1
|
Kazansky DB, Kalinina AA, Khromykh LM. Memory T Cells: Investigation of Original Models with Transgenic T Cell Receptors. BIOCHEMISTRY. BIOKHIMIIA 2025; 90:161-172. [PMID: 40254396 DOI: 10.1134/s0006297924603940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 12/26/2024] [Accepted: 12/27/2024] [Indexed: 04/22/2025]
Abstract
This review summarizes the research data on original mouse models developed in the laboratory of regulatory mechanisms in immunity of the Research Institute of Carcinogenesis, N. N. Blokhin National Medical Research Center of Oncology, Ministry of Health of the Russian Federation. Transfer of the genes of individual α- and β-chains of T cell receptors (TCRs) of memory cells has resulted in production of transgenic animal lines valuable for studying T lymphocyte homeostasis and patterns of formation of their activation profile markers. Investigation of the transgenic models revealed new features of immune selection and tumor progression. In particular, the fundamental property of some TCRs, termed "chain-centricity", has been confirmed; it involves dominance of one of the TCR chains during recognition of the MHC (major histocompatibility complex)/peptide complex. This property makes it possible to artificially generate a significant pool of immunocompetent T cells so it could be used in adoptive immunotherapy for oncological and infectious diseases. Transfer of the dominant active TCR α-chains provides the possibility for constructing organisms with innate specific immunological resistance to certain pathogens. The results of recent studies indicate that TCR, determining the T lymphocyte relationship with its MHC microenvironment, has an instructive role in formation of its functions and phenotype. One of these functions may be production of cyclophilin A by the cortisone-resistant memory cells localized in thymus. The evidence has been accumulated that expression of TCR with a certain structure and specificity is a sufficient condition for formation of the functional potential of memory cells in a T cell, regardless of its former interaction with antigenic MHC/peptide complexes.
Collapse
Affiliation(s)
- Dmitry B Kazansky
- N. N. Blokhin National Medical Research Center of Oncology, Ministry of Health of the Russian Federation, Moscow, 115522, Russia.
| | - Anastasiia A Kalinina
- N. N. Blokhin National Medical Research Center of Oncology, Ministry of Health of the Russian Federation, Moscow, 115522, Russia
| | - Ludmila M Khromykh
- N. N. Blokhin National Medical Research Center of Oncology, Ministry of Health of the Russian Federation, Moscow, 115522, Russia
| |
Collapse
|
2
|
Jacenik D. Tumor microenvironment and immune response: A gateway to novel therapies in gastrointestinal cancers. Biochim Biophys Acta Mol Basis Dis 2024; 1870:167203. [PMID: 38688415 DOI: 10.1016/j.bbadis.2024.167203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Revised: 04/02/2024] [Accepted: 04/22/2024] [Indexed: 05/02/2024]
Affiliation(s)
- Damian Jacenik
- University of Lodz, Faculty of Biology and Environmental Protection, Department of Cytobiochemistry, Lodz, Poland.
| |
Collapse
|
3
|
Kalinina AA, Khromykh LM, Kazansky DB. T Cell Receptor Chain Centricity: The Phenomenon and Potential Applications in Cancer Immunotherapy. Int J Mol Sci 2023; 24:15211. [PMID: 37894892 PMCID: PMC10607890 DOI: 10.3390/ijms242015211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 09/19/2023] [Accepted: 09/21/2023] [Indexed: 10/29/2023] Open
Abstract
T cells are crucial players in adaptive anti-cancer immunity. The gene modification of T cells with tumor antigen-specific T cell receptors (TCRs) was a milestone in personalized cancer immunotherapy. TCR is a heterodimer (either α/β or γ/δ) able to recognize a peptide antigen in a complex with self-MHC molecules. Although traditional concepts assume that an α- and β-chain contribute equally to antigen recognition, mounting data reveal that certain receptors possess chain centricity, i.e., one hemi-chain TCR dominates antigen recognition and dictates its specificity. Chain-centric TCRs are currently poorly understood in terms of their origin and the functional T cell subsets that express them. In addition, the ratio of α- and β-chain-centric TCRs, as well as the exact proportion of chain-centric TCRs in the native repertoire, is generally still unknown today. In this review, we provide a retrospective analysis of studies that evidence chain-centric TCRs, propose patterns of their generation, and discuss the potential applications of such receptors in T cell gene modification for adoptive cancer immunotherapy.
