1
|
Cossin JR, Paulsel TQ, Castelli K, Wcisel B, Malico AA, Williams GJ. Engineering the Specificity of Acetyl-CoA Synthetase for Diverse Acyl-CoA Thioester Generation. ACS Chem Biol 2025; 20:930-941. [PMID: 40176419 DOI: 10.1021/acschembio.5c00014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2025]
Abstract
CoA thioesters are valuable intermediates in numerous biosynthetic routes and metabolic processes. However, diversifying these compounds and their corresponding downstream products hinges on broadening the promiscuity of CoA ligases that produce them or using additional enzymes to functionalize them. Here, the inherent promiscuity of an acyl-CoA ligase from Pseudomonas chlororaphis was probed with carboxylic acids of varying sizes and functionality. The enzyme was engineered to improve its activity with a diverse panel of acyl-CoA thioesters, including halogenated and oxidized acids, that can be used in downstream biosynthetic production strategies. To demonstrate the utility of the engineered enzyme, a subset of the substrates was leveraged for the complete in situ biosynthesis of a small panel of pyrones via a portion of the archetypal polyketide synthase (PKS), 6-deoxyerythronolide B synthase (DEBS). This approach supports probing the promiscuity of polyketide biosynthesis and the diversification of natural product scaffolds.
Collapse
Affiliation(s)
- Jared R Cossin
- North Carolina State University, Raleigh, North Carolina 27695, United States
| | - Thaddeus Q Paulsel
- North Carolina State University, Raleigh, North Carolina 27695, United States
- Comparative Medicine Institute, Raleigh, North Carolina 27695, United States
| | - Kim Castelli
- North Carolina State University, Raleigh, North Carolina 27695, United States
| | - Breck Wcisel
- North Carolina State University, Raleigh, North Carolina 27695, United States
| | - Alexandra A Malico
- North Carolina State University, Raleigh, North Carolina 27695, United States
| | - Gavin J Williams
- North Carolina State University, Raleigh, North Carolina 27695, United States
- Comparative Medicine Institute, Raleigh, North Carolina 27695, United States
| |
Collapse
|
2
|
Seshadri K, Abad AND, Nagasawa KK, Yost KM, Johnson CW, Dror MJ, Tang Y. Synthetic Biology in Natural Product Biosynthesis. Chem Rev 2025; 125:3814-3931. [PMID: 40116601 DOI: 10.1021/acs.chemrev.4c00567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2025]
Abstract
Synthetic biology has played an important role in the renaissance of natural products research during the post-genomics era. The development and integration of new tools have transformed the workflow of natural product discovery and engineering, generating multidisciplinary interest in the field. In this review, we summarize recent developments in natural product biosynthesis from three different aspects. First, advances in bioinformatics, experimental, and analytical tools to identify natural products associated with predicted biosynthetic gene clusters (BGCs) will be covered. This will be followed by an extensive review on the heterologous expression of natural products in bacterial, fungal and plant organisms. The native host-independent paradigm to natural product identification, pathway characterization, and enzyme discovery is where synthetic biology has played the most prominent role. Lastly, strategies to engineer biosynthetic pathways for structural diversification and complexity generation will be discussed, including recent advances in assembly-line megasynthase engineering, precursor-directed structural modification, and combinatorial biosynthesis.
