1
|
Yang W, Rosenkranz M, Velkos G, Ziegs F, Dubrovin V, Schiemenz S, Spree L, de Souza Barbosa MF, Guillemard C, Valvidares M, Büchner B, Liu F, Avdoshenko SM, Popov AA. Covalency versus magnetic axiality in Nd molecular magnets: Nd-photoluminescence, strong ligand-field, and unprecedented nephelauxetic effect in fullerenes NdM 2N@C 80 (M = Sc, Lu, Y). Chem Sci 2024; 15:2141-2157. [PMID: 38332818 PMCID: PMC10848757 DOI: 10.1039/d3sc05146c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 12/20/2023] [Indexed: 02/10/2024] Open
Abstract
Nd-based nitride clusterfullerenes NdM2N@C80 with rare-earth metals of different sizes (M = Sc, Y, Lu) were synthesized to elucidate the influence of the cluster composition, shape and internal strain on the structural and magnetic properties. Single crystal X-ray diffraction revealed a very short Nd-N bond length in NdSc2N@C80. For Lu and Y analogs, the further shortening of the Nd-N bond and pyramidalization of the NdM2N cluster are predicted by DFT calculations as a result of the increased cluster size and a strain caused by the limited size of the fullerene cage. The short distance between Nd and nitride ions leads to a very large ligand-field splitting of Nd3+ of 1100-1200 cm-1, while the variation of the NdM2N cluster composition and concomitant internal strain results in the noticeable modulation of the splitting, which could be directly assessed from the well-resolved fine structure in the Nd-based photoluminescence spectra of NdM2N@C80 clusterfullerenes. Photoluminescence measurements also revealed an unprecedentedly strong nephelauxetic effect, pointing to a high degree of covalency. The latter appears detrimental to the magnetic axiality despite the strong ligand field. As a result, the ground magnetic state has considerable transversal components of the pseudospin g-tensor, and the slow magnetic relaxation of NdSc2N@C80 could be observed by AC magnetometry only in the presence of a magnetic field. A combination of the well-resolved magneto-optical states and slow relaxation of magnetization suggests that Nd clusterfullerenes can be useful building blocks for magneto-photonic quantum technologies.
Collapse
Affiliation(s)
- Wei Yang
- Leibniz Institute for Solid State and Materials Research (IFW Dresden) 01069 Dresden Germany
| | - Marco Rosenkranz
- Leibniz Institute for Solid State and Materials Research (IFW Dresden) 01069 Dresden Germany
| | - Georgios Velkos
- Leibniz Institute for Solid State and Materials Research (IFW Dresden) 01069 Dresden Germany
| | - Frank Ziegs
- Leibniz Institute for Solid State and Materials Research (IFW Dresden) 01069 Dresden Germany
| | - Vasilii Dubrovin
- Leibniz Institute for Solid State and Materials Research (IFW Dresden) 01069 Dresden Germany
| | - Sandra Schiemenz
- Leibniz Institute for Solid State and Materials Research (IFW Dresden) 01069 Dresden Germany
| | - Lukas Spree
- Leibniz Institute for Solid State and Materials Research (IFW Dresden) 01069 Dresden Germany
- Center for Quantum Nanoscience, Institute for Basic Science (IBS) Seoul Republic of Korea
| | | | | | | | - Bernd Büchner
- Leibniz Institute for Solid State and Materials Research (IFW Dresden) 01069 Dresden Germany
| | - Fupin Liu
- Leibniz Institute for Solid State and Materials Research (IFW Dresden) 01069 Dresden Germany
| | - Stanislav M Avdoshenko
- Leibniz Institute for Solid State and Materials Research (IFW Dresden) 01069 Dresden Germany
| | - Alexey A Popov
- Leibniz Institute for Solid State and Materials Research (IFW Dresden) 01069 Dresden Germany
| |
Collapse
|
2
|
