However, the difficulties associated with measuring the membrane potential in microbes restrict its broad application. In this study, we present bioelectrical AST (BeAST) using the model fungus Saccharomyces cerevisiae. Using fluorescent indicators [DiBAC4(3), ThT, and TMRM], we measured plasma and mitochondrial membrane-potential dynamics upon electric stimulation. We find that a 2.5 second electric stimulation induces hyperpolarization of plasma membrane lasting 20 minutes in vital S. cerevisiae, but depolarization in inhibited cells. The numerical simulation of FitzHugh-Nagumo model successfully recapitulates vitality-dependent dynamics. The model also suggests that the magnitude of plasma-membrane potential dynamics (PMD) correlates with the degree of inhibition. To test this prediction and to examine if BeAST can be used for assessing novel anti-fungal compounds, we treat cells with biogenic silver nanoparticles (bioAgNPs) synthesized using orange fruit flavonoids and Fusarium oxysporum. Comparing BeAST with optical density assay alongside various stressors, we show that PMD correlates with the magnitude of growth inhibitions. These results suggest that BeAST holds promise for screening anti-fungal compounds, offering a valuable approach to tackling antimicrobial resistance. IMPORTANCE Rapid assessment of the efficacy of antimicrobials is important for optimizing treatments, avoiding misuse and facilitating the screening of new antimicrobials. The need for rapid antimicrobial susceptibility testing (AST) is growing with the rise of antimicrobial resistance. Here, we present bioelectrical AST (BeAST). Combining time-lapse microscopy and mathematical modeling, we show that electrically induced membrane potential dynamics of yeast cells correspond to the strength of growth inhibition. Furthermore, we demonstrate the utility of BeAST for assessing antimicrobial activities of novel compounds using biogenic silver nanoparticles.
Collapse
Affiliation(s)
- Tailise Carolina de Souza-Guerreiro
- School of Life Sciences, University of Warwick, Coventry, United Kingdom
- Warwick Integrative Synthetic Biology Centre, University of Warwick, Coventry, United Kingdom
| | - Letícia Huan Bacellar
- Institute of Chemistry, Biological Chemistry Laboratory, University of Campinas, Campinas, Brazil
| | - Thyerre Santana da Costa
- Institute of Chemistry, Biological Chemistry Laboratory, University of Campinas, Campinas, Brazil
| | | | - Ljubica Tasic
- Institute of Chemistry, Biological Chemistry Laboratory, University of Campinas, Campinas, Brazil
| | - Munehiro Asally
- School of Life Sciences, University of Warwick, Coventry, United Kingdom
- Warwick Integrative Synthetic Biology Centre, University of Warwick, Coventry, United Kingdom
| |
Collapse
|
4
|
Lo WC, Krasnopeeva E, Pilizota T. Bacterial Electrophysiology. Annu Rev Biophys 2024; 53:487-510. [PMID: 38382113 DOI: 10.1146/annurev-biophys-030822-032215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2024]
Abstract
Bacterial ion fluxes are involved in the generation of energy, transport, and motility. As such, bacterial electrophysiology is fundamentally important for the bacterial life cycle, but it is often neglected and consequently, by and large, not understood. Arguably, the two main reasons for this are the complexity of measuring relevant variables in small cells with a cell envelope that contains the cell wall and the fact that, in a unicellular organism, relevant variables become intertwined in a nontrivial manner. To help give bacterial electrophysiology studies a firm footing, in this review, we go back to basics. We look first at the biophysics of bacterial membrane potential, and then at the approaches and models developed mostly for the study of neurons and eukaryotic mitochondria. We discuss their applicability to bacterial cells. Finally, we connect bacterial membrane potential with other relevant (electro)physiological variables and summarize methods that can be used to both measure and influence bacterial electrophysiology.
Collapse
Affiliation(s)
- Wei-Chang Lo
- Institute of Physics, Academia Sinica, Taipei, Taiwan
| | | | - Teuta Pilizota
- School of Biological Sciences, Centre for Engineering Biology, University of Edinburgh, Edinburgh, United Kingdom;
| |
Collapse
|
5
|
Gao J, Zhou K, Li H, Li Y, Yang K, Wang W. Intermittent proton bursts of single lactic acid bacteria. Chem Sci 2024; 15:3516-3523. [PMID: 38455010 PMCID: PMC10915832 DOI: 10.1039/d3sc06238d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 01/23/2024] [Indexed: 03/09/2024] Open
Abstract
Lactic acid bacteria are a kind of probiotic microorganisms that efficiently convert carbohydrates to lactic acids, thus playing essential roles in fermentation and food industry. While conventional wisdom often suggests continuous release of protons from bacteria during acidification, here we developed a methodology to measure the dynamics of proton release at the single bacteria level, and report on the discovery of a proton burst phenomenon, i.e., the intermittent efflux of protons, of single Lactobacillus plantarum bacteria. When placing an individual bacterium in an oil-sealed microwell, efflux and accumulation of protons consequently reduced the pH in the confined extracellular medium, which was monitored with fluorescent pH indicators in a high-throughput and real-time manner. In addition to the slow and continuous proton release behavior (as expected), stochastic and intermittent proton burst events were surprisingly observed with a typical timescale of several seconds. It was attributed to the regulatory response of bacteria by activating H+-ATPase to compensate the stochastic and transient depolarizations of membrane potential. These findings not only revealed an unprecedented proton burst phenomenon in lactic acid bacteria, but also shed new lights on the intrinsic roles of H+-ATPase in membrane potential homeostasis, with implications for both fermentation industry and bacterial electrophysiology.
Collapse
Affiliation(s)
- Jia Gao
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, ChemBIC (Chemistry and Biomedicine Innovation Center), Nanjing University Nanjing 210023 China
| | - Kai Zhou
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, ChemBIC (Chemistry and Biomedicine Innovation Center), Nanjing University Nanjing 210023 China
| | - Haoran Li
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, ChemBIC (Chemistry and Biomedicine Innovation Center), Nanjing University Nanjing 210023 China
| | - Yaohua Li
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, ChemBIC (Chemistry and Biomedicine Innovation Center), Nanjing University Nanjing 210023 China
| | - Kairong Yang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, ChemBIC (Chemistry and Biomedicine Innovation Center), Nanjing University Nanjing 210023 China
| | - Wei Wang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, ChemBIC (Chemistry and Biomedicine Innovation Center), Nanjing University Nanjing 210023 China
| |
Collapse
|
6
|
Wang S, Aljirafi FO, Payne GF, Bentley WE. Excite the unexcitable: engineering cells and redox signaling for targeted bioelectronic control. Curr Opin Biotechnol 2024; 85:103052. [PMID: 38150921 DOI: 10.1016/j.copbio.2023.103052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 11/17/2023] [Accepted: 11/28/2023] [Indexed: 12/29/2023]
Abstract
The ever-growing influence of technology in our lives has led to an increasing interest in the development of smart electronic devices to interrogate and control biological systems. Recently, redox-mediated electrogenetics introduced a novel avenue that enables direct bioelectronic control at the genetic level. In this review, we discuss recent advances in methodologies for bioelectronic control, ranging from electrical stimulation to engineering efforts that allow traditionally unexcitable cells to be electrically 'programmable.' Alongside ion-transport signaling, we suggest redox as a route for rational engineering because it is a native form of electronic communication in biology. Using redox as a common language allows the interfacing of electronics and biology. This newfound connection opens a gateway of possibilities for next-generation bioelectronic tools.