Collapse
Affiliation(s)
- Kaushik Seshadri
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, 420 Westwood Plaza, Los Angeles, California 90095, United States
| | - Abner N D Abad
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, 420 Westwood Plaza, Los Angeles, California 90095, United States
| | - Kyle K Nagasawa
- Department of Chemistry and Biochemistry, University of California, Los Angeles, 420 Westwood Plaza, Los Angeles, California 90095, United States
| | - Karl M Yost
- Department of Chemistry and Biochemistry, University of California, Los Angeles, 420 Westwood Plaza, Los Angeles, California 90095, United States
| | - Colin W Johnson
- Department of Chemistry and Biochemistry, University of California, Los Angeles, 420 Westwood Plaza, Los Angeles, California 90095, United States
| | - Moriel J Dror
- Department of Bioengineering, University of California, Los Angeles, 420 Westwood Plaza, Los Angeles, California 90095, United States
| | - Yi Tang
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, 420 Westwood Plaza, Los Angeles, California 90095, United States
- Department of Chemistry and Biochemistry, University of California, Los Angeles, 420 Westwood Plaza, Los Angeles, California 90095, United States
- Department of Bioengineering, University of California, Los Angeles, 420 Westwood Plaza, Los Angeles, California 90095, United States
| |
Collapse
|
3
|
Englund E, Schmidt M, Nava AA, Klass S, Keiser L, Dan Q, Katz L, Yuzawa S, Keasling JD. Biosensor Guided Polyketide Synthases Engineering for Optimization of Domain Exchange Boundaries. Nat Commun 2023; 14:4871. [PMID: 37573440 PMCID: PMC10423236 DOI: 10.1038/s41467-023-40464-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 07/28/2023] [Indexed: 08/14/2023] Open
Abstract
Type I modular polyketide synthases (PKSs) are multi-domain enzymes functioning like assembly lines. Many engineering attempts have been made for the last three decades to replace, delete and insert new functional domains into PKSs to produce novel molecules. However, inserting heterologous domains often destabilize PKSs, causing loss of activity and protein misfolding. To address this challenge, here we develop a fluorescence-based solubility biosensor that can quickly identify engineered PKSs variants with minimal structural disruptions. Using this biosensor, we screen a library of acyltransferase (AT)-exchanged PKS hybrids with randomly assigned domain boundaries, and we identify variants that maintain wild type production levels. We then probe each position in the AT linker region to determine how domain boundaries influence structural integrity and identify a set of optimized domain boundaries. Overall, we have successfully developed an experimentally validated, high-throughput method for making hybrid PKSs that produce novel molecules.
Collapse
Affiliation(s)
- Elias Englund
- Joint BioEnergy Institute, Emeryville, CA, USA
- School of Engineering Sciences in Chemistry, Biotechnology and Health, Science for Life Laboratory, KTH - Royal Institute of Technology, Stockholm, Sweden
| | - Matthias Schmidt
- Joint BioEnergy Institute, Emeryville, CA, USA
- Institute of Applied Microbiology, Aachen Biology and Biotechnology (ABBt), RWTH Aachen University, Aachen, Germany
- Biological Systems and Engineering Division, Lawrence Berkeley National laboratory, Berkeley, CA, USA
| | - Alberto A Nava
- Joint BioEnergy Institute, Emeryville, CA, USA
- Department of Chemical & Biomolecular Engineering, University of California, Berkeley, Berkeley, CA, USA
| | - Sarah Klass
- Joint BioEnergy Institute, Emeryville, CA, USA
- Biological Systems and Engineering Division, Lawrence Berkeley National laboratory, Berkeley, CA, USA
- Department of Chemical & Biomolecular Engineering, University of California, Berkeley, Berkeley, CA, USA
| | - Leah Keiser
- Joint BioEnergy Institute, Emeryville, CA, USA
- Department of Chemical & Biomolecular Engineering, University of California, Berkeley, Berkeley, CA, USA
| | - Qingyun Dan
- Joint BioEnergy Institute, Emeryville, CA, USA
- Biological Systems and Engineering Division, Lawrence Berkeley National laboratory, Berkeley, CA, USA
| | - Leonard Katz
- Joint BioEnergy Institute, Emeryville, CA, USA
- QB3, University of California, Berkeley, Berkeley, CA, USA
| | - Satoshi Yuzawa
- Joint BioEnergy Institute, Emeryville, CA, USA
- Biological Systems and Engineering Division, Lawrence Berkeley National laboratory, Berkeley, CA, USA
- Institute for Advanced Biosciences, Keio University, Tsuruoka, Yamagata, Japan
- Graduate school of Media and Governance, Keio University, Fujisawa, Kanagawa, Japan
| | - Jay D Keasling
- Joint BioEnergy Institute, Emeryville, CA, USA.
- Biological Systems and Engineering Division, Lawrence Berkeley National laboratory, Berkeley, CA, USA.
- Department of Chemical & Biomolecular Engineering, University of California, Berkeley, Berkeley, CA, USA.