Ma XF, Zeng D, Xu C, Bao SS, Zheng LM. Layered lanthanide phosphonates Ln(2-qpH)(SO 4)(H 2O) 2 (Ln = La, Ce, Pr, Nd, Sm): polymorphism and magnetic properties. Dalton Trans 2023; 52:11913-11921. [PMID: 37563974 DOI: 10.1039/d3dt01698f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/12/2023]
Abstract
Polymorphic layered lanthanide coordination polymers provide opportunities to study the effect of intralayer and interlayer interactions on their magnetic dynamics. Herein we report a series of layered lanthanide phosphonates, namely, α-Ln(2-qpH)(SO4)(H2O)2 (Ln = Sm) (α-Ln), β-Ln(2-qpH)(SO4)(H2O)2 (Ln = Pr, Nd, Sm) (β-Ln) and γ-Ln(2-qpH)(SO4)(H2O)2 (Ln = La, Ce, Pr, Nd, Sm) (γ-Ln) (2-qpH2 = 2-quinolinephosphonic acid), which crystallize in monoclinic P21/c (α-Ln), triclinic P1̄ (β-Ln) and orthorhombic Pbca (γ-Ln) space groups, respectively. The structural differences between the β- and γ-phases lie not only in the intralayer but also in the interlayer. Within the layers, the Ln2O2 dimers are aligned parallel in the β-phase, but are non-parallel in the γ-phase. In the interlayer, there are π-π interactions between the quinoline groups in the α- and β-phases but not in the γ-phase. Magnetic studies reveal a field-induced slow relaxation of the magnetisation at low temperatures for compounds γ-Ce, β-Nd, and γ-Nd, and the impact of polymorphism on the magnetic dynamics of Nd(III) compounds is discussed.
Collapse
Affiliation(s)
- Xiu-Fang Ma
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Collaborative Innovation Centre of Advanced Microstructures, Nanjing University, Nanjing 210023, P. R. China.
| | - Dai Zeng
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Collaborative Innovation Centre of Advanced Microstructures, Nanjing University, Nanjing 210023, P. R. China.
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou 450046, P. R. China
| | - Chang Xu
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Collaborative Innovation Centre of Advanced Microstructures, Nanjing University, Nanjing 210023, P. R. China.
| | - Song-Song Bao
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Collaborative Innovation Centre of Advanced Microstructures, Nanjing University, Nanjing 210023, P. R. China.
| | - Li-Min Zheng
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Collaborative Innovation Centre of Advanced Microstructures, Nanjing University, Nanjing 210023, P. R. China.
| |
Collapse
|
3
|
Borah A, Dey S, Gupta SK, Rajaraman G, Murugavel R. Field-induced SIM behaviour in early lanthanide(III) organophosphates containing 18-crown-6. Dalton Trans 2023. [PMID: 37317701 DOI: 10.1039/d3dt01206a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Single-ion magnets (SIMs) have attracted wide attention in recent years. Despite tremendous progress in late lanthanide SIMs, reports on early lanthanides exhibiting SIM characteristics are scarce. A series of five novel 18-crown-6 encapsulated mononuclear early lanthanide(III) organophosphates, [{(18-crown-6)Ln(dippH)3}{(18-crown-6)Ln(dippH)2(dippH2)}]·[I3] [Ln = Ce (1), Pr (2), Nd (3)] and [{Ln(18-crown-6)(dippH)2(H2O)}·{I3}] [Ln = Sm (4) and Eu (5)], have been synthesised in the present study. 18-crown-6 coordinates to Ln(III) ions in an equatorial position while the axial positions are occupied by either three phosphate moieties as in 1-3 or two phosphate moieties and one water molecule as in 4 and 5, resulting in a muffin-shaped coordination geometry around the Ln(III) centres. Magnetic susceptibility measurements reveal that Ce and Nd complexes are field-induced single-ion magnets with significant barrier heights. Furthermore, the ab initio CASSCF/RASSI-SO/SINGLE_ANISO calculations on complexes 1 and 3 reveal significant QTM in the ground state rationalising the field-induced single-ion magnetism behaviour of these complexes.