Collapse
Affiliation(s)
- Sally Wang
- Fischell Department of Bioengineering, University of Maryland, College Park, MD, USA; Institute for Bioscience and Biotechnology Research, University of Maryland, Rockville, MD, USA; Fischell Institute of Biomedical Devices, University of Maryland, College Park, MD, USA
| | - Futoon O Aljirafi
- Fischell Institute of Biomedical Devices, University of Maryland, College Park, MD, USA; Department of Chemical and Biomolecular Engineering, University of Maryland, College Park, MD, USA
| | - Gregory F Payne
- Institute for Bioscience and Biotechnology Research, University of Maryland, Rockville, MD, USA; Fischell Institute of Biomedical Devices, University of Maryland, College Park, MD, USA
| | - William E Bentley
- Fischell Department of Bioengineering, University of Maryland, College Park, MD, USA; Institute for Bioscience and Biotechnology Research, University of Maryland, Rockville, MD, USA; Fischell Institute of Biomedical Devices, University of Maryland, College Park, MD, USA
| |
Collapse
|
7
|
Skates E, Delattre H, Schofield Z, Asally M, Soyer OS. Thioflavin T indicates mitochondrial membrane potential in mammalian cells. BIOPHYSICAL REPORTS 2023; 3:100134. [PMID: 38026684 PMCID: PMC10679866 DOI: 10.1016/j.bpr.2023.100134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 10/25/2023] [Indexed: 12/01/2023]
Abstract
The fluorescent benzothiazole dye thioflavin T (ThT) is widely used as a marker for protein aggregates, most commonly in the context of neurodegenerative disease research and diagnosis. Recently, this same dye was shown to indicate membrane potential in bacteria due to its cationic nature. This finding prompted a question whether ThT fluorescence is linked to the membrane potential in mammalian cells, which would be important for appropriate utilization of ThT in research and diagnosis. Here, we show that ThT localizes into the mitochondria of HeLa cells in a membrane-potential-dependent manner. Specifically, ThT colocalized in cells with the mitochondrial membrane potential indicator tetramethylrhodamine methyl ester (TMRM) and gave similar temporal responses as TMRM to treatment with a protonophore, carbonyl cyanide-4-(trifluoromethoxy) phenylhydrazone (FCCP). Additionally, we found that presence of ThT together with exposure to blue light (λ = 405 nm), but neither factor alone, caused depolarization of mitochondrial membrane potential. This additive effect of the concentration and blue light was recapitulated by a mathematical model implementing the potential-dependent distribution of ThT and its effect on mitochondrial membrane potential through photosensitization. These results show that ThT can act as a mitochondrial membrane potential indicator in mammalian cells, when used at low concentrations and with low blue light exposure. However, it causes dissipation of the mitochondrial membrane potential depending additively on its concentrations and blue light exposure. This conclusion motivates a re-evaluation of ThT's use at micromolar range in live-cell analyses and indicates that this dye can enable future studies on the potential connections between mitochondrial membrane potential dynamics and protein aggregation.
Collapse
Affiliation(s)
- Emily Skates
- Bio-Electrical Engineering Innovation Hub, University of Warwick, Coventry, United Kingdom
- School of Life Sciences, University of Warwick, Coventry, United Kingdom
- Warwick Integrative Synthetic Biology Centre (WISB), University of Warwick, Coventry, United Kingdom
- Midlands Integrative Doctoral Training Program; University of Warwick, Coventry, United Kingdom
| | - Hadrien Delattre
- School of Life Sciences, University of Warwick, Coventry, United Kingdom
| | - Zoe Schofield
- Bio-Electrical Engineering Innovation Hub, University of Warwick, Coventry, United Kingdom
- School of Life Sciences, University of Warwick, Coventry, United Kingdom
- Warwick Integrative Synthetic Biology Centre (WISB), University of Warwick, Coventry, United Kingdom
| | - Munehiro Asally
- Bio-Electrical Engineering Innovation Hub, University of Warwick, Coventry, United Kingdom
- School of Life Sciences, University of Warwick, Coventry, United Kingdom
- Warwick Integrative Synthetic Biology Centre (WISB), University of Warwick, Coventry, United Kingdom
| | - Orkun S. Soyer
- Bio-Electrical Engineering Innovation Hub, University of Warwick, Coventry, United Kingdom
- School of Life Sciences, University of Warwick, Coventry, United Kingdom
- Warwick Integrative Synthetic Biology Centre (WISB), University of Warwick, Coventry, United Kingdom
| |
Collapse
|
8
|
Lablaine A, Chamot S, Serrano M, Billaudeau C, Bornard I, Carballido-López R, Carlin F, Henriques AO, Broussolle V. A new fluorescence-based approach for direct visualization of coat formation during sporulation in Bacillus cereus. Sci Rep 2023; 13:15136. [PMID: 37704668 PMCID: PMC10499802 DOI: 10.1038/s41598-023-42143-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 09/06/2023] [Indexed: 09/15/2023] Open
Abstract
The human pathogenic bacteria Bacillus cereus, Bacillus anthracis and the entomopathogenic Bacillus thuringiensis form spores encased in a protein coat surrounded by a balloon-like exosporium. These structures mediate spore interactions with its environment, including the host immune system, control the transit of molecules that trigger germination and thus are essential for the spore life cycle. Formation of the coat and exosporium has been traditionally visualized by transmission electronic microscopy on fixed cells. Recently, we showed that assembly of the exosporium can be directly observed in live B. cereus cells by super resolution-structured illumination microscopy (SR-SIM) using the membrane MitoTrackerGreen (MTG) dye. Here, we demonstrate that the different steps of coat formation can also be visualized by SR-SIM using MTG and SNAP-cell TMR-star dyes during B. cereus sporulation. We used these markers to characterize a subpopulation of engulfment-defective B. cereus cells that develops at a suboptimal sporulation temperature. Importantly, we predicted and confirmed that synthesis and accumulation of coat material, as well as synthesis of the σK-dependent protein BxpB, occur in cells arrested during engulfment. These results suggest that, unlike the well-studied model organism Bacillus subtilis, the activity of σK is not strictly linked to the state of forespore development in B. cereus.
Collapse
Affiliation(s)
- Armand Lablaine
- INRAE, Avignon Université, UMR SQPOV, 84000, Avignon, France
- MICALIS Institute, INRAE, AgroParisTech, Université Paris-Saclay, 78350, Jouy-en-Josas, France
| | | | - Mónica Serrano
- Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, 2780-157, Oeiras, Portugal
| | - Cyrille Billaudeau
- MICALIS Institute, INRAE, AgroParisTech, Université Paris-Saclay, 78350, Jouy-en-Josas, France
| | | | - Rut Carballido-López
- MICALIS Institute, INRAE, AgroParisTech, Université Paris-Saclay, 78350, Jouy-en-Josas, France
| | - Frédéric Carlin
- INRAE, Avignon Université, UMR SQPOV, 84000, Avignon, France
| | - Adriano O Henriques
- Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, 2780-157, Oeiras, Portugal
| | | |
Collapse
|
9
|
Benyamin MS, Perisin MP, Hellman CA, Schwalm ND, Jahnke JP, Sund CJ. Modeling control and transduction of electrochemical gradients in acid-stressed bacteria. iScience 2023; 26:107140. [PMID: 37404371 PMCID: PMC10316662 DOI: 10.1016/j.isci.2023.107140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 03/05/2023] [Accepted: 06/12/2023] [Indexed: 07/06/2023] Open
Abstract
Transmembrane electrochemical gradients drive solute uptake and constitute a substantial fraction of the cellular energy pool in bacteria. These gradients act not only as "homeostatic contributors," but also play a dynamic and keystone role in several bacterial functions, including sensing, stress response, and metabolism. At the system level, multiple gradients interact with ion transporters and bacterial behavior in a complex, rapid, and emergent manner; consequently, experiments alone cannot untangle their interdependencies. Electrochemical gradient modeling provides a general framework to understand these interactions and their underlying mechanisms. We quantify the generation, maintenance, and interactions of electrical, proton, and potassium potential gradients under lactic acid-stress and lactic acid fermentation. Further, we elucidate a gradient-mediated mechanism for intracellular pH sensing and stress response. We demonstrate that this gradient model can yield insights on the energetic limitations of membrane transport, and can predict bacterial behavior across changing environments.
