1
|
Xia L, Stoika R, Li Y, Zheng Y, Liu Y, Li D, Liu K, Zhang X, Shang X, Jin M. 2,3,4-Trihydroxybenzophenone-induced cardiac and neurological toxicity: Heart-brain interaction mediated by regulation of pgam1a and pgk1 involved in glycolysis and gluconeogenesis in zebrafish. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 974:179212. [PMID: 40157088 DOI: 10.1016/j.scitotenv.2025.179212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 03/11/2025] [Accepted: 03/20/2025] [Indexed: 04/01/2025]
Abstract
2,3,4-trihydroxybenzophenone (2,3,4-THBP) is a benzophenone-type UV filter commonly used in sunscreens. However, the widespread application of BP-UV filters has led to an appearance of this chemical in the environment and living organisms. Despite of this, there is poor understanding of the bio-toxicity of 2,3,4-THBP. Here, we investigated the adverse effects of 2,3,4-THBP in varying doses (115, 230, 460, 920, and 1840 μg/L) in zebrafish experimental model. Specifically, we assessed its impact on the cardio- and neuro-development, including pericardiac area, heart rate, as well as brain vessels and differentiation of dopaminergic and central nervous system (CNS) neurons. The expression of genes whose products are involved in cardio- and neuro-development was also monitored. It was found that 2,3,4-THBP caused heart failure (HF)-like symptoms in zebrafish embryos including pericardial edema, reduced heart rate, and yolk sac malformation. It also induced dramatic neurotoxicity, namely defective neuron differentiation, cerebrovascular loss, cognition and behavior defects. It disrupted the vascular system, leading to potentially toxic interactions between the heart and brain, further worsening the state of both organs. Notably, RNA-seq findings indicated that 2,3,4-THBP damaged the energy metabolic function via upregulating the expression of phosphoglycerate mutase 1a (pgam1a) and phosphoglycerate kinase 1 (pgk1) whose protein products are involved in regulation of glycolysis and gluconeogenesis, highlighting their role in the interplay between heart and brain. Summarizing, 2,3,4-THBP triggered cardiac and neurological toxicity, which is possibly associated with heart-brain interaction mediated by regulation of pgam1a and pgk1 involved in glycolysis and gluconeogenesis.
Collapse
Affiliation(s)
- Lijie Xia
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250103, Shandong Province, People's Republic of China; School of Psychology and Mental Health, North China University of Science and Technology, Tangshan 063210, Hebei Province, People's Republic of China
| | - Rostyslav Stoika
- Department of Regulation of Cell Proliferation and Apoptosis, Institute of Cell Biology, National Academy of Sciences of Ukraine, Lviv, Ukraine
| | - Yuqing Li
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250103, Shandong Province, People's Republic of China; Engineering Research Center of Zebrafish Models for Human Diseases and Drug Screening of Jinan, 250103, Shandong Province, People's Republic of China
| | - Yuanteng Zheng
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250103, Shandong Province, People's Republic of China; School of Psychology and Mental Health, North China University of Science and Technology, Tangshan 063210, Hebei Province, People's Republic of China
| | - Yanao Liu
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250103, Shandong Province, People's Republic of China; Engineering Research Center of Zebrafish Models for Human Diseases and Drug Screening of Jinan, 250103, Shandong Province, People's Republic of China
| | - Dong Li
- R&D Department, Jinan Perfect Biological Technology Co., Ltd., Jinan 250101, Shandong Province, People's Republic of China
| | - Kechun Liu
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250103, Shandong Province, People's Republic of China; Engineering Research Center of Zebrafish Models for Human Diseases and Drug Screening of Jinan, 250103, Shandong Province, People's Republic of China
| | - Xiujun Zhang
- School of Psychology and Mental Health, North China University of Science and Technology, Tangshan 063210, Hebei Province, People's Republic of China
| | - Xueliang Shang
- School of Psychology and Mental Health, North China University of Science and Technology, Tangshan 063210, Hebei Province, People's Republic of China.
| | - Meng Jin
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250103, Shandong Province, People's Republic of China; Engineering Research Center of Zebrafish Models for Human Diseases and Drug Screening of Jinan, 250103, Shandong Province, People's Republic of China.