Collapse
Affiliation(s)
- Aditya Borah
- Department of Chemistry, Indian Institute of Technology, Powai, Mumbai, India.
| | - Sourav Dey
- Department of Chemistry, Indian Institute of Technology, Powai, Mumbai, India.
| | - Sandeep K Gupta
- Department of Chemistry, Indian Institute of Technology, Powai, Mumbai, India.
| | - Gopalan Rajaraman
- Department of Chemistry, Indian Institute of Technology, Powai, Mumbai, India.
| | - Ramaswamy Murugavel
- Department of Chemistry, Indian Institute of Technology, Powai, Mumbai, India.
| |
Collapse
|
4
|
Li Y, Sun X, Chen P, Liu HT, Li J, Liu D, Li D, Dou J, Tian H. Modulating the relaxation dynamics of the Na 2Mn 3 system via an auxiliary anion change. Dalton Trans 2021; 50:14774-14781. [PMID: 34591053 DOI: 10.1039/d1dt01237a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This paper reports two closely related heteropentanuclear manganese complexes, namely, {Na2Mn3(opch)3(μ4-O)(μ2-N3) (μ2-AcO)(μ2-MeO)}·6CH3OH·0.5H2O (1) and {Na2Mn3(opch)3(μ4-O)(μ2-N3)2(μ2-AcO)}·2.5CH3OH·2H2O (2), where H2opch is (E)-N'-(2-hydroxy-3-methoxybenzylidene)pyrazine-2-carbohydrazide. Single-crystal X-ray diffraction analysis reveals that the trigonal bipyramidal skeletons in both complexes are comparable, where a perfect triangular Mn3 motif occupies the equatorial plane. Magnetic investigations suggest that overall antiferromagnetic coupling is present within the triangles of 1 and 2. However, their dynamic magnetic properties are drastically distinct. Indeed, complexes 1 and 2 show two kinds of dual slow magnetic relaxation processes that correspond to anisotropy barriers (Δ) of 9.2 cm-1 (11.4 cm-1 for 2) and 12.8 cm-1 (30.0 cm-1 for 2) for the low- and high-frequency domains, respectively. More importantly, a further comparative study of the structure and magnetism indicates that the coordination sphere of these two model complexes with the homologous hydrazone-based coordination sites undergoes an alteration from methoxide-O to azide-N upon a subtle change of the auxiliary anion accompanied by modulating octahedron geometries, leading to a further influence on different relaxation dynamics.
Collapse
Affiliation(s)
- Yongfei Li
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252059, P. R. China.
| | - Xiao Sun
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252059, P. R. China.
| | - Peiqiong Chen
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252059, P. R. China.
| | - Hou-Ting Liu
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252059, P. R. China.
| | - Jing Li
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, P. R. China.
| | - Dan Liu
- Institute of Flexible Electronics, Northwestern Polytechnical University, 127 West Youyi Road, Xi'an, 710072, Shaanxi, China.
| | - Dacheng Li
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252059, P. R. China.
| | - Jianmin Dou
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252059, P. R. China.
| | - Haiquan Tian
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252059, P. R. China.
| |
Collapse
|
5
|
Fuchs TM, Schäfer R. Influence of nuclear spins on electron spin coherence in isolated, p-doped tin clusters. Phys Chem Chem Phys 2021; 23:11334-11344. [PMID: 33959734 DOI: 10.1039/d1cp01227d] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Magnetic double deflection experiments reveal that nuclear spins diminish electron spin coherence in isolated AlSn12 clusters. A temperature-dependent fraction of the endohedral cage clusters show superatomic response in Stern-Gerlach experiments which allows one to detect spin flips under controlled conditions in a double deflection arrangement. The concentration of nuclear spins in the tin cage is varied by using isotopically enriched tin samples. Hyperfine interaction, nuclear spin statistics and spin dynamics are discussed in detail. It is demonstrated that state-interference in the multistate Landau-Zener system AlSn12 explains why the spin decoherence is significantly increased when one or two nuclear spins are already present in the cluster, while the spin coherence no longer changes significantly with the addition of further nuclear spins.