Collapse
Affiliation(s)
- Marcus S. Benyamin
- Biological and Biotechnology Sciences Division, DEVCOM Army Research Laboratory, Adelphi, MD, USA
| | - Matthew P. Perisin
- Biological and Biotechnology Sciences Division, DEVCOM Army Research Laboratory, Adelphi, MD, USA
| | - Caleb A. Hellman
- Biological and Biotechnology Sciences Division, DEVCOM Army Research Laboratory, Adelphi, MD, USA
| | - Nathan D. Schwalm
- Biological and Biotechnology Sciences Division, DEVCOM Army Research Laboratory, Adelphi, MD, USA
| | - Justin P. Jahnke
- Biological and Biotechnology Sciences Division, DEVCOM Army Research Laboratory, Adelphi, MD, USA
| | - Christian J. Sund
- Biological and Biotechnology Sciences Division, DEVCOM Army Research Laboratory, Adelphi, MD, USA
| |
Collapse
|
10
|
Vittoria M, Saggese A, Di Gregorio Barletta G, Castaldi S, Isticato R, Baccigalupi L, Ricca E. Sporulation efficiency and spore quality in a human intestinal isolate of Bacillus cereus. Res Microbiol 2023; 174:104030. [PMID: 36738815 DOI: 10.1016/j.resmic.2023.104030] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 01/18/2023] [Accepted: 01/20/2023] [Indexed: 02/05/2023]
Abstract
Bacteria classified as Bacillus cereus sensu stricto cause two different type of gastrointestinal diseases associated with food poisoning. Outbreaks of this opportunistic pathogen are generally due to the resistance of its spores to heat, pH and desiccation that makes hard their complete inactivation from food products. B. cereus is commonly isolated from a variety of environments, including intestinal samples of infected and healthy people. We report the genomic and physiological characterization of MV19, a human intestinal strain closely related (ANI value of 98.81%) to the reference strain B. cereus ATCC 14579. MV19 cells were able to grow in a range of temperatures between 20 and 44 °C. At the optimal temperature the sporulation process was rapidly induced and mature spores efficiently released, however these appeared structurally and morphologically defective. At the sub-optimal growth temperature of 25 °C sporulation was slow and less efficient but a high total number of fully functional spores was produced. These results indicate that the reduced rapidity and efficiency of sporulation at 25 °C are compensated by a high quality and quantity of released spores, suggesting the relevance of different performances at different growth conditions for the adaptation of this bacterium to diverse environmental niches.
Collapse
Affiliation(s)
- Maria Vittoria
- Department of Biology, Federico II University of Naples, Italy
| | - Anella Saggese
- Department of Biology, Federico II University of Naples, Italy
| | | | | | | | - Loredana Baccigalupi
- Department of Molecular Medicine and Medical Biotechnology, Federico II University of Naples, Italy
| | - Ezio Ricca
- Department of Biology, Federico II University of Naples, Italy.
| |
Collapse
|
11
|
Rezaie M, Choi S. Moisture-Enabled Germination of Heat-Activated Bacillus Endospores for Rapid and Practical Bioelectricity Generation: Toward Portable, Storable Bacteria-Powered Biobatteries. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023:e2301135. [PMID: 36932936 DOI: 10.1002/smll.202301135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 02/28/2023] [Indexed: 06/18/2023]
Abstract
Small-scale battery-like microbial fuel cells (MFCs) are a promising alternative power source for future low-power electronics. Controllable microbial electrocatalytic activity in a miniaturized MFC with unlimited biodegradable energy resources would enable simple power generation in various environmental settings. However, the short shelf-life of living biocatalysts, few ways to activate the stored biocatalysts, and extremely low electrocatalytic capabilities render the miniature MFCs unsuitable for practical use. Here, heat-activated Bacillus subtilis spores are revolutionarily used as a dormant biocatalyst that can survive storage and rapidly germinate when exposed to special nutrients that are preloaded in the device. A microporous, graphene hydrogel allows the adsorption of moisture from the air, moves the nutrients to the spores, and triggers their germination for power generation. In particular, forming a CuO-hydrogel anode and an Ag2 O-hydrogel cathode promotes superior electrocatalytic activities leading to an exceptionally high electrical performance in the MFC. The battery-type MFC device is readily activated by moisture harvesting, producing a maximum power density of 0.4 mW cm-2 and a maximum current density of 2.2 mA cm-2 . The MFC configuration is readily stackable in series and a three-MFC pack produces enough power for several low-power applications, demonstrating its practical feasibility as a sole power source.
Collapse
Affiliation(s)
- Maryam Rezaie
- Bioelectronics and Microsystems Laboratory, Department of Electrical and Computer Engineering, State University of New York at Binghamton, Binghamton, NY, 13902, USA
| | - Seokheun Choi
- Bioelectronics and Microsystems Laboratory, Department of Electrical and Computer Engineering, State University of New York at Binghamton, Binghamton, NY, 13902, USA
- Center for Research in Advanced Sensing Technologies and Environmental Sustainability, State University of New York at Binghamton, Binghamton, NY, 13902, USA
| |
Collapse
|
12
|
Pérez-Lorente AI, Molina-Santiago C, de Vicente A, Romero D. Sporulation Activated via σ W Protects Bacillus from a Tse1 Peptidoglycan Hydrolase Type VI Secretion System Effector. Microbiol Spectr 2023; 11:e0504522. [PMID: 36916921 PMCID: PMC10100999 DOI: 10.1128/spectrum.05045-22] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 02/21/2023] [Indexed: 03/16/2023] Open
Abstract
Within bacterial communities, community members engage in interactions employing diverse offensive and defensive tools to reach coexistence. Extracellular-matrix production and sporulation are defensive mechanisms used by Bacillus subtilis cells when they interact with Pseudomonas chlororaphis strains expressing a type VI secretion system (T6SS). Here, we define Tse1 as the main toxin mobilized by the Pseudomonas chlororaphis T6SS that triggers sporulation in Bacillus subtilis. We characterize Tse1 as a peptidoglycan hydrolase that indirectly alters the dynamics and functionality of the Bacillus cell membrane. We also delineate the response of Bacillus cells to Tse1, which through the coordinated actions of the extracellular sigma factor σW and the cytoplasmic histidine kinases KinA and KinB, culminates in activation of the sporulation cascade. We propose that this cellular developmental response permits bacilli to defend against the toxicity of T6SS-mobilized Tse1 effector. IMPORTANCE The study of bacterial interactions is helping to define species-specific strategies used to modulate the competition dynamics underlying the development of community compositions. In this study, we deciphered the role of Pseudomonas T6SS when competing with Bacillus and the mechanism by which a T6SS-toxin modifies Bacillus physiology. We found that Pseudomonas triggers Bacillus sporulation by injecting through T6SS a toxin that we called Tse1. We found that Tse1 is a hydrolase that degrades Bacillus peptidoglycan and indirectly damages Bacillus membrane functionality. In addition, we demonstrated the mechanism by which Bacillus cells increase the sporulation rate upon recognition of the presence of Tse1. Interestingly, asporogenic Bacillus cells are more sensitive to T6SS activity, which led us to propose sporulation as a last resort of bacilli to overcome this family of toxins.