Collapse
Affiliation(s)
| | | | - Dmitry B. Kazansky
- N.N. Blokhin National Medical Research Center of Oncology of the Ministry of Health of the Russian Federation, 115478 Moscow, Russia
| |
Collapse
|
4
|
Dai X, Liu X, Li Y, Xu Q, Yang L, Gao F. Nitrogen-phosphorous co-doped carbonized chitosan nanoparticles for chemotherapy and ROS-mediated immunotherapy of intracellular Staphylococcus aureus infection. Carbohydr Polym 2023; 315:121013. [PMID: 37230629 DOI: 10.1016/j.carbpol.2023.121013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Revised: 05/07/2023] [Accepted: 05/08/2023] [Indexed: 05/27/2023]
Abstract
Staphylococcus aureus (S. aureus) residing in host macrophages is hard to clear because intracellular S. aureus has evolved mechanisms to hijack and subvert the immune response to favor intracellular infection. To overcome this challenge, nitrogen-phosphorous co-doped carbonized chitosan nanoparticles (NPCNs), which possess the polymer/carbon hybrid structures, were fabricated to clear intracellular S. aureus infection through chemotherapy and immunotherapy. Multi-heteroatom NPCNs were fabricated through the hydrothermal method, where chitosan and imidazole were used as the C and N sources and phosphoric acid as the P source. NPCNs can not only be used as a fluorescent probe for bacteria imaging but also kill extracellular and intracellular bacteria with low cytotoxicity. NPCNs could generate ROS and polarize macrophages into classically activated (M1) phenotypes to increase antibacterial immunity. Furthermore, NPCNs could accelerate intracellular S. aureus-infected wound healing in vivo. We envision that these carbonized chitosan nanoparticles may provide a new platform for clearing intracellular bacterial infection through chemotherapy and ROS-mediated immunotherapy.
Collapse
Affiliation(s)
- Xiaomei Dai
- Laboratory of Functionalized Molecular Solids, Ministry of Education, Anhui Key Laboratory of Chemo/Biosensing, Laboratory of Biosensing and Bioimaging (LOBAB), College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, PR China.
| | - Xiaojun Liu
- Laboratory of Functionalized Molecular Solids, Ministry of Education, Anhui Key Laboratory of Chemo/Biosensing, Laboratory of Biosensing and Bioimaging (LOBAB), College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, PR China
| | - Yu Li
- Laboratory of Functionalized Molecular Solids, Ministry of Education, Anhui Key Laboratory of Chemo/Biosensing, Laboratory of Biosensing and Bioimaging (LOBAB), College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, PR China
| | - Qingqing Xu
- Laboratory of Functionalized Molecular Solids, Ministry of Education, Anhui Key Laboratory of Chemo/Biosensing, Laboratory of Biosensing and Bioimaging (LOBAB), College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, PR China
| | - Lele Yang
- Laboratory of Functionalized Molecular Solids, Ministry of Education, Anhui Key Laboratory of Chemo/Biosensing, Laboratory of Biosensing and Bioimaging (LOBAB), College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, PR China
| | - Feng Gao
- Laboratory of Functionalized Molecular Solids, Ministry of Education, Anhui Key Laboratory of Chemo/Biosensing, Laboratory of Biosensing and Bioimaging (LOBAB), College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, PR China.