| |
Collapse
|
2
|
Dogra D, Phan VA, Zhang S, Gavrilovici C, DiMarzo N, Narang A, Ibhazehiebo K, Kurrasch DM. Modulation of NMDA receptor signaling and zinc chelation prevent seizure-like events in a zebrafish model of SLC13A5 epilepsy. PLoS Biol 2025; 23:e3002499. [PMID: 40208862 PMCID: PMC12047791 DOI: 10.1371/journal.pbio.3002499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 05/02/2025] [Accepted: 02/26/2025] [Indexed: 04/12/2025] Open
Abstract
SLC13A5 encodes a citrate transporter highly expressed in the brain and is important for regulating intra- and extracellular citrate levels. Mutations in this gene cause rare infantile epilepsy characterized by lifelong seizures, developmental delays, behavioral deficits, poor motor progression, and language impairments. SLC13A5 individuals respond poorly to treatment options; yet drug discovery programs are limited due to a paucity of animal models that phenocopy human symptoms. Here, we used CRISPR/Cas9 to create loss-of-function mutations in slc13a5a and slc13a5b, the zebrafish paralogs to human SLC13A5. slc13a5 mutant larvae showed cognitive dysfunction and sleep disturbances, consistent with SLC13A5 individuals. These mutants also exhibited fewer neurons and a concomitant increase in apoptosis across the optic tectum, a region important for sensory processing. Further, slc13a5 mutants displayed hallmark features of epilepsy, including an imbalance in glutamatergic and GABAergic excitatory-inhibitory gene expression, increased fosab expression, disrupted neurometabolism, and neuronal hyperexcitation as measured in vivo by extracellular field recordings and live calcium imaging. Mechanistically, we tested the involvement of NMDA signaling and zinc chelation in slc13a5 mutant epilepsy-like phenotypes. Slc13a5 protein co-localizes with excitatory NMDA receptors in wild-type zebrafish and NMDA receptor expression is upregulated in the brain of slc13a5 mutant larvae. Additionally, low levels of zinc are found in the plasma membrane of slc13a5 mutants. NMDA receptor suppression and ZnCl2 treatment in slc13a5 mutant larvae rescued neurometabolic and hyperexcitable calcium events, as well as behavioral defects. These data provide empirical evidence in support of the hypothesis that excess extracellular citrate over-chelates the zinc ions needed to regulate NMDA receptor function, leading to sustained channel opening and an exaggerated excitatory response that manifests as seizures. These data show the utility of slc13a5 mutant zebrafish for studying SLC13A5 epilepsy and open new avenues for drug discovery.
Collapse
Affiliation(s)
- Deepika Dogra
- Department of Medical Genetics, University of Calgary, Calgary, Alberta, Canada
- Alberta Children’s Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
| | - Van Anh Phan
- Department of Medical Genetics, University of Calgary, Calgary, Alberta, Canada
- Alberta Children’s Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
| | - Sinan Zhang
- Department of Medical Genetics, University of Calgary, Calgary, Alberta, Canada
- Alberta Children’s Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
| | - Cezar Gavrilovici
- Department of Medical Genetics, University of Calgary, Calgary, Alberta, Canada
- Alberta Children’s Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
- Departments of Pediatrics, Clinical Neurosciences, Physiology & Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Nadia DiMarzo
- Department of Medical Genetics, University of Calgary, Calgary, Alberta, Canada
- Alberta Children’s Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
| | - Ankita Narang
- Alberta Children’s Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada
| | - Kingsley Ibhazehiebo
- Department of Medical Genetics, University of Calgary, Calgary, Alberta, Canada
- Alberta Children’s Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
| | - Deborah M. Kurrasch
- Department of Medical Genetics, University of Calgary, Calgary, Alberta, Canada
- Alberta Children’s Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
3
|
Goldberg AR, Dovas A, Torres D, Pereira B, Viswanathan A, Das Sharma S, Mela A, Merricks EM, Megino-Luque C, McInvale JJ, Olabarria M, Shokooh LA, Zhao HT, Chen C, Kotidis C, Calvaresi P, Banu MA, Razavilar A, Sudhakar TD, Saxena A, Chokran C, Humala N, Mahajan A, Xu W, Metz JB, Bushong EA, Boassa D, Ellisman MH, Hillman EMC, Hargus G, Bravo-Cordero JJ, McKhann GM, Gill BJA, Rosenfeld SS, Schevon CA, Bruce JN, Sims PA, Peterka DS, Canoll P. Glioma-induced alterations in excitatory neurons are reversed by mTOR inhibition. Neuron 2025; 113:858-875.e10. [PMID: 39837324 PMCID: PMC11925689 DOI: 10.1016/j.neuron.2024.12.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 09/27/2024] [Accepted: 12/24/2024] [Indexed: 01/23/2025]
Abstract
Gliomas are aggressive neoplasms that diffusely infiltrate the brain and cause neurological symptoms, including cognitive deficits and seizures. Increased mTOR signaling has been implicated in glioma-induced neuronal hyperexcitability, but the molecular and functional consequences have not been identified. Here, we show three types of changes in tumor-associated neurons: (1) downregulation of transcripts encoding excitatory and inhibitory postsynaptic proteins and dendritic spine development and upregulation of cytoskeletal transcripts via neuron-specific profiling of ribosome-bound mRNA, (2) marked decreases in dendritic spine density via light and electron microscopy, and (3) progressive functional alterations leading to neuronal hyperexcitability via in vivo calcium imaging. A single acute dose of AZD8055, a combined mTORC1/2 inhibitor, reversed these tumor-induced changes. These findings reveal mTOR-driven pathological plasticity in neurons at the infiltrative margin of glioma and suggest new strategies for treating glioma-associated neurological symptoms.