Collapse
Affiliation(s)
- Alicia I. Pérez-Lorente
- Instituto de Hortofruticultura Subtropical y Mediterránea La Mayora, Universidad de Málaga-Consejo Superior de Investigaciones Científicas, Departamento de Microbiología, Universidad de Málaga, Málaga, Spain
| | - Carlos Molina-Santiago
- Instituto de Hortofruticultura Subtropical y Mediterránea La Mayora, Universidad de Málaga-Consejo Superior de Investigaciones Científicas, Departamento de Microbiología, Universidad de Málaga, Málaga, Spain
| | - Antonio de Vicente
- Instituto de Hortofruticultura Subtropical y Mediterránea La Mayora, Universidad de Málaga-Consejo Superior de Investigaciones Científicas, Departamento de Microbiología, Universidad de Málaga, Málaga, Spain
| | - Diego Romero
- Instituto de Hortofruticultura Subtropical y Mediterránea La Mayora, Universidad de Málaga-Consejo Superior de Investigaciones Científicas, Departamento de Microbiología, Universidad de Málaga, Málaga, Spain
| |
Collapse
|
13
|
de Souza‐Guerreiro TC, Bondelli G, Grobas I, Donini S, Sesti V, Bertarelli C, Lanzani G, Asally M, Paternò GM. Membrane Targeted Azobenzene Drives Optical Modulation of Bacterial Membrane Potential. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2205007. [PMID: 36710255 PMCID: PMC10015841 DOI: 10.1002/advs.202205007] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 01/17/2023] [Indexed: 05/29/2023]
Abstract
Recent studies have shown that bacterial membrane potential is dynamic and plays signaling roles. Yet, little is still known about the mechanisms of membrane potential dynamics regulation-owing to a scarcity of appropriate research tools. Optical modulation of bacterial membrane potential could fill this gap and provide a new approach for studying and controlling bacterial physiology and electrical signaling. Here, the authors show that a membrane-targeted azobenzene (Ziapin2) can be used to photo-modulate the membrane potential in cells of the Gram-positive bacterium Bacillus subtilis. It is found that upon exposure to blue-green light (λ = 470 nm), isomerization of Ziapin2 in the bacteria membrane induces hyperpolarization of the potential. To investigate the origin of this phenomenon, ion-channel-deletion strains and ion channel blockers are examined. The authors found that in presence of the chloride channel blocker idanyloxyacetic acid-94 (IAA-94) or in absence of KtrAB potassium transporter, the hyperpolarization response is attenuated. These results reveal that the Ziapin2 isomerization can induce ion channel opening in the bacterial membrane and suggest that Ziapin2 can be used for studying and controlling bacterial electrical signaling. This new optical tool could contribute to better understand various microbial phenomena, such as biofilm electric signaling and antimicrobial resistance.
Collapse
Affiliation(s)
| | - Gaia Bondelli
- Center for Nanoscience and TechnologyIstituto Italiano di TeconologiaMilano20133Italy
| | - Iago Grobas
- Physical and Theoretical Chemistry LaboratoryOxfordOX1 3QZUK
| | - Stefano Donini
- Center for Nanoscience and TechnologyIstituto Italiano di TeconologiaMilano20133Italy
| | - Valentina Sesti
- Department of Chemistry, Materials and Chemical Engineering “Giulio Natta” Politecnico di MilanoMilano20133Italy
| | - Chiara Bertarelli
- Department of Chemistry, Materials and Chemical Engineering “Giulio Natta” Politecnico di MilanoMilano20133Italy
| | - Guglielmo Lanzani
- Center for Nanoscience and TechnologyIstituto Italiano di TeconologiaMilano20133Italy
- Department of PhysicsPolitecnico di MilanoMilano20133Italy
| | - Munehiro Asally
- School of Life SciencesUniversity of WarwickCoventryCV4 7ALUK
| | - Giuseppe Maria Paternò
- Center for Nanoscience and TechnologyIstituto Italiano di TeconologiaMilano20133Italy
- Department of PhysicsPolitecnico di MilanoMilano20133Italy
| |
Collapse
|
14
|
Zare F, Ghasemi N, Bansal N, Hosano H. Advances in pulsed electric stimuli as a physical method for treating liquid foods. Phys Life Rev 2023; 44:207-266. [PMID: 36791571 DOI: 10.1016/j.plrev.2023.01.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Accepted: 01/28/2023] [Indexed: 02/05/2023]
Abstract
There is a need for alternative technologies that can deliver safe and nutritious foods at lower costs as compared to conventional processes. Pulsed electric field (PEF) technology has been utilised for a plethora of different applications in the life and physical sciences, such as gene/drug delivery in medicine and extraction of bioactive compounds in food science and technology. PEF technology for treating liquid foods involves engineering principles to develop the equipment, and quantitative biochemistry and microbiology techniques to validate the process. There are numerous challenges to address for its application in liquid foods such as the 5-log pathogen reduction target in food safety, maintaining the food quality, and scale up of this physical approach for industrial integration. Here, we present the engineering principles associated with pulsed electric fields, related inactivation models of microorganisms, electroporation and electropermeabilization theory, to increase the quality and safety of liquid foods; including water, milk, beer, wine, fruit juices, cider, and liquid eggs. Ultimately, we discuss the outlook of the field and emphasise research gaps.
Collapse
Affiliation(s)
- Farzan Zare
- School of Information Technology and Electrical Engineering, The University of Queensland, Brisbane, St Lucia QLD 4072, Australia; School of Agriculture and Food Sciences, The University of Queensland, St Lucia QLD 4072, Australia
| | - Negareh Ghasemi
- School of Information Technology and Electrical Engineering, The University of Queensland, Brisbane, St Lucia QLD 4072, Australia
| | - Nidhi Bansal
- School of Agriculture and Food Sciences, The University of Queensland, St Lucia QLD 4072, Australia
| | - Hamid Hosano
- Biomaterials and Bioelectrics Department, Institute of Industrial Nanomaterials, Kumamoto University, Kumamoto 860-8555, Japan.
| |
Collapse
|
15
|
Makino D, Ueki A, Matsumoto H, Nagamine K. Minimally invasive current-controlled electrical stimulation system for bacteria using highly capacitive conducting polymer-modified electrodes. Bioelectrochemistry 2023; 149:108290. [DOI: 10.1016/j.bioelechem.2022.108290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 10/04/2022] [Accepted: 10/07/2022] [Indexed: 11/07/2022]
|
16
|
Sensitive bacterial V m sensors revealed the excitability of bacterial V m and its role in antibiotic tolerance. Proc Natl Acad Sci U S A 2023; 120:e2208348120. [PMID: 36623202 PMCID: PMC9934018 DOI: 10.1073/pnas.2208348120] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
As an important free energy source, the membrane voltage (Vm) regulates many essential physiological processes in bacteria. However, in comparison with eukaryotic cells, knowledge of bacterial electrophysiology is very limited. Here, we developed a set of novel genetically encoded bacterial Vm sensors which allow single-cell recording of bacterial Vm dynamics in live cells with high temporal resolution. Using these new sensors, we reveal the electrically "excitable" and "resting" states of bacterial cells dependent on their metabolic status. In the electrically excitable state, frequent hyperpolarization spikes in bacterial Vm are observed, which are regulated by Na+/K+ ratio of the medium and facilitate increased antibiotic tolerance. In the electrically resting state, bacterial Vm displays significant cell-to-cell heterogeneity and is linked to the cell fate after antibiotic treatment. Our findings demonstrate the potential of our newly developed voltage sensors to reveal the underpinning connections between bacterial Vm and antibiotic tolerance.