| |
Collapse
|
5
|
Mattila J, Sormunen S, Heikkilä N, Mattila IP, Saramäki J, Arstila TP. Analysis of thymic generation of shared T-cell receptor α repertoire associated with recognition of tumor antigens shows no preference for neoantigens over wild-type antigens. Cancer Med 2023; 12:13486-13496. [PMID: 37114587 PMCID: PMC10315763 DOI: 10.1002/cam4.6002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 04/06/2023] [Accepted: 04/15/2023] [Indexed: 04/29/2023] Open
Abstract
BACKGROUND The number of mutations in cancer cells is an important predictor of a positive response to cancer immunotherapy. It has been suggested that the neoantigens produced by these mutations are more immunogenic than nonmutated tumor antigens, which are likely to be protected by immunological tolerance. However, the mechanisms of tolerance as regards tumor antigens are incompletely understood. METHODS Here, we have analyzed the impact of thymic negative selection on shared T-cell receptor (TCR) repertoire associated with the recognition of either mutated or nonmutated tumor antigens by comparing previously known TCR-antigen-pairs to TCR repertoires of 21 immunologically healthy individuals. RESULTS Our results show that TCRα chains associated with either type of tumor antigens are readily generated in the thymus, at a frequency similar to TCRα chains associated with nonself. In the peripheral repertoire, the relative clone size of nonself-associated chains is higher than that of the tumor antigens, but importantly, there is no difference between TCRα chains associated with mutated or nonmutated tumor antigens. CONCLUSION This suggests that the tolerance mechanisms protecting nonmutated tumor antigens are non-deletional and therefore potentially reversible. As unmutated antigens are, unlike mutations, shared by a large number of patients, they may offer advantages in designing immunological approaches to cancer treatment.
Collapse
Affiliation(s)
- Joonatan Mattila
- Research Programs Unit, Translational Immunology, Haartmaninkatu 3 (PL 21) 00014, and MedicumUniversity of HelsinkiHelsinkiFinland
| | - Silja Sormunen
- Department of Computer ScienceAalto UniversityEspooFinland
| | - Nelli Heikkilä
- Research Programs Unit, Translational Immunology, Haartmaninkatu 3 (PL 21) 00014, and MedicumUniversity of HelsinkiHelsinkiFinland
- Faculty of Medicine, Center for Vaccinology, Department of Pathology and ImmunologyUniversity of GenevaGenevaSwitzerland
| | - Ilkka P. Mattila
- Department of Pediatric Cardiac and Transplantation SurgeryHospital for Children and Adolescents, Helsinki University Central HospitalHelsinkiFinland
| | - Jari Saramäki
- Department of Computer ScienceAalto UniversityEspooFinland
| | - T. Petteri Arstila
- Research Programs Unit, Translational Immunology, Haartmaninkatu 3 (PL 21) 00014, and MedicumUniversity of HelsinkiHelsinkiFinland
| |
Collapse
|
6
|
Kalinina A, Persiyantseva N, Britanova O, Lupyr K, Shagina I, Khromykh L, Kazansky D. Unique features of the TCR repertoire of reactivated memory T cells in the experimental mouse tumor model. Comput Struct Biotechnol J 2023; 21:3196-3209. [PMID: 37333858 PMCID: PMC10275742 DOI: 10.1016/j.csbj.2023.05.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 05/24/2023] [Accepted: 05/24/2023] [Indexed: 06/20/2023] Open
Abstract
T cell engineering with T cell receptors (TCR) specific to tumor antigens has become a breakthrough towards personalized cancer adoptive cell immunotherapy. However, the search for therapeutic TCRs is often challenging, and effective strategies are strongly required for the identification and enrichment of tumor-specific T cells that express TCRs with superior functional characteristics. Using an experimental mouse tumor model, we studied sequential changes in TCR repertoire features of T cells involved in the primary and secondary immune responses to allogeneic tumor antigens. In-depth bioinformatics analysis of TCR repertoires showed differences in reactivated memory T cells compared to primarily activated effectors. After cognate antigen re-encounter, memory cells were enriched with clonotypes that express α-chain TCR with high potential cross-reactivity and enhanced strength of interaction with both MHC and docked peptides. Our findings suggest that functionally true memory T cells could be a better source of therapeutic TCRs for adoptive cell therapy. No marked changes were observed in the physicochemical characteristics of TCRβ in reactivated memory clonotypes, indicative of the dominant role of TCRα in the secondary allogeneic immune response. The results of this study could further contribute to the development of TCR-modified T cell products based on the phenomenon of TCR chain centricity.