Collapse
Affiliation(s)
- Alexander R Goldberg
- Department of Pathology and Cell Biology, Irving Cancer Research Center, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Athanassios Dovas
- Department of Pathology and Cell Biology, Irving Cancer Research Center, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Daniela Torres
- Department of Pathology and Cell Biology, Irving Cancer Research Center, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Brianna Pereira
- Department of Pathology and Cell Biology, Irving Cancer Research Center, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Ashwin Viswanathan
- Department of Pathology and Cell Biology, Irving Cancer Research Center, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Sohani Das Sharma
- Department of Systems Biology, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Angeliki Mela
- Department of Pathology and Cell Biology, Irving Cancer Research Center, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Edward M Merricks
- Department of Neurology, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Cristina Megino-Luque
- Department of Medicine, Division of Hematology and Oncology, The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10027, USA
| | - Julie J McInvale
- Department of Pathology and Cell Biology, Irving Cancer Research Center, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Markel Olabarria
- Department of Pathology and Cell Biology, Irving Cancer Research Center, Columbia University Irving Medical Center, New York, NY 10032, USA
| | | | - Hanzhi T Zhao
- Laboratory for Functional Optical Imaging, Zuckerman Mind Brain Behavior Institute, Departments of Biomedical Engineering and Radiology, Columbia University, New York, NY 10027, USA
| | - Cady Chen
- Department of Pathology and Cell Biology, Irving Cancer Research Center, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Corina Kotidis
- Department of Neurological Surgery, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Peter Calvaresi
- Department of Pathology and Cell Biology, Irving Cancer Research Center, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Matei A Banu
- Department of Neurological Surgery, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Aida Razavilar
- Department of Pathology and Cell Biology, Irving Cancer Research Center, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Tejaswi D Sudhakar
- Department of Pathology and Cell Biology, Irving Cancer Research Center, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Ankita Saxena
- Department of Pathology and Cell Biology, Irving Cancer Research Center, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Cole Chokran
- Department of Pathology and Cell Biology, Irving Cancer Research Center, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Nelson Humala
- Department of Neurological Surgery, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Aayushi Mahajan
- Department of Neurological Surgery, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Weihao Xu
- Laboratory for Functional Optical Imaging, Zuckerman Mind Brain Behavior Institute, Departments of Biomedical Engineering and Radiology, Columbia University, New York, NY 10027, USA
| | - Jordan B Metz
- Department of Systems Biology, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Eric A Bushong
- National Center for Microscopy and Imaging Research, University of California, San Diego, La Jolla, CA 92093, USA
| | - Daniela Boassa
- National Center for Microscopy and Imaging Research, University of California, San Diego, La Jolla, CA 92093, USA
| | - Mark H Ellisman
- National Center for Microscopy and Imaging Research, University of California, San Diego, La Jolla, CA 92093, USA
| | - Elizabeth M C Hillman
- Laboratory for Functional Optical Imaging, Zuckerman Mind Brain Behavior Institute, Departments of Biomedical Engineering and Radiology, Columbia University, New York, NY 10027, USA
| | - Gunnar Hargus
- Department of Pathology and Cell Biology, Irving Cancer Research Center, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Jose Javier Bravo-Cordero
- Department of Medicine, Division of Hematology and Oncology, The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10027, USA
| | - Guy M McKhann
- Department of Neurological Surgery, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Brian J A Gill
- Department of Neurological Surgery, Columbia University Irving Medical Center, New York, NY 10032, USA
| | | | - Catherine A Schevon
- Department of Neurology, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Jeffrey N Bruce
- Department of Neurological Surgery, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Peter A Sims
- Department of Systems Biology, Columbia University Irving Medical Center, New York, NY 10032, USA; Sulzberger Columbia Genome Center, Columbia University Irving Medical Center, New York, NY 10032, USA; Department of Biochemistry & Molecular Biophysics, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Darcy S Peterka
- Irving Institute for Cancer Dynamics, Columbia University, New York, NY 10027, USA; Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY 10027, USA
| | - Peter Canoll
- Department of Pathology and Cell Biology, Irving Cancer Research Center, Columbia University Irving Medical Center, New York, NY 10032, USA; Department of Neurological Surgery, Columbia University Irving Medical Center, New York, NY 10032, USA.