Collapse
|
17
|
Kikuchi K, Galera-Laporta L, Weatherwax C, Lam JY, Moon EC, Theodorakis EA, Garcia-Ojalvo J, Süel GM. Electrochemical potential enables dormant spores to integrate environmental signals. Science 2022; 378:43-49. [PMID: 36201591 PMCID: PMC10593254 DOI: 10.1126/science.abl7484] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/13/2023]
Abstract
The dormant state of bacterial spores is generally thought to be devoid of biological activity. We show that despite continued dormancy, spores can integrate environmental signals over time through a preexisting electrochemical potential. Specifically, we studied thousands of individual Bacillus subtilis spores that remain dormant when exposed to transient nutrient pulses. Guided by a mathematical model of bacterial electrophysiology, we modulated the decision to exit dormancy by genetically and chemically targeting potassium ion flux. We confirmed that short nutrient pulses result in step-like changes in the electrochemical potential of persistent spores. During dormancy, spores thus gradually release their stored electrochemical potential to integrate extracellular information over time. These findings reveal a decision-making mechanism that operates in physiologically inactive cells.
Collapse
Affiliation(s)
- Kaito Kikuchi
- Molecular Biology Section, Division of Biological Sciences, University of California San Diego; La Jolla, CA 92093, USA
| | - Leticia Galera-Laporta
- Molecular Biology Section, Division of Biological Sciences, University of California San Diego; La Jolla, CA 92093, USA
| | - Colleen Weatherwax
- Molecular Biology Section, Division of Biological Sciences, University of California San Diego; La Jolla, CA 92093, USA
| | - Jamie Y Lam
- Department of Chemistry and Biochemistry, University of California San Diego; La Jolla, CA 92093, USA
| | - Eun Chae Moon
- Molecular Biology Section, Division of Biological Sciences, University of California San Diego; La Jolla, CA 92093, USA
| | - Emmanuel A Theodorakis
- Department of Chemistry and Biochemistry, University of California San Diego; La Jolla, CA 92093, USA
| | - Jordi Garcia-Ojalvo
- Department of Medicine and Life Sciences, Universitat Pompeu Fabra; 08003 Barcelona, Spain
- Senior author
| | - Gürol M Süel
- Molecular Biology Section, Division of Biological Sciences, University of California San Diego; La Jolla, CA 92093, USA
- San Diego Center for Systems Biology, University of California San Diego; La Jolla, CA 92093-0380, USA
- Center for Microbiome Innovation, University of California San Diego; La Jolla, CA 92093-0380, USA
- Senior author
| |
Collapse
|
18
|
Gelidiales Are Not Just Agar—Revealing the Antimicrobial Potential of Gelidium corneum for Skin Disorders. Antibiotics (Basel) 2022; 11:antibiotics11040481. [PMID: 35453232 PMCID: PMC9030148 DOI: 10.3390/antibiotics11040481] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Revised: 03/30/2022] [Accepted: 04/01/2022] [Indexed: 02/04/2023] Open
Abstract
In recent decades, seaweeds have proven to be an excellent source of bioactive molecules. Presently, the seaweed Gelidium corneum is harvested in a small area of the Portuguese coast exclusively for agar extraction. The aim of this work was to fully disclosure Gelidium corneum as a sustainable source of antimicrobial ingredients for new dermatological formulations, highlighting its potential to be explored in a circular economy context. For this purpose, after a green sequential extraction, these seaweed fractions (F1–F5) were chemically characterized (1H NMR) and evaluated for their antimicrobial potential against Staphylococcus aureus, Staphylococcus epidermidis and Cutibacterium acnes. The most active fractions were also evaluated for their effects on membrane potential, membrane integrity and DNA damage. Fractions F2 and F3 displayed the best results, with IC50 values of 16.1 (7.27–23.02) μg/mL and 51.04 (43.36–59.74) μg/mL against C. acnes, respectively, and 53.29 (48.75–57.91) μg/mL and 102.80 (87.15–122.30) μg/mL against S. epidermidis, respectively. The antimicrobial effects of both fractions seem to be related to membrane hyperpolarization and DNA damage. This dual mechanism of action may provide therapeutic advantages for the treatment of skin dysbiosis-related diseases.
Collapse
|
19
|
Abstract
Background The growing field of bacterial electrophysiology examines the relationship between bacterial membrane potential and cell division, growth, sporulation, and biofilm formation. These experiments require Nernstian fluorescent dyes to monitor membrane potential. Our research uses single cell imaging to determine if a common fluorescent dye, Thioflavin T (ThT), affects the growth of bacteria. Materials and Methods We use a combination of standard growth curve measurements and single cell imaging, both brightfield and fluorescence microscopy, to monitor the growth of Bacillus subtilis and Escherichia coli as a function of ThT concentration. Increased membrane potential (hyperpolarization) leads to increased intracellular accumulation of ThT: High fluorescence intensity is an indicator of hyperpolarization. Blue light is used to hyperpolarize a subpopulation of cells to monitor cellular elongation in response to increased cellular internalization of ThT. Results Single cell imaging shows that the elongation rates of B. subtilis and E. coli are decreased when these cells are incubated with ThT. At micromolar concentrations of ThT, this effect may be masked in standard growth curves, but is visible with single cell measurements on agarose pads. Conclusions The increased cellular accumulation of ThT is a standard measure of hyperpolarization in bacterial electrophysiology. Growth curves, a bulk measurement, are typically used to determine suitable concentrations of ThT for use in experiments. Single cell measurements show that cells incubated with ThT have decreased elongation rates. This creates a potential experimental artifact that could lead to misinterpretation of data. Hyperpolarized cells internalize more ThT. This increased intracellular concentration of ThT, rather than the change in membrane potential, could lead to decreased growth. These experiments point toward the importance of single cell measurements to detect subtle changes in cell growth. We hope this research will be useful for other researchers in their choice of dye for the detection of membrane potential.
Collapse
Affiliation(s)
- Xu Han
- Department of Mechanical Engineering and Materials Science, Duke University, Durham, North Carolina, USA
| | - Christine K. Payne
- Department of Mechanical Engineering and Materials Science, Duke University, Durham, North Carolina, USA
| |
Collapse
|
20
|
Galera-Laporta L, Comerci CJ, Garcia-Ojalvo J, Süel GM. IonoBiology: The functional dynamics of the intracellular metallome, with lessons from bacteria. Cell Syst 2021; 12:497-508. [PMID: 34139162 PMCID: PMC8570674 DOI: 10.1016/j.cels.2021.04.011] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 04/16/2021] [Accepted: 04/28/2021] [Indexed: 12/29/2022]
Abstract
Metal ions are essential for life and represent the second most abundant constituent (after water) of any living cell. While the biological importance of inorganic ions has been appreciated for over a century, we are far from a comprehensive understanding of the functional roles that ions play in cells and organisms. In particular, recent advances are challenging the traditional view that cells maintain constant levels of ion concentrations (ion homeostasis). In fact, the ionic composition (metallome) of cells appears to be purposefully dynamic. The scientific journey that started over 60 years ago with the seminal work by Hodgkin and Huxley on action potentials in neurons is far from reaching its end. New evidence is uncovering how changes in ionic composition regulate unexpected cellular functions and physiology, especially in bacteria, thereby hinting at the evolutionary origins of the dynamic metallome. It is an exciting time for this field of biology, which we discuss and refer to here as IonoBiology.