Collapse
Affiliation(s)
- Anastasiia Kalinina
- N.N. Blokhin National Medical Research Center of Oncology of the Ministry of Health of the Russian Federation, Kashirskoe sh. 24, 115478 Moscow, Russian Federation
| | - Nadezda Persiyantseva
- N.N. Blokhin National Medical Research Center of Oncology of the Ministry of Health of the Russian Federation, Kashirskoe sh. 24, 115478 Moscow, Russian Federation
| | - Olga Britanova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya st. 16/10, 117997 Moscow, Russian Federation
- Institute of Translational Medicine, Pirogov Russian National Research Medical University, Ostrovityanova st.1, 17997 Moscow, Russian Federation
| | - Ksenia Lupyr
- Center of Life Sciences, Skolkovo Institute of Science and Technology, Bolshoi boulevard 30c1, 121205 Moscow, Russian Federation
- Institute of Translational Medicine, Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Pirogov Russian National Research Medical University, Ostrovityanova st.1,build. 1, 17997 Moscow, Russian Federation
| | - Irina Shagina
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya st. 16/10, 117997 Moscow, Russian Federation
- Institute of Translational Medicine, Pirogov Russian National Research Medical University, Ostrovityanova st.1, 17997 Moscow, Russian Federation
| | - Ludmila Khromykh
- N.N. Blokhin National Medical Research Center of Oncology of the Ministry of Health of the Russian Federation, Kashirskoe sh. 24, 115478 Moscow, Russian Federation
| | - Dmitry Kazansky
- N.N. Blokhin National Medical Research Center of Oncology of the Ministry of Health of the Russian Federation, Kashirskoe sh. 24, 115478 Moscow, Russian Federation
| |
Collapse
|
7
|
Kalinina AA, Ziganshin RK, Silaeva YY, Sharova NI, Nikonova MF, Persiyantseva NA, Gorkova TG, Antoshina EE, Trukhanova LS, Donetskova AD, Komogorova VV, Litvina MM, Mitin AN, Zamkova MA, Bruter AV, Khromykh LM, Kazansky DB. Physiological and Functional Effects of Dominant Active TCRα Expression in Transgenic Mice. Int J Mol Sci 2023; 24:ijms24076527. [PMID: 37047500 PMCID: PMC10094918 DOI: 10.3390/ijms24076527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 03/28/2023] [Accepted: 03/29/2023] [Indexed: 04/03/2023] Open
Abstract
A T cell receptor (TCR) consists of α- and β-chains. Accumulating evidence suggests that some TCRs possess chain centricity, i.e., either of the hemi-chains can dominate in antigen recognition and dictate the TCR’s specificity. The introduction of TCRα/β into naive lymphocytes generates antigen-specific T cells that are ready to perform their functions. Transgenesis of the dominant active TCRα creates transgenic animals with improved anti-tumor immune control, and adoptive immunotherapy with TCRα-transduced T cells provides resistance to infections. However, the potential detrimental effects of the dominant hemi-chain TCR’s expression in transgenic animals have not been well investigated. Here, we analyzed, in detail, the functional status of the immune system of recently generated 1D1a transgenic mice expressing the dominant active TCRα specific to the H2-Kb molecule. In their age dynamics, neither autoimmunity due to the random pairing of transgenic TCRα with endogenous TCRβ variants nor significant disturbances in systemic homeostasis were detected in these mice. Although the specific immune response was considerably enhanced in 1D1a mice, responses to third-party alloantigens were not compromised, indicating that the expression of dominant active TCRα did not limit immune reactivity in transgenic mice. Our data suggest that TCRα transgene expression could delay thymic involution and maintain TCRβ repertoire diversity in old transgenic mice. The detected changes in the systemic homeostasis in 1D1a transgenic mice, which are minor and primarily transient, may indicate variations in the ontogeny of wild-type and transgenic mouse lines.