- QB3, University of California, Berkeley, Berkeley, CA, USA.
- Department of Bioengineering, University of California, Berkeley, Berkeley, CA, USA.
- Center for Biosustainability, Danish Technical University, Lyngby, Denmark.
- Center for Synthetic biochemistry, Institute for Synthetic biology, Shenzhen Institute of Advanced Technology, Shenzhen, China.
| |
Collapse
|
4
|
Kim HJ, Ishida K, Hertweck C. Thiotemplated Biosynthesis of Bacterial Polyyne Fatty Acids by a Designated Desaturase Triad. Chembiochem 2022; 23:e202200430. [PMID: 36107027 PMCID: PMC9828172 DOI: 10.1002/cbic.202200430] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 09/14/2022] [Indexed: 01/12/2023]
Abstract
Various bacterial species are capable of producing highly modified fatty acid derivatives with conjugated triple bonds, which play important ecological roles as antifungals and toxins in mutualistic and pathogenic interactions. Furthermore, the terminal polyyne moiety is of interest as pharmacophore and as tag in bioorthogonal chemistry and live imaging. To gain insight into the assembly of these highly reactive natural products, we investigated tetrayne (caryoynencin and protegencin) biosynthesis genes (cay and pgn) from Trinickia caryophylli and Pseudomonas protegens. Pathway dissection and reconstitution in the heterologous host Burkholderia graminis revealed the genes minimally required for polyyne formation. Mutational analyses and biochemical assays demonstrated that polyyne biosynthesis is thiotemplated, involving a fatty acyl-AMP ligase, a designated acyl carrier protein, and a thioesterase. Heterologous expression of point-mutated desaturase genes showed that three desaturases work synergistically to introduce four triple bonds. These findings point to an intricate desaturase complex and provide important information for future bioengineering experiments.
Collapse
Affiliation(s)
- Hak Joong Kim
- Department Biomolecular ChemistryLeibniz Institute for Natural Product Research and Infection Biology (Leibniz-HKI)Beutenbergstr. 11a07745JenaGermany
| | - Keishi Ishida
- Department Biomolecular ChemistryLeibniz Institute for Natural Product Research and Infection Biology (Leibniz-HKI)Beutenbergstr. 11a07745JenaGermany
| | - Christian Hertweck
- Department Biomolecular ChemistryLeibniz Institute for Natural Product Research and Infection Biology (Leibniz-HKI)Beutenbergstr. 11a07745JenaGermany
- Institute for Microbiology, Faculty of Biological SciencesFriedrich Schiller University Jena07743JenaGermany
| |
Collapse
|
5
|
Del Rio Flores A, Barber CC, Narayanamoorthy M, Gu D, Shen Y, Zhang W. Biosynthesis of Isonitrile- and Alkyne-Containing Natural Products. Annu Rev Chem Biomol Eng 2022; 13:1-24. [PMID: 35236086 PMCID: PMC9811556 DOI: 10.1146/annurev-chembioeng-092120-025140] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Natural products are a diverse class of biologically produced compounds that participate in fundamental biological processes such as cell signaling, nutrient acquisition, and interference competition. Unique triple-bond functionalities like isonitriles and alkynes often drive bioactivity and may serve as indicators of novel chemical logic and enzymatic machinery. Yet, the biosynthetic underpinnings of these groups remain only partially understood, constraining the opportunity to rationally engineer biomolecules with these functionalities for applications in pharmaceuticals, bioorthogonal chemistry, and other value-added chemical processes. Here, we focus our review on characterized biosynthetic pathways for isonitrile and alkyne functionalities, their bioorthogonal transformations, and prospects for engineering their biosynthetic machinery for biotechnological applications.
