1
|
Muller L, Fauvet F, Chassot C, Angileri F, Coutant A, Dégletagne C, Tonon L, Saintigny P, Puisieux A, Morel AP, Ouzounova M, Martinez P. EMT-driven plasticity prospectively increases cell-cell variability to promote therapeutic adaptation in breast cancer. Cancer Cell Int 2025; 25:32. [PMID: 39901189 PMCID: PMC11789407 DOI: 10.1186/s12935-025-03637-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Accepted: 01/07/2025] [Indexed: 02/05/2025] Open
Abstract
Cellular plasticity enables cancer cells to adapt non-genetically, thereby preventing therapeutic success. The epithelial-mesenchymal transition (EMT) is a type of plasticity linked to resistance and metastasis. However, its exact impact on population diversity and its dynamics under chemotherapy is unknown. We used single-cell transcriptomics to investigate phenotypic diversity dynamics upon treatment in two in vitro models of triple negative breast cancer (TNBC), where EMT-driven plasticity is either induced or spontaneously occurring. We report that EMT-driven plasticity confers higher phenotypic cell-cell variability (p < 0.001) while enriching for stem-like cells. Genetic and phenotypic cell-cell variability were not consistently correlated. High-plasticity populations displayed more pre-adapted cells before treatment (p = 0.03). In a population displaying spontaneous EMT and phenotypic variation, pre-adapted cells were a rare minority of high-scoring outliers whose expression patterns correlated with survival in TNBC patients subjected to chemotherapy (p = 0.03). Higher plasticity was not associated with a partial EMT status. Our results provide novel insights on how EMT-driven plasticity promotes a prospective diversification process increasing population phenotypic diversity, which can yield rare pre-adapted states before treatment. This highlights the need to tackle phenotypic diversity prior to treatment in high-plasticity tumours.
Collapse
Affiliation(s)
- Lauriane Muller
- Integrated Analyses of Cancer Dynamics Team, Centre de Recherche en Cancérologie de Lyon (CRCL), Institut Convergence PlasCan, INSERM U1052, CNRSUMR 5286, Centre Léon Bérard, Université Claude Bernard Lyon 1, Lyon, France
| | - Frédérique Fauvet
- EMT and Cancer Cell Plasticity Team, Centre Léon Bérard, Lyon, France
| | | | - Francesca Angileri
- Integrated Analyses of Cancer Dynamics Team, Centre de Recherche en Cancérologie de Lyon (CRCL), Institut Convergence PlasCan, INSERM U1052, CNRSUMR 5286, Centre Léon Bérard, Université Claude Bernard Lyon 1, Lyon, France
- Département de Pharmacologie, Physiologie et Toxicologie, Institut des Sciences Pharmaceutiques Et Biologiques (ISPB), Université Claude Bernard Lyon I, Lyon, France
- Unité de recherche 3738 CICLY (Centre Pour l'Innovation en Cancérologie de Lyon), Faculté de Médecine et de Maïeutique Lyon Sud - Charles Mérieux, Université Claude Bernard Lyon I, Lyon, France
| | - Angèle Coutant
- Integrated Analyses of Cancer Dynamics Team, Centre de Recherche en Cancérologie de Lyon (CRCL), Institut Convergence PlasCan, INSERM U1052, CNRSUMR 5286, Centre Léon Bérard, Université Claude Bernard Lyon 1, Lyon, France
| | - Cyril Dégletagne
- Plateforme de Génomique des Cancers, Centre de Recherche en Cancérologie de Lyon (CRCL), INSERM U1052, CNRS UMR 5286, Centre Léon Bérard, Université Claude Bernard Lyon 1, Lyon, France
| | - Laurie Tonon
- Plateforme de Bioinformatique Gilles Thomas, Synergie Lyon Cancer, Centre Léon Bérard, Lyon, France
| | - Pierre Saintigny
- Integrated Analyses of Cancer Dynamics Team, Centre de Recherche en Cancérologie de Lyon (CRCL), Institut Convergence PlasCan, INSERM U1052, CNRSUMR 5286, Centre Léon Bérard, Université Claude Bernard Lyon 1, Lyon, France
- Department of Medical Oncology, Centre Léon Bérard, Lyon, France
- CASTING - Cancer dynamics, adaptation and modeling, Inria, Inserm, Ecole Normale Supérieure de Lyon, Centre Léon Bérard, Cnrs, Université Claude Bernard Lyon 1, Lyon, France
| | - Alain Puisieux
- Equipe Labellisée Ligue Contre le Cancer, CNRS UMR 3666, INSERM U1143, Paris, France
- Institut Curie, PSL Research University, Paris, France
| | - Anne-Pierre Morel
- EMT and Cancer Cell Plasticity Team, Centre Léon Bérard, Lyon, France
| | - Maria Ouzounova
- EMT and Cancer Cell Plasticity Team, Centre Léon Bérard, Lyon, France
- Equipe Labellisée Ligue Contre le Cancer, CNRS UMR 3666, INSERM U1143, Paris, France
| | - Pierre Martinez
- Integrated Analyses of Cancer Dynamics Team, Centre de Recherche en Cancérologie de Lyon (CRCL), Institut Convergence PlasCan, INSERM U1052, CNRSUMR 5286, Centre Léon Bérard, Université Claude Bernard Lyon 1, Lyon, France.
- CASTING - Cancer dynamics, adaptation and modeling, Inria, Inserm, Ecole Normale Supérieure de Lyon, Centre Léon Bérard, Cnrs, Université Claude Bernard Lyon 1, Lyon, France.
| |
Collapse
|
2
|
Moon HR, Ozcelikkale A, Yang Y, Elzey BD, Konieczny SF, Han B. An engineered pancreatic cancer model with intra-tumoral heterogeneity of driver mutations. LAB ON A CHIP 2020; 20:3720-3732. [PMID: 32909573 PMCID: PMC9178523 DOI: 10.1039/d0lc00707b] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a complex disease with significant intra-tumoral heterogeneity (ITH). Currently, no reliable PDAC tumor model is available that can present ITH profiles in a controlled manner. We develop an in vitro microfluidic tumor model mimicking the heterogeneous accumulation of key driver mutations of human PDAC using cancer cells derived from genetically engineered mouse models. These murine pancreatic cancer cell lines have KPC (Kras and Trp53 mutations) and KIC genotypes (Kras mutation and Cdkn2a deletion). Also, the KIC genotypes have two distinct phenotypes - mesenchymal or epithelial. The tumor model mimics the ITH of human PDAC to study the effects of ITH on the gemcitabine response. The results show gemcitabine resistance induced by ITH. Remarkably, it shows that cancer cell-cell interactions induce the gemcitabine resistance potentially through epithelial-mesenchymal-transition. The tumor model can provide a useful testbed to study interaction mechanisms between heterogeneous cancer cell subpopulations.
Collapse
Affiliation(s)
- Hye-Ran Moon
- School of Mechanical Engineering, Purdue University, West Lafayette, IN, USA.
| | | | | | | | | | | |
Collapse
|