Collapse
Affiliation(s)
- Anastasiia A. Kalinina
- N.N. Blokhin National Medical Research Center of Oncology, Ministry of Health of the Russian Federation, Kashirskoe sh., 24, 115478 Moscow, Russia
| | - Rustam Kh. Ziganshin
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya st. 16/10, 117997 Moscow, Russia
| | - Yulia Yu. Silaeva
- Institute of Gene Biology, Russian Academy of Sciences, Vavilova st. 34/5, 119334 Moscow, Russia
| | - Nina I. Sharova
- National Research Center, Institute of Immunology Federal Medical-Biological Agency of Russia, Kashirskoe sh., 24, 115522 Moscow, Russia
| | - Margarita F. Nikonova
- National Research Center, Institute of Immunology Federal Medical-Biological Agency of Russia, Kashirskoe sh., 24, 115522 Moscow, Russia
| | - Nadezda A. Persiyantseva
- N.N. Blokhin National Medical Research Center of Oncology, Ministry of Health of the Russian Federation, Kashirskoe sh., 24, 115478 Moscow, Russia
| | - Tatiana G. Gorkova
- N.N. Blokhin National Medical Research Center of Oncology, Ministry of Health of the Russian Federation, Kashirskoe sh., 24, 115478 Moscow, Russia
| | - Elena E. Antoshina
- N.N. Blokhin National Medical Research Center of Oncology, Ministry of Health of the Russian Federation, Kashirskoe sh., 24, 115478 Moscow, Russia
| | - Lubov S. Trukhanova
- N.N. Blokhin National Medical Research Center of Oncology, Ministry of Health of the Russian Federation, Kashirskoe sh., 24, 115478 Moscow, Russia
| | - Almira D. Donetskova
- National Research Center, Institute of Immunology Federal Medical-Biological Agency of Russia, Kashirskoe sh., 24, 115522 Moscow, Russia
| | - Victoria V. Komogorova
- National Research Center, Institute of Immunology Federal Medical-Biological Agency of Russia, Kashirskoe sh., 24, 115522 Moscow, Russia
| | - Marina M. Litvina
- National Research Center, Institute of Immunology Federal Medical-Biological Agency of Russia, Kashirskoe sh., 24, 115522 Moscow, Russia
| | - Alexander N. Mitin
- National Research Center, Institute of Immunology Federal Medical-Biological Agency of Russia, Kashirskoe sh., 24, 115522 Moscow, Russia
| | - Maria A. Zamkova
- N.N. Blokhin National Medical Research Center of Oncology, Ministry of Health of the Russian Federation, Kashirskoe sh., 24, 115478 Moscow, Russia
- Institute of Gene Biology, Russian Academy of Sciences, Vavilova st. 34/5, 119334 Moscow, Russia
| | - Alexandra V. Bruter
- N.N. Blokhin National Medical Research Center of Oncology, Ministry of Health of the Russian Federation, Kashirskoe sh., 24, 115478 Moscow, Russia
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Institute of Gene Biology, Russian Academy of Sciences, 34/5 Vavilov St., 119334 Moscow, Russia
| | - Ludmila M. Khromykh
- N.N. Blokhin National Medical Research Center of Oncology, Ministry of Health of the Russian Federation, Kashirskoe sh., 24, 115478 Moscow, Russia
| | - Dmitry B. Kazansky
- N.N. Blokhin National Medical Research Center of Oncology, Ministry of Health of the Russian Federation, Kashirskoe sh., 24, 115478 Moscow, Russia
- Correspondence:
| |
Collapse
|
8
|
Xue Y, Che J, Ji X, Li Y, Xie J, Chen X. Recent advances in biomaterial-boosted adoptive cell therapy. Chem Soc Rev 2022; 51:1766-1794. [PMID: 35170589 DOI: 10.1039/d1cs00786f] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Adoptive immunotherapies based on the transfer of functional immune cells hold great promise in treating a wide range of malignant diseases, especially cancers, autoimmune diseases, and infectious diseases. However, manufacturing issues and biological barriers lead to the insufficient population of target-selective effector cells at diseased sites after adoptive transfer, hindering effective clinical translation. The convergence of immunology, cellular biology, and materials science lays a foundation for developing biomaterial-based engineering platforms to overcome these challenges. Biomaterials can be rationally designed to improve ex vivo immune cell expansion, expedite functional engineering, facilitate protective delivery of immune cells in situ, and navigate the infused cells in vivo. Herein, this review presents a comprehensive summary of the latest progress in biomaterial-based strategies to enhance the efficacy of adoptive cell therapy, focusing on function-specific biomaterial design, and also discusses the challenges and prospects of this field.