Collapse
Affiliation(s)
- Thomas M Fuchs
- Eduard-Zintl-Institut für Anorganische und Physikalische Chemie, Technische Universität Darmstadt, Alarich-Weiss-Str. 8, Darmstadt, Germany.
| | - Rolf Schäfer
- Eduard-Zintl-Institut für Anorganische und Physikalische Chemie, Technische Universität Darmstadt, Alarich-Weiss-Str. 8, Darmstadt, Germany.
| |
Collapse
|
6
|
Chen P, Sun X, Guo X, Liu D, Liu HT, Lu J, Tian H. A quasilinear hydrazone-based mononuclear dysprosium compound with C4v symmetry exhibiting field-induced complex magnetic relaxation. NEW J CHEM 2021. [DOI: 10.1039/d1nj04620a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A C4v symmetrical mononuclear dysprosium(iii) compound has been successfully isolated using a new quasilinear single pyrazinyl hydrazone ligand. Single-ion behavior and the short-range intermolecular magnetic dipolar interaction are essential to the complex magnetic relaxation.
Collapse
Affiliation(s)
- Peiqiong Chen
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252059, P. R. China
| | - Xiao Sun
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252059, P. R. China
| | - Xuefeng Guo
- Institute of Flexible Electronics, Northwestern Polytechnical University, 127 West Youyi Road, Xi’an, Shaanxi 710072, China
| | - Dan Liu
- Institute of Flexible Electronics, Northwestern Polytechnical University, 127 West Youyi Road, Xi’an, Shaanxi 710072, China
| | - Hou-Ting Liu
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252059, P. R. China
| | - Jing Lu
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252059, P. R. China
| | - Haiquan Tian
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252059, P. R. China
| |
Collapse
|
7
|
Fang YH, Liu Z, Wang YX, Zhou S, Jiang SD, Gao S. Orientation mapping of Rabi frequencies in a rare-earth molecular qu dit. Inorg Chem Front 2020. [DOI: 10.1039/d0qi00784f] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Utilizing the S = 7/2 4f spin and the D4 symmetry of a Gd(iii) complex, we propose and demonstrate an eight-leveled rare-earth molecular qudit, which can be coherently manipulated between adjacent energy levels with precompiled pulse durations.
Collapse
Affiliation(s)
- Yu-Hui Fang
- Beijing National Laboratory of Molecular Science
- Beijing Key Laboratory of Magnetoelectric Materials and Devices
- College of Chemistry and Molecular Engineering
- Peking University
- Beijing 100871
| | - Zheng Liu
- Beijing National Laboratory of Molecular Science
- Beijing Key Laboratory of Magnetoelectric Materials and Devices
- College of Chemistry and Molecular Engineering
- Peking University
- Beijing 100871
| | - Ye-Xin Wang
- Beijing National Laboratory of Molecular Science
- Beijing Key Laboratory of Magnetoelectric Materials and Devices
- College of Chemistry and Molecular Engineering
- Peking University
- Beijing 100871
| | - Shen Zhou
- School of Chemistry and Chemical Engineering
- South China University of Technology
- Guangzhou 510640
- China
- College of Aerospace Science and Engineering
| | - Shang-Da Jiang
- Beijing National Laboratory of Molecular Science
- Beijing Key Laboratory of Magnetoelectric Materials and Devices
- College of Chemistry and Molecular Engineering
- Peking University
- Beijing 100871
| | - Song Gao
- Beijing National Laboratory of Molecular Science
- Beijing Key Laboratory of Magnetoelectric Materials and Devices
- College of Chemistry and Molecular Engineering
- Peking University
- Beijing 100871
| |
Collapse
|