Collapse
Affiliation(s)
- Antonio Del Rio Flores
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, California, USA; ,
| | - Colin C Barber
- Department of Plant and Microbial Biology, University of California, Berkeley, California, USA;
| | | | - Di Gu
- Department of Chemistry, University of California, Berkeley, California, USA; , ,
| | - Yuanbo Shen
- Department of Chemistry, University of California, Berkeley, California, USA; , ,
| | - Wenjun Zhang
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, California, USA; ,
- Chan Zuckerberg Biohub, San Francisco, California, USA
| |
Collapse
|
6
|
Lin CC, Hoo SY, Ma LT, Lin C, Huang KF, Ho YN, Sun CH, Lee HJ, Chen PY, Shu LJ, Wang BW, Hsu WC, Ko TP, Yang YL. Integrated omics approach to unveil antifungal bacterial polyynes as acetyl-CoA acetyltransferase inhibitors. Commun Biol 2022; 5:454. [PMID: 35551233 PMCID: PMC9098870 DOI: 10.1038/s42003-022-03409-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 04/23/2022] [Indexed: 11/17/2022] Open
Abstract
Bacterial polyynes are highly active natural products with a broad spectrum of antimicrobial activities. However, their detailed mechanism of action remains unclear. By integrating comparative genomics, transcriptomics, functional genetics, and metabolomics analysis, we identified a unique polyyne resistance gene, masL (encoding acetyl-CoA acetyltransferase), in the biosynthesis gene cluster of antifungal polyynes (massilin A 1, massilin B 2, collimonin C 3, and collimonin D 4) of Massilia sp. YMA4. Crystallographic analysis indicated that bacterial polyynes serve as covalent inhibitors of acetyl-CoA acetyltransferase. Moreover, we confirmed that the bacterial polyynes disrupted cell membrane integrity and inhibited the cell viability of Candida albicans by targeting ERG10, the homolog of MasL. Thus, this study demonstrated that acetyl-CoA acetyltransferase is a potential target for developing antifungal agents. In a multi-omics analysis, bacterial polyynes are found to act as antifungal agents by inhibiting the Candida albicans polyyne resistance gene ERG10, the homolog of MasL encoding acetyl-CoA acetyltransferase.
Collapse
Affiliation(s)
- Ching-Chih Lin
- Agricultural Biotechnology Research Center, Academia Sinica, Nankang Dist., Taipei, 115, Taiwan.,Biotechnology Center in Southern Taiwan, Academia Sinica, Guiren Dist., Tainan, 711, Taiwan
| | - Sin Yong Hoo
- Agricultural Biotechnology Research Center, Academia Sinica, Nankang Dist., Taipei, 115, Taiwan.,Biotechnology Center in Southern Taiwan, Academia Sinica, Guiren Dist., Tainan, 711, Taiwan
| | - Li-Ting Ma
- Agricultural Biotechnology Research Center, Academia Sinica, Nankang Dist., Taipei, 115, Taiwan.,Biotechnology Center in Southern Taiwan, Academia Sinica, Guiren Dist., Tainan, 711, Taiwan
| | - Chih Lin
- Agricultural Biotechnology Research Center, Academia Sinica, Nankang Dist., Taipei, 115, Taiwan
| | - Kai-Fa Huang
- Institute of Biological Chemistry, Academia Sinica, Nankang Dist., Taipei, 115, Taiwan
| | - Ying-Ning Ho
- Institute of Marine Biology and Center of Excellence for the Oceans, National Taiwan Ocean University, Jhongjheng Dist., Keelung, 202, Taiwan
| | - Chi-Hui Sun
- Agricultural Biotechnology Research Center, Academia Sinica, Nankang Dist., Taipei, 115, Taiwan
| | - Han-Jung Lee
- Agricultural Biotechnology Research Center, Academia Sinica, Nankang Dist., Taipei, 115, Taiwan
| | - Pi-Yu Chen
- Agricultural Biotechnology Research Center, Academia Sinica, Nankang Dist., Taipei, 115, Taiwan
| | - Lin-Jie Shu
- Agricultural Biotechnology Research Center, Academia Sinica, Nankang Dist., Taipei, 115, Taiwan
| | - Bo-Wei Wang
- Agricultural Biotechnology Research Center, Academia Sinica, Nankang Dist., Taipei, 115, Taiwan.,Biotechnology Center in Southern Taiwan, Academia Sinica, Guiren Dist., Tainan, 711, Taiwan.,Department of Marine Biotechnology and Resources, National Sun Yat-sen University, Gushan Dist., Kaohsiung, 804, Taiwan
| | - Wei-Chen Hsu
- Agricultural Biotechnology Research Center, Academia Sinica, Nankang Dist., Taipei, 115, Taiwan.,Biotechnology Center in Southern Taiwan, Academia Sinica, Guiren Dist., Tainan, 711, Taiwan
| | - Tzu-Ping Ko
- Institute of Biological Chemistry, Academia Sinica, Nankang Dist., Taipei, 115, Taiwan
| | - Yu-Liang Yang
- Agricultural Biotechnology Research Center, Academia Sinica, Nankang Dist., Taipei, 115, Taiwan. .,Biotechnology Center in Southern Taiwan, Academia Sinica, Guiren Dist., Tainan, 711, Taiwan.