Collapse
Affiliation(s)
- Yonger Xue
- Jiangsu Key Laboratory of Molecular Imaging and Functional Imaging, Department of Radiology, Zhongda Hospital, Medical School, Southeast University, 87 Dingjiaqiao Road, Nanjing, Jiangsu 210009, China. .,Center for BioDelivery Sciences, School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Rd, Shanghai, 200240, P. R. China.,Innovation Center of NanoMedicine, Kawasaki Institute of Industrial Promotion, Kawasaki 210-0821, Japan
| | - Junyi Che
- Department of Rheumatology and Immunology, Institute of Translational Medicine, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing 210008, China
| | - Xuemei Ji
- School of Life Science and Technology, China Pharmaceutical University, Nanjing 210009, China
| | - Yunuo Li
- Jiangsu Key Laboratory of Molecular Imaging and Functional Imaging, Department of Radiology, Zhongda Hospital, Medical School, Southeast University, 87 Dingjiaqiao Road, Nanjing, Jiangsu 210009, China.
| | - Jinbing Xie
- Jiangsu Key Laboratory of Molecular Imaging and Functional Imaging, Department of Radiology, Zhongda Hospital, Medical School, Southeast University, 87 Dingjiaqiao Road, Nanjing, Jiangsu 210009, China. .,Innovation Center of NanoMedicine, Kawasaki Institute of Industrial Promotion, Kawasaki 210-0821, Japan.,State Key Laboratory of Bioelectronics, Southeast University, 87 Dingjiaqiao Road, Nanjing, Jiangsu 210009, China
| | - Xiaoyuan Chen
- Departments of Diagnostic Radiology, Surgery, Chemical and Biomolecular Engineering, and Biomedical Engineering, Yong Loo Lin School of Medicine and Faculty of Engineering, National University of Singapore, Singapore, 119074, Singapore. .,Clinical Imaging Research Centre, Centre for Translational Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117599, Singapore.,Nanomedicine Translational Research Program, NUS Center for Nanomedicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore
| |
Collapse
|
9
|
Kalinina A, Bruter A, Persiyantseva N, Silaeva Y, Zamkova M, Khromykh L, Kazansky D. Safety evaluation of the mouse TCRα - transduced T cell product in preclinical models in vivo and in vitro. Biomed Pharmacother 2021; 145:112480. [PMID: 34915667 DOI: 10.1016/j.biopha.2021.112480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 11/24/2021] [Accepted: 11/30/2021] [Indexed: 11/18/2022] Open
Abstract
Adoptive cell therapy (ACT) based on TCR- or CAR-T cells has become an efficient immunotherapeutic approach for the treatment of various diseases, including cancer. Previously, we developed a novel strategy for generating therapeutic T cell products based on chain-centric TCRs, in which either α- or β-chain dominates in cognate antigen recognition. To assess the suitability of our experimental approach for the clinical application and predict its possible adverse effects, in studies here, we evaluated the safety of the experimental TCRα-modified T cell product in mouse preclinical models. Our data showed no tumorigenic or mutagenic activity in vitro of TCRα-transduced T cells, indicating no genotoxicity of viral vectors used for the generation of the experimental T cell product. Adoptive transfer of TCRα-engineered T cells in a wide dose range didn`t disturb the host homeostasis and exhibited no acute toxicity or immunotoxicity in vivo. Based on pharmacokinetics and pharmacodynamics analysis here, modified T cells rapidly penetrated and distributed in many viscera after infusion. Histological evaluations revealed no pathological changes in organs caused by T cells accumulation, indicating the absence of non-specific off-target activity or cross-reactivity of the therapeutic TCRα. Studies here provide valuable information on the potential safety of TCRα-T cell based ACT that could be extrapolated to possible effects in a human host.