| |
Collapse
|
4
|
Stern MA, Dingledine R, Gross RE, Berglund K. Epilepsy insights revealed by intravital functional optical imaging. Front Neurol 2024; 15:1465232. [PMID: 39268067 PMCID: PMC11390408 DOI: 10.3389/fneur.2024.1465232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 08/13/2024] [Indexed: 09/15/2024] Open
Abstract
Despite an abundance of pharmacologic and surgical epilepsy treatments, there remain millions of patients suffering from poorly controlled seizures. One approach to closing this treatment gap may be found through a deeper mechanistic understanding of the network alterations that underly this aberrant activity. Functional optical imaging in vertebrate models provides powerful advantages to this end, enabling the spatiotemporal acquisition of individual neuron activity patterns across multiple seizures. This coupled with the advent of genetically encoded indicators, be them for specific ions, neurotransmitters or voltage, grants researchers unparalleled access to the intact nervous system. Here, we will review how in vivo functional optical imaging in various vertebrate seizure models has advanced our knowledge of seizure dynamics, principally seizure initiation, propagation and termination.
Collapse
Affiliation(s)
- Matthew A Stern
- Department of Neurosurgery, Emory University School of Medicine, Atlanta, GA, United States
| | - Raymond Dingledine
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA, United States
| | - Robert E Gross
- Department of Neurosurgery, Emory University School of Medicine, Atlanta, GA, United States
- Department of Neurological Surgery, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ, United States
| | - Ken Berglund
- Department of Neurosurgery, Emory University School of Medicine, Atlanta, GA, United States
| |
Collapse
|
5
|
Cintra L, Yanicostas C, Soussi-Yanicostas N, Vianna Maurer-Morelli C. Effects of baicalin pre-treatment on pentylenetetrazole-induced seizures: Insights from zebrafish larvae locomotor behavior and neuronal calcium imaging. Epilepsy Behav 2024; 157:109866. [PMID: 38820680 DOI: 10.1016/j.yebeh.2024.109866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 05/21/2024] [Accepted: 05/21/2024] [Indexed: 06/02/2024]
Abstract
Natural compounds are increasingly being studied for their potential neuroprotective effects against inflammatory neurological diseases. Epilepsy is a common neurological disease associated with inflammatory processes, and around 30% of people with epilepsy do not respond to traditional treatments. Some flavonoids, when taken along with antiseizure medications can help reduce the likelihood of drug-resistant epilepsy. Baicalin, a plant-based compound, has been shown to possess pharmacological properties such as anti-inflammatory, neuroprotective, anticonvulsant, and antioxidant activities. In this study, we tested the effect of baicalin on an established model of pharmacologically induced seizure in zebrafish using measures of both locomotor behavior and calcium imaging of neuronal activity. The results of our study showed that, at the tested concentration, and contrary to other studies in rodents, baicalin did not have an anti-seizure effect in zebrafish larvae. However, given its known properties, other concentrations and approaches should be explored to determine if it could potentially have other beneficial effects, either alone or when administered in combination with classic antiseizure medications.
