1
|
Xing Y, Fan Y, Wang J, Wang M, Xuan Q, Ma Z, Guo W, Mai L. In Situ Induced Interface Engineering in Hierarchical Fe 3O 4 Enhances Performance for Alkaline Solid-State Energy Storage. ACS NANO 2024; 18:18444-18456. [PMID: 38953611 DOI: 10.1021/acsnano.4c03301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2024]
Abstract
Rechargeable aqueous batteries adopting Fe-based materials are attracting widespread attention by virtue of high-safety and low-cost. However, the present Fe-based anodes suffer from low electronic/ionic conductivity and unsatisfactory comprehensive performance, which greatly restrict their practicability. Concerning the principle of physical chemistry, fabricating electrodes that could simultaneously achieve ideal thermodynamics and fast kinetics is a promising issue. Herein, hierarchical Fe3O4@Fe foam electrode with enhanced interface/grain boundary engineering is fabricated through an in situ self-regulated strategy. The electrode achieves ultrahigh areal capacity of 31.45 mA h cm-2 (50 mA cm-2), good scale application potential (742.54 mA h for 25 cm2 electrode), satisfied antifluctuation capability, and excellent cycling stability. In/ex situ characterizations further validate the desired thermodynamic and kinetic properties of the electrode endowed with accurate interface regulation, which accounts for salient electrochemical reversibility in a two-stage phase transition and slight energy loss. This work offers a suitable strategy in designing high-performance Fe-based electrodes with comprehensive inherent characteristics for high-safety large-scale energy storage.
Collapse
Affiliation(s)
- Yi Xing
- Department of Applied Chemistry, Hebei Key Laboratory of Applied Chemistry, College of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao 066004, People's Republic of China
| | - Yuqian Fan
- Department of Applied Chemistry, Hebei Key Laboratory of Applied Chemistry, College of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao 066004, People's Republic of China
| | - Junjun Wang
- State Key Lab of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, People's Republic of China
| | - Miao Wang
- Department of Applied Chemistry, Hebei Key Laboratory of Applied Chemistry, College of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao 066004, People's Republic of China
| | - Qianyu Xuan
- Department of Applied Chemistry, Hebei Key Laboratory of Applied Chemistry, College of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao 066004, People's Republic of China
| | - Zhipeng Ma
- Department of Applied Chemistry, Hebei Key Laboratory of Applied Chemistry, College of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao 066004, People's Republic of China
| | - Wenfeng Guo
- Department of Applied Chemistry, Hebei Key Laboratory of Applied Chemistry, College of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao 066004, People's Republic of China
| | - Liqiang Mai
- State Key Lab of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, People's Republic of China
| |
Collapse
|
3
|
Tang H, Liu M, Kong L, Wang X, Lei Y, Li X, Hou Y, Chang K, Chang Z. The Synergistic Effect of MoS 2 and NiS on the Electrical Properties of Iron Anodes for Ni-Fe Batteries. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:3472. [PMID: 36234600 PMCID: PMC9565254 DOI: 10.3390/nano12193472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 09/29/2022] [Accepted: 09/30/2022] [Indexed: 06/16/2023]
Abstract
In this paper, a series of Fe3O4/MoS2/NiS composite electrodes were synthesized by a simple coprecipitation method. The influence of different ratio additives (MoS2 and NiS) on the performance of iron anodes for Ni-Fe batteries was systematically investigated. In this paper, the mixed alkaline solution of 6 mol/L NaOH and 0.6 mol/L LiOH was used as electrolyte, and sintered Ni(OH)2 was used as counterelectrode. The experimental results show that the MoS2 and NiS additives can effectively eliminate the passivation phenomena in iron electrodes, reduce the electrode polarization, and increase the reversibility capacity. As a result, the Fe3O4/MoS2/NiS composite electrodes exhibit a high specific capacity, good rate performance, and long cycling stability. Especially, the Fe3O4/MoS2 (5%)/NiS (5%) electrode with a suitable ratio of additives can provide excellent electrochemical performance, with high discharge capacities of 657.9 mAh g-1, 639.8 mAh g-1, and 442.1 mAh g-1 at 600 mA g-1, 1200 mA g-1, and 2400 mA g-1, respectively. This electrode also exhibits good cycling stability.