Collapse
Affiliation(s)
- Anastasiia Kalinina
- Federal State Budgetary Institution "N.N. Blokhin National Medical Research Center of Oncology" of the Ministry of Health of the Russian Federation, Kashirskoe sh., 24, Moscow 115478, Russian Federation
| | - Alexandra Bruter
- Federal State Budgetary Institution "N.N. Blokhin National Medical Research Center of Oncology" of the Ministry of Health of the Russian Federation, Kashirskoe sh., 24, Moscow 115478, Russian Federation; Core Facility Center, Institute of Gene Biology, Russian Academy of Sciences, Vavilova st. 34/5, Moscow 119334, Russian Federation
| | - Nadezhda Persiyantseva
- Federal State Budgetary Institution "N.N. Blokhin National Medical Research Center of Oncology" of the Ministry of Health of the Russian Federation, Kashirskoe sh., 24, Moscow 115478, Russian Federation
| | - Yulia Silaeva
- Core Facility Center, Institute of Gene Biology, Russian Academy of Sciences, Vavilova st. 34/5, Moscow 119334, Russian Federation
| | - Maria Zamkova
- Federal State Budgetary Institution "N.N. Blokhin National Medical Research Center of Oncology" of the Ministry of Health of the Russian Federation, Kashirskoe sh., 24, Moscow 115478, Russian Federation
| | - Ludmila Khromykh
- Federal State Budgetary Institution "N.N. Blokhin National Medical Research Center of Oncology" of the Ministry of Health of the Russian Federation, Kashirskoe sh., 24, Moscow 115478, Russian Federation
| | - Dmitry Kazansky
- Federal State Budgetary Institution "N.N. Blokhin National Medical Research Center of Oncology" of the Ministry of Health of the Russian Federation, Kashirskoe sh., 24, Moscow 115478, Russian Federation.
| |
Collapse
|
10
|
Yan D, Yang J, Ji Z, Wang J, Lu X, Huang Y, Zhong C, Li L. Profiling T cell receptor β-chain in responders after immunization with recombinant hepatitis B vaccine. J Gene Med 2021; 23:e3367. [PMID: 34048625 DOI: 10.1002/jgm.3367] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Accepted: 05/22/2021] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND T cells with edited T cell receptor β-chain variable (TRBV) are involved in the immune response to recombinant hepatitis B surface antigen (rHBsAg) vaccine and the production of hepatitis B surface antibody (HBsAb). The immune repertoire (IR) profile and mechanism of vaccination positive responders (VPR) with rHBsAg are not fully understood. METHODS The IR of six VPRs (HBsAb+, HbsAg-) with rHBsAg vaccination was established by the high throughput sequencing technique and bioinformatics analysis and compared with those in five vaccination negative responders (VNRs) (HbsAb-, HbsAg-) who were also inoculated with rHBsAg. The repertoire features of the BV, BJ and V (CDR3) J genes and immune diversity in peripheral blood mononuclear cells, respectively, were analyzed for each subject. RESULTS There was no significant difference in sequencing amplification indices of each sample. However, TRBV15/BJ2-3 demonstrated significantly high expression levels in VPR compared to those in the VNR group (both p < 0.05). Further results showed that the BV15/BJ2-5 level was significantly increased for VPR compared to that of VNR group. Interestingly, the motif of CDR3 in TRBV15/BJ2-5 was mostly expressed as "GGETQ" or "GETQ". Additionally, there was no remarkable difference between the two groups of distribution with respect to the different clone expression levels of V (CDR3) J. CONCLUSIONS The features of IR in the VPR and VNR will contribute to the exploration of the mechanism of the positive response to rHBsAg, and also contribute to development of optimized hepatitis B vaccine, in addition to providing a partial interpretation of the VNR who has a relatively low infection with HBV.