Collapse
Affiliation(s)
- Leticia Galera-Laporta
- Molecular Biology Section, Division of Biological Sciences, University of California, San Diego, La Jolla, CA 92093, USA
| | - Colin J Comerci
- Molecular Biology Section, Division of Biological Sciences, University of California, San Diego, La Jolla, CA 92093, USA
| | - Jordi Garcia-Ojalvo
- Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Barcelona 08003, Spain
| | - Gürol M Süel
- Molecular Biology Section, Division of Biological Sciences, University of California, San Diego, La Jolla, CA 92093, USA; San Diego Center for Systems Biology, University of California, San Diego, La Jolla, CA 92093- 0380, USA; Center for Microbiome Innovation, University of California, San Diego, La Jolla, CA 92093-0380, USA.
| |
Collapse
|
21
|
Alegun O, Pandeya A, Cui J, Ojo I, Wei Y. Donnan Potential across the Outer Membrane of Gram-Negative Bacteria and Its Effect on the Permeability of Antibiotics. Antibiotics (Basel) 2021; 10:701. [PMID: 34208097 PMCID: PMC8230823 DOI: 10.3390/antibiotics10060701] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 06/01/2021] [Accepted: 06/07/2021] [Indexed: 11/16/2022] Open
Abstract
The cell envelope structure of Gram-negative bacteria is unique, composed of two lipid bilayer membranes and an aqueous periplasmic space sandwiched in between. The outer membrane constitutes an extra barrier to limit the exchange of molecules between the cells and the exterior environment. Donnan potential is a membrane potential across the outer membrane, resulted from the selective permeability of the membrane, which plays a pivotal role in the permeability of many antibiotics. In this review, we discussed factors that affect the intensity of the Donnan potential, including the osmotic strength and pH of the external media, the osmoregulated periplasmic glucans trapped in the periplasmic space, and the displacement of cell surface charges. The focus of our discussion is the impact of Donnan potential on the cellular permeability of selected antibiotics including fluoroquinolones, tetracyclines, β-lactams, and trimethoprim.
Collapse
Affiliation(s)
| | | | | | | | - Yinan Wei
- Department of Chemistry, University of Kentucky, Lexington, KY 40506, USA; (O.A.); (A.P.); (J.C.); (I.O.)
| |
Collapse
|
22
|
Paternò GM, Bondelli G, Lanzani G. Bringing Microbiology to Light: Toward All-Optical Electrophysiology in Bacteria. Bioelectricity 2021; 3:136-142. [PMID: 34476389 DOI: 10.1089/bioe.2021.0008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The observation of neuron-like behavior in bacteria, such as the occurrence of electric spiking and extended bioelectric signaling, points to the role of membrane dynamics in prokaryotes. Electrophysiology of bacteria, however, has been overlooked for long time, due to the difficulties in monitoring bacterial bioelectric phenomena with those probing techniques that are commonly used for eukaryotes. Optical technologies can allow a paradigm shift in the field of electrophysiology of bacteria, as they would permit to elicit and monitor signaling rapidly, remotely, and with high spatiotemporal precision. In this perspective, we discuss about the potentiality of light interrogation methods in microbiology, encouraging the development of all-optical electrophysiology of bacteria.
Collapse
Affiliation(s)
| | - Gaia Bondelli
- Center for Nanoscience and Technology, Istituto Italiano di Tecnologia, Milano, Italy.,Physics Department, Politecnico di Milano, Milano, Italy
| | - Guglielmo Lanzani
- Center for Nanoscience and Technology, Istituto Italiano di Tecnologia, Milano, Italy.,Physics Department, Politecnico di Milano, Milano, Italy
| |
Collapse
|
23
|
Biquet-Bisquert A, Labesse G, Pedaci F, Nord AL. The Dynamic Ion Motive Force Powering the Bacterial Flagellar Motor. Front Microbiol 2021; 12:659464. [PMID: 33927708 PMCID: PMC8076557 DOI: 10.3389/fmicb.2021.659464] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Accepted: 03/02/2021] [Indexed: 11/13/2022] Open
Abstract
The bacterial flagellar motor (BFM) is a rotary molecular motor embedded in the cell membrane of numerous bacteria. It turns a flagellum which acts as a propeller, enabling bacterial motility and chemotaxis. The BFM is rotated by stator units, inner membrane protein complexes that stochastically associate to and dissociate from individual motors at a rate which depends on the mechanical and electrochemical environment. Stator units consume the ion motive force (IMF), the electrochemical gradient across the inner membrane that results from cellular respiration, converting the electrochemical energy of translocated ions into mechanical energy, imparted to the rotor. Here, we review some of the main results that form the base of our current understanding of the relationship between the IMF and the functioning of the flagellar motor. We examine a series of studies that establish a linear proportionality between IMF and motor speed, and we discuss more recent evidence that the stator units sense the IMF, altering their rates of dynamic assembly. This, in turn, raises the question of to what degree the classical dependence of motor speed on IMF is due to stator dynamics vs. the rate of ion flow through the stators. Finally, while long assumed to be static and homogeneous, there is mounting evidence that the IMF is dynamic, and that its fluctuations control important phenomena such as cell-to-cell signaling and mechanotransduction. Within the growing toolbox of single cell bacterial electrophysiology, one of the best tools to probe IMF fluctuations may, ironically, be the motor that consumes it. Perfecting our incomplete understanding of how the BFM employs the energy of ion flow will help decipher the dynamical behavior of the bacterial IMF.
Collapse
Affiliation(s)
- Anaïs Biquet-Bisquert
- Centre de Biologie Structurale (CBS), INSERM, CNRS, Université Montpellier, Montpellier, France
| | - Gilles Labesse
- Centre de Biologie Structurale (CBS), INSERM, CNRS, Université Montpellier, Montpellier, France
| | - Francesco Pedaci
- Centre de Biologie Structurale (CBS), INSERM, CNRS, Université Montpellier, Montpellier, France
| | - Ashley L Nord
- Centre de Biologie Structurale (CBS), INSERM, CNRS, Université Montpellier, Montpellier, France
| |
Collapse
|
24
|
Stautz J, Hellmich Y, Fuss MF, Silberberg JM, Devlin JR, Stockbridge RB, Hänelt I. Molecular Mechanisms for Bacterial Potassium Homeostasis. J Mol Biol 2021; 433:166968. [PMID: 33798529 DOI: 10.1016/j.jmb.2021.166968] [Citation(s) in RCA: 74] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 03/11/2021] [Accepted: 03/22/2021] [Indexed: 10/21/2022]
Abstract
Potassium ion homeostasis is essential for bacterial survival, playing roles in osmoregulation, pH homeostasis, regulation of protein synthesis, enzyme activation, membrane potential adjustment and electrical signaling. To accomplish such diverse physiological tasks, it is not surprising that a single bacterium typically encodes several potassium uptake and release systems. To understand the role each individual protein fulfills and how these proteins work in concert, it is important to identify the molecular details of their function. One needs to understand whether the systems transport ions actively or passively, and what mechanisms or ligands lead to the activation or inactivation of individual systems. Combining mechanistic information with knowledge about the physiology under different stress situations, such as osmostress, pH stress or nutrient limitation, one can identify the task of each system and deduce how they are coordinated with each other. By reviewing the general principles of bacterial membrane physiology and describing the molecular architecture and function of several bacterial K+-transporting systems, we aim to provide a framework for microbiologists studying bacterial potassium homeostasis and the many K+-translocating systems that are still poorly understood.
Collapse
Affiliation(s)
- Janina Stautz
- Institute of Biochemistry, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Yvonne Hellmich
- Institute of Biochemistry, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Michael F Fuss
- Institute of Biochemistry, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Jakob M Silberberg
- Institute of Biochemistry, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Jason R Devlin
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI, United States
| | - Randy B Stockbridge
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI, United States.
| | - Inga Hänelt
- Institute of Biochemistry, Goethe University Frankfurt, Frankfurt am Main, Germany.
| |
Collapse
|
25
|
Biofuels from Micro-Organisms: Thermodynamic Considerations on the Role of Electrochemical Potential on Micro-Organisms Growth. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11062591] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Biofuels from micro-organisms represents a possible response to the carbon dioxide mitigation. One open problem is to improve their productivity, in terms of biofuels production. To do so, an improvement of the present model of growth and production is required. However, this implies an understanding of the growth spontaneous conditions of the bacteria. In this paper, a thermodynamic approach is developed in order to highlight the fundamental role of the electrochemical potential in bacteria proliferation. Temperature effect on the biosystem behaviour has been pointed out. The results link together the electrochemical potential, the membrane electric potential, the pH gradient through the membrane, and the temperature, with the result of improving the thermodynamic approaches, usually introduced in this topic of research.
