1
|
Olivar-Villanueva M, Ren M, Schlame M, Phoon CK. The critical role of cardiolipin in metazoan differentiation, development, and maturation. Dev Dyn 2023; 252:691-712. [PMID: 36692477 PMCID: PMC10238668 DOI: 10.1002/dvdy.567] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 12/27/2022] [Accepted: 01/13/2023] [Indexed: 01/25/2023] Open
Abstract
Cardiolipins are phospholipids that are central to proper mitochondrial functioning. Because mitochondria play crucial roles in differentiation, development, and maturation, we would also expect cardiolipin to play major roles in these processes. Indeed, cardiolipin has been implicated in the mechanism of three human diseases that affect young infants, implying developmental abnormalities. In this review, we will: (1) Review the biology of cardiolipin; (2) Outline the evidence for essential roles of cardiolipin during organismal development, including embryogenesis and cell maturation in vertebrate organisms; (3) Place the role(s) of cardiolipin during embryogenesis within the larger context of the roles of mitochondria in development; and (4) Suggest avenues for future research.
Collapse
Affiliation(s)
| | - Mindong Ren
- Department of Anesthesiology, New York University Grossman School of Medicine, New York, New York, USA
- Department of Cell Biology, New York University Grossman School of Medicine, New York, New York, USA
| | - Michael Schlame
- Department of Anesthesiology, New York University Grossman School of Medicine, New York, New York, USA
- Department of Cell Biology, New York University Grossman School of Medicine, New York, New York, USA
| | - Colin K.L. Phoon
- Department of Pediatrics, New York University Grossman School of Medicine, New York, New York, USA
| |
Collapse
|
2
|
Hudson J, Paul S, Veraksa A, Ghabrial A, Harvey KF, Poon C. NDR kinase tricornered genetically interacts with Ccm3 and metabolic enzymes in Drosophila melanogaster tracheal development. G3 (BETHESDA, MD.) 2023; 13:6991444. [PMID: 36653023 PMCID: PMC9997570 DOI: 10.1093/g3journal/jkad013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 07/18/2022] [Accepted: 12/14/2022] [Indexed: 01/20/2023]
Abstract
The Germinal Center Kinase III (GckIII) pathway is a Hippo-like kinase module defined by sequential activation of Ste20 kinases Thousand and One (Tao) and GckIII, followed by nuclear dbf2-related (NDR) kinase Tricornered (Trc). We previously uncovered a role for the GckIII pathway in Drosophila melanogaster tracheal (respiratory) tube morphology. The trachea form a network of branched epithelial tubes essential for oxygen transport, and are structurally analogous to branched tubular organs in vertebrates, such as the vascular system. In the absence of GckIII pathway function, aberrant dilations form in tracheal tubes characterized by mislocalized junctional and apical proteins, suggesting that the pathway is important in maintaining tube integrity in development. Here, we observed a genetic interaction between trc and Cerebral cavernous malformations 3 (Ccm3), the Drosophila ortholog of a human vascular disease gene, supporting our hypothesis that the GckIII pathway functions downstream of Ccm3 in trachea, and potentially in the vertebrate cerebral vasculature. However, how GckIII pathway signaling is regulated and the mechanisms that underpin its function in tracheal development are unknown. We undertook biochemical and genetic approaches to identify proteins that interact with Trc, the most downstream GckIII pathway kinase. We found that known GckIII and NDR scaffold proteins are likely to control GckIII pathway signaling in tracheal development, consistent with their conserved roles in Hippo-like modules. Furthermore, we show genetic interactions between trc and multiple enzymes in glycolysis and oxidative phosphorylation, suggesting a potential function of the GckIII pathway in integrating cellular energy requirements with maintenance of tube integrity.
Collapse
Affiliation(s)
- Joshua Hudson
- Peter MacCallum Cancer Centre, 305 Grattan Street, Melbourne, Victoria 3000, Australia.,Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Sayantanee Paul
- Department of Biology, University of Massachusetts Boston, Boston, MA 02125, USA
| | - Alexey Veraksa
- Department of Biology, University of Massachusetts Boston, Boston, MA 02125, USA
| | - Amin Ghabrial
- Department of Pathology and Cell Biology, Columbia University College of Physicians and Surgeons, 630 West 168th Street, New York, NY 10032, USA
| | - Kieran F Harvey
- Peter MacCallum Cancer Centre, 305 Grattan Street, Melbourne, Victoria 3000, Australia.,Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, Victoria 3010, Australia.,Department of Anatomy and Developmental Biology, and Biomedicine Discovery Institute, Monash University, Clayton 3800, Australia
| | - Carole Poon
- Peter MacCallum Cancer Centre, 305 Grattan Street, Melbourne, Victoria 3000, Australia.,Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, Victoria 3010, Australia
| |
Collapse
|
3
|
Homma Y, Inui T, Kayukawa T, Toga K, Shinoda T, Togawa T. The Mitochondrial Phosphatase PTPMT1 is Required for the Proper Growth Rate in the Red Flour Beetle, Tribolium castaneum. Zoolog Sci 2022; 39:236-241. [DOI: 10.2108/zs210092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 12/27/2021] [Indexed: 11/17/2022]
Affiliation(s)
- Yuri Homma
- Department of Biosciences, College of Humanities and Sciences, Nihon University, Sakurajyosui 3-25-40, Setagaya-ku, Tokyo 156-8550, Japan
| | - Tomohiro Inui
- Institute of Agrobiological Sciences, National Agriculture and Food Research Organization, Ohwashi 1-2, Tsukuba 305-8634, Japan
| | - Takumi Kayukawa
- Institute of Agrobiological Sciences, National Agriculture and Food Research Organization, Ohwashi 1-2, Tsukuba 305-8634, Japan
| | - Kouhei Toga
- Department of Biosciences, College of Humanities and Sciences, Nihon University, Sakurajyosui 3-25-40, Setagaya-ku, Tokyo 156-8550, Japan
| | - Tetsuro Shinoda
- Faculty of Food and Agricultural Sciences, Fukushima University, Kanayagawa 1, Fukushima 960-1296, Japan
| | - Toru Togawa
- Department of Biosciences, College of Humanities and Sciences, Nihon University, Sakurajyosui 3-25-40, Setagaya-ku, Tokyo 156-8550, Japan
| |
Collapse
|