Collapse
Affiliation(s)
- Dong Yan
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases; National Clinical Research Center for Infectious Diseases; the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jiezuan Yang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases; National Clinical Research Center for Infectious Diseases; the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Zhongkang Ji
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases; National Clinical Research Center for Infectious Diseases; the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Ju Wang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases; National Clinical Research Center for Infectious Diseases; the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xiaoqing Lu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases; National Clinical Research Center for Infectious Diseases; the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yandi Huang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases; National Clinical Research Center for Infectious Diseases; the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Chengli Zhong
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases; National Clinical Research Center for Infectious Diseases; the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Lanjuan Li
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases; National Clinical Research Center for Infectious Diseases; the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
11
|
McCulloch TR, Wells TJ, Souza-Fonseca-Guimaraes F. Towards efficient immunotherapy for bacterial infection. Trends Microbiol 2021; 30:158-169. [PMID: 34253452 DOI: 10.1016/j.tim.2021.05.005] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 05/11/2021] [Accepted: 05/18/2021] [Indexed: 02/06/2023]
Abstract
The emergence of multiantibiotic-resistant bacteria, often referred to as superbugs, is leading to infections that are increasingly difficult to treat. Further, bacteria have evolved mechanisms by which they subvert the immune response, meaning that even antibiotic-sensitive bacteria can persist through antibiotic therapy. For these reasons, a broad range of viable therapeutic alternatives or conjunctions to traditional antimicrobial therapy are urgently required to reduce the burden of disease threatened by antibiotic resistance. Immunotherapy has emerged as a leading treatment option in cancer, and researchers are now attempting to apply this to infectious disease. This review summarizes and discusses the recent advances in the field and highlights current and future perspectives of using immunotherapies to treat bacterial infections.
Collapse
Affiliation(s)
- Timothy R McCulloch
- University of Queensland Diamantina Institute, The University of Queensland, Woolloongabba, QLD 4102, Australia
| | - Timothy J Wells
- University of Queensland Diamantina Institute, The University of Queensland, Woolloongabba, QLD 4102, Australia; Australian Infectious Diseases Research Centre, University of Queensland, Brisbane, QLD 4072, Australia
| | | |
Collapse
|
12
|
Kalinina A, Bruter A, Nesterenko L, Khromykh L, Kazansky D. Generation of TCRα-transduced T cells for adoptive transfer therapy of salmonellosis in mice. STAR Protoc 2021; 2:100368. [PMID: 33748782 PMCID: PMC7972981 DOI: 10.1016/j.xpro.2021.100368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Adoptive transfer therapy has great potential to treat diseases such as cancer as well as autoimmune and infectious diseases. Identification of chain-centric T cell receptors (TCRs) with the dominant-active antigen-specific α-chains (TCRα) can significantly improve the efficacy of adoptive cell therapy while reducing time, labor, and costs of generation of TCR-modified antigen-specific T cells. This protocol describes how to generate salmonella-specific TCRα-modified mouse T cells by retroviral transduction and evaluate their functional activity in vivo in the mouse model of salmonellosis. For complete details on the use and execution of this protocol, please refer to Kalinina et al. (2020). Adoptive T cell therapy has great potential for treatment of infections Protocol describes generating T cells transduced with dominant pathogen-specific TCRα Protocol describes usage of specific TCRα-transduced T cells in mice salmonellosis
Collapse
Affiliation(s)
- Anastasiia Kalinina
- Federal State Budgetary Institution "N. N. Blokhin National Medical Research Center of Oncology," the Ministry of Health of the Russian Federation, Moscow 115478, Russia
| | - Alexandra Bruter
- Federal State Budgetary Institution "N. N. Blokhin National Medical Research Center of Oncology," the Ministry of Health of the Russian Federation, Moscow 115478, Russia.,Core Facility Centre, Institute of Gene Biology, Russian Academy of Sciences, Moscow 119334, Russia
| | - Ludmila Nesterenko
- N. F. Gamaleya National Research Center of Epidemiology and Microbiology, the Ministry of Health of the Russian Federation, Moscow 123098, Russia
| | - Ludmila Khromykh
- Federal State Budgetary Institution "N. N. Blokhin National Medical Research Center of Oncology," the Ministry of Health of the Russian Federation, Moscow 115478, Russia
| | - Dmitry Kazansky
- Federal State Budgetary Institution "N. N. Blokhin National Medical Research Center of Oncology," the Ministry of Health of the Russian Federation, Moscow 115478, Russia
| |
Collapse
|