Collapse
|
26
|
Grobas I, Bazzoli DG, Asally M. Biofilm and swarming emergent behaviours controlled through the aid of biophysical understanding and tools. Biochem Soc Trans 2020; 48:2903-2913. [PMID: 33300966 PMCID: PMC7752047 DOI: 10.1042/bst20200972] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 10/28/2020] [Accepted: 10/29/2020] [Indexed: 02/06/2023]
Abstract
Bacteria can organise themselves into communities in the forms of biofilms and swarms. Through chemical and physical interactions between cells, these communities exhibit emergent properties that individual cells alone do not have. While bacterial communities have been mainly studied in the context of biochemistry and molecular biology, recent years have seen rapid advancements in the biophysical understanding of emergent phenomena through physical interactions in biofilms and swarms. Moreover, new technologies to control bacterial emergent behaviours by physical means are emerging in synthetic biology. Such technologies are particularly promising for developing engineered living materials (ELM) and devices and controlling contamination and biofouling. In this minireview, we overview recent studies unveiling physical and mechanical cues that trigger and affect swarming and biofilm development. In particular, we focus on cell shape, motion and density as the key parameters for mechanical cell-cell interactions within a community. We then showcase recent studies that use physical stimuli for patterning bacterial communities, altering collective behaviours and preventing biofilm formation. Finally, we discuss the future potential extension of biophysical and bioengineering research on microbial communities through computational modelling and deeper investigation of mechano-electrophysiological coupling.
Collapse
Affiliation(s)
- Iago Grobas
- School of Life Sciences, University of Warwick, Coventry CV4 7AL, U.K
- Warwick Medical School, University of Warwick, Coventry CV4 7AL, U.K
| | - Dario G. Bazzoli
- School of Chemical Engineering, University of Birmingham, Birmingham B15 2TT, U.K
| | - Munehiro Asally
- School of Life Sciences, University of Warwick, Coventry CV4 7AL, U.K
- Warwick Integrative Synthetic Biology Centre, University of Warwick, Coventry CV4 7AL, U.K
- Bio-Electrical Engineering Innovation Hub, University of Warwick, Coventry CV4 7AL, U.K
| |
Collapse
|
27
|
Han X, Foster BR, Payne CK. Electrical Control of Escherichia coli Growth Measured with Simultaneous Modulation and Imaging. Bioelectricity 2020; 2:221-228. [PMID: 34476354 PMCID: PMC8370336 DOI: 10.1089/bioe.2020.0002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Background: The use of electricity to mediate bacterial growth is unique in providing spatial control, but requires a more detailed understanding. Methods: We use two gold wires on a glass coverslip with an overlayer of agar to image Escherichia coli cells with brightfield and fluorescence microscopy while simultaneously applying a voltage. Cells outside of the wires provide a control population to measure cell growth as a function of voltage, rather than any difference in culture conditions or growth phase. Results: An applied voltage suppresses the fraction of E. coli undergoing elongation and division with recovery to control values when the voltage is removed. Depolarization is observed over the same voltage range suggesting a membrane potential-mediated response. Conclusions: Our experiments identify and use subcytotoxic voltages to measure differences in the fraction of E. coli cells elongating and dividing as a function of applied voltage. It is hoped that this research will inform the developing field of bacterial electrophysiology.
Collapse
Affiliation(s)
- Xu Han
- Department of Mechanical Engineering and Materials Science, Duke University, Durham, North Carolina, USA
| | - Bradley R. Foster
- Department of Mechanical Engineering and Materials Science, Duke University, Durham, North Carolina, USA
| | - Christine K. Payne
- Department of Mechanical Engineering and Materials Science, Duke University, Durham, North Carolina, USA
| |
Collapse
|
28
|
Bruni GN, Kralj JM. Membrane voltage dysregulation driven by metabolic dysfunction underlies bactericidal activity of aminoglycosides. eLife 2020; 9:58706. [PMID: 32748785 PMCID: PMC7406350 DOI: 10.7554/elife.58706] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Accepted: 07/24/2020] [Indexed: 12/15/2022] Open
Abstract
Aminoglycosides are broad-spectrum antibiotics whose mechanism of action is under debate. It is widely accepted that membrane voltage potentiates aminoglycoside activity, which is ascribed to voltage-dependent drug uptake. In this paper, we measured the response of Escherichia coli treated with aminoglycosides and discovered that the bactericidal action arises not from the downstream effects of voltage-dependent drug uptake, but rather directly from dysregulated membrane potential. In the absence of voltage, aminoglycosides are taken into cells and exert bacteriostatic effects by inhibiting translation. However, cell killing was immediate upon re-polarization. The hyperpolarization arose from altered ATP flux, which induced a reversal of the F1Fo-ATPase to hydrolyze ATP and generated the deleterious voltage. Heterologous expression of an ATPase inhibitor completely eliminated bactericidal activity, while loss of the F-ATPase reduced the electrophysiological response to aminoglycosides. Our data support a model of voltage-induced death, and separates aminoglycoside bacteriostasis and bactericide in E. coli.
Collapse
Affiliation(s)
- Giancarlo Noe Bruni
- BioFrontiers Institute and the Department of Molecular, Cellular, Developmental Biology, University of Colorado Boulder, Boulder, United States
| | - Joel M Kralj
- BioFrontiers Institute and the Department of Molecular, Cellular, Developmental Biology, University of Colorado Boulder, Boulder, United States
| |
Collapse
|
29
|
Yang CY, Bialecka-Fornal M, Weatherwax C, Larkin JW, Prindle A, Liu J, Garcia-Ojalvo J, Süel GM. Encoding Membrane-Potential-Based Memory within a Microbial Community. Cell Syst 2020; 10:417-423.e3. [PMID: 32343961 PMCID: PMC7286314 DOI: 10.1016/j.cels.2020.04.002] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 02/13/2020] [Accepted: 04/02/2020] [Indexed: 12/29/2022]
Abstract
Cellular membrane potential plays a key role in the formation and retrieval of memories in the metazoan brain, but it remains unclear whether such memory can also be encoded in simpler organisms like bacteria. Here, we show that single-cell-level memory patterns can be imprinted in bacterial biofilms by light-induced changes in the membrane potential. We demonstrate that transient optical perturbations generate a persistent and robust potassium-channel-mediated change in the membrane potential of bacteria within the biofilm. The light-exposed cells respond in an anti-phase manner, relative to unexposed cells, to both natural and induced oscillations in extracellular ion concentrations. This anti-phase response, which persists for hours following the transient optical stimulus, enables a direct single-cell resolution visualization of spatial memory patterns within the biofilm. The ability to encode robust and persistent membrane-potential-based memory patterns could enable computations within prokaryotic communities and suggests a parallel between neurons and bacteria.