| |
Collapse
|
7
|
Engineering the stambomycin modular polyketide synthase yields 37-membered mini-stambomycins. Nat Commun 2022; 13:515. [PMID: 35082289 PMCID: PMC8792006 DOI: 10.1038/s41467-022-27955-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 12/21/2021] [Indexed: 12/14/2022] Open
Abstract
The modular organization of the type I polyketide synthases (PKSs) would seem propitious for rational engineering of desirable analogous. However, despite decades of efforts, such experiments remain largely inefficient. Here, we combine multiple, state-of-the-art approaches to reprogram the stambomycin PKS by deleting seven internal modules. One system produces the target 37-membered mini-stambomycin metabolites − a reduction in chain length of 14 carbons relative to the 51-membered parental compounds − but also substantial quantities of shunt metabolites. Our data also support an unprecedented off-loading mechanism of such stalled intermediates involving the C-terminal thioesterase domain of the PKS. The mini-stambomycin yields are reduced relative to wild type, likely reflecting the poor tolerance of the modules downstream of the modified interfaces to the non-native substrates. Overall, we identify factors contributing to the productivity of engineered whole assembly lines, but our findings also highlight the need for further research to increase production titers. Genetic engineering of the type I polyketide synthases (PKSs) to produce desirable analogous remains largely inefficient. Here, the authors leverage multiple approaches to delete seven internal modules from the stambomycin PKS and generate 37-membered mini-stambomycin macrolactones.
Collapse
|
8
|
Gu D, Zhang W. Engineered biosynthesis of alkyne-tagged polyketides. Methods Enzymol 2022; 665:347-373. [PMID: 35379442 PMCID: PMC9829517 DOI: 10.1016/bs.mie.2021.11.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Polyketides have demonstrated their significance as therapeutics, industrial products, pesticides, and biological probes following intense study over the past decades. Tagging polyketides with a bioorthogonal functionality enables various applications such as diversification, quantification, visualization and mode-of-action elucidation. The terminal alkyne moiety, as a small, stable and highly selective clickable functionality, is widely adopted in tagging natural products. De novo biosynthesis of alkyne-tagged polyketides offers the unique advantage of reducing the background from feeding the biorthogonal moiety itself, leading to the accomplishment of in situ generation of a clickable functionality for bioorthogonal reactions. Here, we introduce several engineering strategies to apply terminal alkyne biosynthetic machinery, represented by JamABC, which produces a short terminal alkyne-bearing fatty acyl chain on a carrier protein, to functions with different downstream polyketide synthases (PKSs). Successful results in engineering type III and type I PKSs provide engineering guidelines and strategies that are applicable to additional PKSs to produce targeted alkyne-tagged metabolites for chemical and biological applications.
Collapse
Affiliation(s)
- Di Gu
- Department of Chemistry, University of California, Berkeley, CA, United States
| | - Wenjun Zhang
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, CA, United States,Chan Zuckerberg Biohub, San Francisco, CA, United States,Corresponding author:
| |
Collapse
|
9
|
Li X, Lv JM, Hu D, Abe I. Biosynthesis of alkyne-containing natural products. RSC Chem Biol 2021; 2:166-180. [PMID: 34458779 PMCID: PMC8341276 DOI: 10.1039/d0cb00190b] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Accepted: 11/30/2020] [Indexed: 11/23/2022] Open
Abstract
Alkyne-containing natural products are important molecules that are widely distributed in microbes and plants. Inspired by the advantages of acetylenic products used in the fields of medicinal chemistry, organic synthesis and material science, great efforts have focused on discovering the biosynthetic enzymes and pathways for alkyne formation. Here, we summarize the biosyntheses of alkyne-containing natural products and introduce de novo biosynthetic strategies for alkyne-tagged compound production.