Collapse
Affiliation(s)
- Hongwei Tang
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, China
| | - Mengyue Liu
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, China
| | - Lingna Kong
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, China
| | - Xiaoyan Wang
- Henan Troily New Energy Technology Co., Ltd., Xinxiang 453000, China
| | - Yue Lei
- Henan Troily New Energy Technology Co., Ltd., Xinxiang 453000, China
| | - Xige Li
- Henan Troily New Energy Technology Co., Ltd., Xinxiang 453000, China
| | - Yan Hou
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, China
| | - Kun Chang
- Jiangsu Key Laboratory of Materials and Technology for Energy Conversion, College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
| | - Zhaorong Chang
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, China
- Jiangsu Key Laboratory of Materials and Technology for Energy Conversion, College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
| |
Collapse
|
4
|
Zhang W, Vadlakonda S, Wu M, Chintareddy V, Vogeti LN, Juarez L, Muppa S, Parker C, Kellogg-Yelder D, Williams J, Polach K, Chen X, Raman K, Babu Y, Kotian P. Discovery and Optimization of Orally Bioavailable and Potent Plasma Kallikrein Inhibitors Bearing a Quaternary Carbon. Bioorg Med Chem 2022; 73:117035. [DOI: 10.1016/j.bmc.2022.117035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 09/21/2022] [Accepted: 09/22/2022] [Indexed: 11/02/2022]
|
5
|
Liu H, Wang J, Song C, Zhou K, Yu B, Jiang J, Qian J, Zhang X, Wang H. Exogenously Triggered Nanozyme for Real-Time Magnetic Resonance Imaging-Guided Synergistic Cascade Tumor Therapy. ACS APPLIED MATERIALS & INTERFACES 2022; 14:29650-29658. [PMID: 35735117 DOI: 10.1021/acsami.2c07375] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The uncontrolled treatment process and high concentration of intracellular glutathione compromise the therapeutic efficacies of chemodynamic therapy (CDT). Here, iron oxide nanocrystals embedded in N-doped carbon nanosheets (IONCNs) are designed as a near-infrared light-triggered nanozyme for synergistic cascade tumor therapy. The IONCNs can absorb and convert 980 nm light to local heat, which induces the dissolution of iron oxide for generating Fe2+/Fe3+ in a weak acid environment, apart from thermal ablation of cancer cells. The formed Fe2+ takes on the active site for the Fenton reaction. The formed Fe3+ acts as glutathione peroxidase to magnify oxidative stress, improving the antitumor performance. The IONCNs can be used to visually track the treatment process via magnetic resonance imaging. Such IONCNs demonstrate great potential as an exogenously triggered nanozyme via an integrated cascade reaction for imaging-guided synergistic cancer therapy.
Collapse
Affiliation(s)
- Hongji Liu
- High Magnetic Field Laboratory, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, Anhui, P. R. China
- University of Science and Technology of China, Hefei 230026, Anhui, P. R. China
- The Anhui Key Laboratory of Condensed Matter Physics at Extreme Conditions, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, Anhui, P. R. China
| | - Junjun Wang
- High Magnetic Field Laboratory, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, Anhui, P. R. China
- Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, Anhui, China
| | - Chao Song
- High Magnetic Field Laboratory, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, Anhui, P. R. China
- University of Science and Technology of China, Hefei 230026, Anhui, P. R. China
- Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, Anhui, China
| | - Ke Zhou
- Hefei Cancer Hospital, Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, Anhui, China
- Institute of Physical Science and Information Technology, Anhui University, Hefei 230601, China
| | - Biao Yu
- High Magnetic Field Laboratory, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, Anhui, P. R. China
- University of Science and Technology of China, Hefei 230026, Anhui, P. R. China
- Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, Anhui, China
| | - Jialiang Jiang
- High Magnetic Field Laboratory, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, Anhui, P. R. China
- University of Science and Technology of China, Hefei 230026, Anhui, P. R. China
| | - Junchao Qian
- Hefei Cancer Hospital, Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, Anhui, China
| | - Xin Zhang
- High Magnetic Field Laboratory, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, Anhui, P. R. China
- Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, Anhui, China
| | - Hui Wang
- High Magnetic Field Laboratory, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, Anhui, P. R. China
- University of Science and Technology of China, Hefei 230026, Anhui, P. R. China
- The Anhui Key Laboratory of Condensed Matter Physics at Extreme Conditions, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, Anhui, P. R. China
| |
Collapse
|
6
|
Zhu J, Zhang Q, Yang S, Chen L, Zhao P, Yan Q. Anode Electrodeposition of Fe/Fe
3
O
4
composite on Carbon Fabric as a Negative Electrode for Flexible Ni−Fe Batteries. ChemElectroChem 2021. [DOI: 10.1002/celc.202101178] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Jie Zhu
- Institute for Advanced Study Chengdu University Chengdu P. R. China
| | - Qian Zhang
- Institute for Advanced Study Chengdu University Chengdu P. R. China
| | - Sudong Yang
- Institute for Advanced Study Chengdu University Chengdu P. R. China
| | - Lin Chen
- Institute for Advanced Study Chengdu University Chengdu P. R. China
| | - Peng Zhao
- Institute for Advanced Study Chengdu University Chengdu P. R. China
| | - Qiang Yan
- Institute for Advanced Study in Nuclear Energy & Safety Shenzhen University Shenzhen P. R. China
| |
Collapse
|