Collapse
Affiliation(s)
- Chih-Yu Yang
- Division of Biological Sciences, University of California, San Diego, Pacific Hall Room 2225B, Mail Code 0347, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Maja Bialecka-Fornal
- Division of Biological Sciences, University of California, San Diego, Pacific Hall Room 2225B, Mail Code 0347, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Colleen Weatherwax
- Division of Biological Sciences, University of California, San Diego, Pacific Hall Room 2225B, Mail Code 0347, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Joseph W Larkin
- Division of Biological Sciences, University of California, San Diego, Pacific Hall Room 2225B, Mail Code 0347, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Arthur Prindle
- Division of Biological Sciences, University of California, San Diego, Pacific Hall Room 2225B, Mail Code 0347, 9500 Gilman Drive, La Jolla, CA 92093, USA; Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Jintao Liu
- Division of Biological Sciences, University of California, San Diego, Pacific Hall Room 2225B, Mail Code 0347, 9500 Gilman Drive, La Jolla, CA 92093, USA; Center for Infectious Diseases Research and Tsinghua-Peking Center for Life Sciences, School of Medicine, Tsinghua University, Beijing 100084, People's Republic of China
| | - Jordi Garcia-Ojalvo
- Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Barcelona Biomedical Research Park, Barcelona 08003, Spain
| | - Gürol M Süel
- Division of Biological Sciences, University of California, San Diego, Pacific Hall Room 2225B, Mail Code 0347, 9500 Gilman Drive, La Jolla, CA 92093, USA; San Diego Center for Systems Biology, University of California, San Diego, La Jolla, CA 92093, USA; Center for Microbiome Innovation, University of California, San Diego, La Jolla, CA 92093-0380, USA.
| |
Collapse
|
30
|
Schofield Z, Meloni GN, Tran P, Zerfass C, Sena G, Hayashi Y, Grant M, Contera SA, Minteer SD, Kim M, Prindle A, Rocha P, Djamgoz MBA, Pilizota T, Unwin PR, Asally M, Soyer OS. Bioelectrical understanding and engineering of cell biology. J R Soc Interface 2020; 17:20200013. [PMID: 32429828 PMCID: PMC7276535 DOI: 10.1098/rsif.2020.0013] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Accepted: 04/17/2020] [Indexed: 02/07/2023] Open
Abstract
The last five decades of molecular and systems biology research have provided unprecedented insights into the molecular and genetic basis of many cellular processes. Despite these insights, however, it is arguable that there is still only limited predictive understanding of cell behaviours. In particular, the basis of heterogeneity in single-cell behaviour and the initiation of many different metabolic, transcriptional or mechanical responses to environmental stimuli remain largely unexplained. To go beyond the status quo, the understanding of cell behaviours emerging from molecular genetics must be complemented with physical and physiological ones, focusing on the intracellular and extracellular conditions within and around cells. Here, we argue that such a combination of genetics, physics and physiology can be grounded on a bioelectrical conceptualization of cells. We motivate the reasoning behind such a proposal and describe examples where a bioelectrical view has been shown to, or can, provide predictive biological understanding. In addition, we discuss how this view opens up novel ways to control cell behaviours by electrical and electrochemical means, setting the stage for the emergence of bioelectrical engineering.
Collapse
Affiliation(s)
- Zoe Schofield
- Bio-Electrical Engineering Innovation Hub, University of Warwick, Coventry CV4 7AL, UK
- School of Life Sciences, University of Warwick, Coventry CV4 7AL, UK
| | - Gabriel N. Meloni
- Bio-Electrical Engineering Innovation Hub, University of Warwick, Coventry CV4 7AL, UK
- Department of Chemistry, University of Warwick, Coventry CV4 7AL, UK
| | - Peter Tran
- Department of Chemical and Biological Engineering, Northwestern University, Chicago, IL 60611, USA
| | - Christian Zerfass
- Bio-Electrical Engineering Innovation Hub, University of Warwick, Coventry CV4 7AL, UK
- School of Life Sciences, University of Warwick, Coventry CV4 7AL, UK
| | - Giovanni Sena
- Department of Life Sciences, Imperial College London, South Kensington Campus, London SW7 2AZ, UK
| | - Yoshikatsu Hayashi
- Department of Biomedical Engineering, School of Biological Sciences, University of Reading, Reading RG6 6AH, UK
| | - Murray Grant
- Bio-Electrical Engineering Innovation Hub, University of Warwick, Coventry CV4 7AL, UK
- School of Life Sciences, University of Warwick, Coventry CV4 7AL, UK
| | - Sonia A. Contera
- Clarendon Laboratory, Physics Department, University of Oxford, Parks Road, Oxford OX1 3PU, UK
| | - Shelley D. Minteer
- Department of Chemistry, University of Utah, 315 S 1400 E, Salt Lake City, Utah 84112, USA
| | - Minsu Kim
- Department of Physics, Emory University, Atlanta, GA 30322, USA
| | - Arthur Prindle
- Department of Chemical and Biological Engineering, Northwestern University, Chicago, IL 60611, USA
| | - Paulo Rocha
- Centre for Biosensors, Bioelectronics and Biodevices (C3Bio), Department of Electronic and Electrical Engineering, University of Bath, Claverton Down, Bath BA2 7AY, UK
| | - Mustafa B. A. Djamgoz
- Department of Life Sciences, Imperial College London, South Kensington Campus, London SW7 2AZ, UK
| | - Teuta Pilizota
- Systems and Synthetic Biology Centre and School of Biological Sciences, University of Edinburgh, Alexander Crum Brown Road, Edinburgh EH9 3FF, UK
| | - Patrick R. Unwin
- Bio-Electrical Engineering Innovation Hub, University of Warwick, Coventry CV4 7AL, UK
- Department of Chemistry, University of Warwick, Coventry CV4 7AL, UK
| | - Munehiro Asally
- Bio-Electrical Engineering Innovation Hub, University of Warwick, Coventry CV4 7AL, UK
- School of Life Sciences, University of Warwick, Coventry CV4 7AL, UK
| | - Orkun S. Soyer
- Bio-Electrical Engineering Innovation Hub, University of Warwick, Coventry CV4 7AL, UK
- School of Life Sciences, University of Warwick, Coventry CV4 7AL, UK
| |
Collapse
|
31
|
Benarroch JM, Asally M. The Microbiologist’s Guide to Membrane Potential Dynamics. Trends Microbiol 2020; 28:304-314. [DOI: 10.1016/j.tim.2019.12.008] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 11/25/2019] [Accepted: 12/09/2019] [Indexed: 10/25/2022]
|
32
|
La Edwards C, Malyshev D, Stratford JP, Asally M. Rapid Detection of Proliferative Bacteria by Electrical Stimulation. Bio Protoc 2020; 10:e3508. [PMID: 33654734 DOI: 10.21769/bioprotoc.3508] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Revised: 11/26/2019] [Accepted: 12/26/2019] [Indexed: 11/02/2022] Open
Abstract
Detecting live bacteria is an important task for antimicrobial susceptibility testing (AST) in the medical sector and for quality-monitoring in biological industries. Current methods for live-bacteria detection suffer limitations in speed or sensitivity. In a recent paper, we reported that electrical response dynamics in membrane potential enable single-cell rapid detection of live bacteria. The electrical response can be observed within a minute after electrical stimulation. Thus, it has potential in accelerating AST and the monitoring of biological samples. This method also enables experiments for biophysical and microbiological investigations into bacterial electrophysiology. With the hope that more researchers, scientists and engineers will use electrical stimulation for their assays, here we detail each step of the electrical stimulation experiment.
Collapse
Affiliation(s)
- Conor La Edwards
- School of Life Sciences, University of Warwick, Coventry, CV4 7AL, The United Kingdom
| | - Dmitry Malyshev
- School of Life Sciences, University of Warwick, Coventry, CV4 7AL, The United Kingdom
| | - James P Stratford
- School of Life Sciences, University of Warwick, Coventry, CV4 7AL, The United Kingdom
| | - Munehiro Asally
- School of Life Sciences, University of Warwick, Coventry, CV4 7AL, The United Kingdom
| |
Collapse
|