Collapse
Affiliation(s)
- Xinyang Li
- Graduate School of Pharmaceutical Sciences, The University of Tokyo 7-3-1 Hongo Bunkyo-ku Tokyo 113-0033 Japan
| | - Jian-Ming Lv
- Institute of Traditional Chinese Medicine and Natural Products, College of Pharmacy, Jinan University Guangzhou 510632 People's Republic of China
| | - Dan Hu
- Institute of Traditional Chinese Medicine and Natural Products, College of Pharmacy, Jinan University Guangzhou 510632 People's Republic of China
| | - Ikuro Abe
- Graduate School of Pharmaceutical Sciences, The University of Tokyo 7-3-1 Hongo Bunkyo-ku Tokyo 113-0033 Japan
- Collaborative Research Institute for Innovative Microbiology, The University of Tokyo Yayoi 1-1-1 Bunkyo-ku Tokyo 113-8657 Japan
| |
Collapse
|
10
|
Sulpizio A, Crawford CEW, Koweek RS, Charkoudian LK. Probing the structure and function of acyl carrier proteins to unlock the strategic redesign of type II polyketide biosynthetic pathways. J Biol Chem 2021; 296:100328. [PMID: 33493513 PMCID: PMC7949117 DOI: 10.1016/j.jbc.2021.100328] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 01/20/2021] [Accepted: 01/21/2021] [Indexed: 02/04/2023] Open
Abstract
Type II polyketide synthases (PKSs) are protein assemblies, encoded by biosynthetic gene clusters in microorganisms, that manufacture structurally complex and pharmacologically relevant molecules. Acyl carrier proteins (ACPs) play a central role in biosynthesis by shuttling malonyl-based building blocks and polyketide intermediates to catalytic partners for chemical transformations. Because ACPs serve as central hubs in type II PKSs, they can also represent roadblocks to successfully engineering synthases capable of manufacturing 'unnatural natural products.' Therefore, understanding ACP conformational dynamics and protein interactions is essential to enable the strategic redesign of type II PKSs. However, the inherent flexibility and transience of ACP interactions pose challenges to gaining insight into ACP structure and function. In this review, we summarize how the application of chemical probes and molecular dynamic simulations has increased our understanding of the structure and function of type II PKS ACPs. We also share how integrating these advances in type II PKS ACP research with newfound access to key enzyme partners, such as the ketosynthase-chain length factor, sets the stage to unlock new biosynthetic potential.
Collapse
Affiliation(s)
- Ariana Sulpizio
- Department of Chemistry, Haverford College, Haverford, Pennsylvania, USA
| | | | - Rebecca S Koweek
- Department of Chemistry, Haverford College, Haverford, Pennsylvania, USA
| | | |
Collapse
|
11
|
|
12
|
Passmore M, Jenner M. Clicking into Place: Interfacing Terminal Alkyne Biosynthesis with Polyketide Synthases. Trends Biotechnol 2020; 38:682-684. [PMID: 32327206 DOI: 10.1016/j.tibtech.2020.04.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 04/02/2020] [Accepted: 04/03/2020] [Indexed: 01/31/2023]
Abstract
Engineering polyketide biosynthesis to enable the production of diverse chemical structures is a major challenge at present. Utilising an established biosynthetic cassette for terminal alkyne production, Porterfield et al. applied docking domain and site-directed mutagenesis approaches to interface these enzymes with modular polyketide synthase (PKS) enzymes, yielding products with a bio-orthogonal handle.
Collapse
Affiliation(s)
- Munro Passmore
- Department of Chemistry, University of Warwick, Coventry CV4 7AL, UK
| | - Matthew Jenner
- Department of Chemistry, University of Warwick, Coventry CV4 7AL, UK; Warwick Integrative Synthetic Biology Centre, University of Warwick, Coventry CV4 7AL, UK.
| |
Collapse
|