Collapse
Affiliation(s)
- Laís Cintra
- Universidade Estadual de Campinas - Unicamp, School of Medical Science, Department of Translational Medicine, Campinas, SP, Brazil; Brazilian Institute of Neuroscience and Neurotechnology (BRAINN), Campinas
| | - Constantin Yanicostas
- NeuroDiderot, Inserm U1141, Université Paris Cité, Hôpital Robert Debré, Paris, France; Department of Biochemistry, University of Paris, INSERM, T3S, 75006 Paris, France
| | - Nadia Soussi-Yanicostas
- NeuroDiderot, Inserm U1141, Université Paris Cité, Hôpital Robert Debré, Paris, France; Department of Biochemistry, University of Paris, INSERM, T3S, 75006 Paris, France.
| | - Claudia Vianna Maurer-Morelli
- Universidade Estadual de Campinas - Unicamp, School of Medical Science, Department of Translational Medicine, Campinas, SP, Brazil; Brazilian Institute of Neuroscience and Neurotechnology (BRAINN), Campinas.
| |
Collapse
|
6
|
Xiao W, Li P, Kong F, Kong J, Pan A, Long L, Yan X, Xiao B, Gong J, Wan L. Unraveling the Neural Circuits: Techniques, Opportunities and Challenges in Epilepsy Research. Cell Mol Neurobiol 2024; 44:27. [PMID: 38443733 PMCID: PMC10914928 DOI: 10.1007/s10571-024-01458-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Accepted: 01/24/2024] [Indexed: 03/07/2024]
Abstract
Epilepsy, a prevalent neurological disorder characterized by high morbidity, frequent recurrence, and potential drug resistance, profoundly affects millions of people globally. Understanding the microscopic mechanisms underlying seizures is crucial for effective epilepsy treatment, and a thorough understanding of the intricate neural circuits underlying epilepsy is vital for the development of targeted therapies and the enhancement of clinical outcomes. This review begins with an exploration of the historical evolution of techniques used in studying neural circuits related to epilepsy. It then provides an extensive overview of diverse techniques employed in this domain, discussing their fundamental principles, strengths, limitations, as well as their application. Additionally, the synthesis of multiple techniques to unveil the complexity of neural circuits is summarized. Finally, this review also presents targeted drug therapies associated with epileptic neural circuits. By providing a critical assessment of methodologies used in the study of epileptic neural circuits, this review seeks to enhance the understanding of these techniques, stimulate innovative approaches for unraveling epilepsy's complexities, and ultimately facilitate improved treatment and clinical translation for epilepsy.
Collapse
Affiliation(s)
- Wenjie Xiao
- Department of Anatomy and Neurobiology, Central South University Xiangya Medical School, Changsha, Hunan Province, China
| | - Peile Li
- Department of Anatomy and Neurobiology, Central South University Xiangya Medical School, Changsha, Hunan Province, China
| | - Fujiao Kong
- Department of Anesthesiology, Xiangya Hospital, Central South University, Changsha, Hunan Province, China
| | - Jingyi Kong
- Department of Anatomy and Neurobiology, Central South University Xiangya Medical School, Changsha, Hunan Province, China
| | - Aihua Pan
- Department of Anatomy and Neurobiology, Central South University Xiangya Medical School, Changsha, Hunan Province, China
| | - Lili Long
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Xiaoxin Yan
- Department of Anatomy and Neurobiology, Central South University Xiangya Medical School, Changsha, Hunan Province, China
| | - Bo Xiao
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Jiaoe Gong
- Department of Neurology, Hunan Children's Hospital, Changsha, Hunan Province, China.
| | - Lily Wan
- Department of Anatomy and Neurobiology, Central South University Xiangya Medical School, Changsha, Hunan Province, China.
| |
Collapse
|
7
|
Goldberg AR, Dovas A, Torres D, Sharma SD, Mela A, Merricks EM, Olabarria M, Shokooh LA, Zhao HT, Kotidis C, Calvaresi P, Viswanathan A, Banu MA, Razavilar A, Sudhakar TD, Saxena A, Chokran C, Humala N, Mahajan A, Xu W, Metz JB, Chen C, Bushong EA, Boassa D, Ellisman MH, Hillman EM, McKhann GM, Gill BJA, Rosenfeld SS, Schevon CA, Bruce JN, Sims PA, Peterka DS, Canoll P. Glioma-Induced Alterations in Excitatory Neurons are Reversed by mTOR Inhibition. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.10.575092. [PMID: 38293120 PMCID: PMC10827113 DOI: 10.1101/2024.01.10.575092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2024]
Abstract
Gliomas are highly aggressive brain tumors characterized by poor prognosis and composed of diffusely infiltrating tumor cells that intermingle with non-neoplastic cells in the tumor microenvironment, including neurons. Neurons are increasingly appreciated as important reactive components of the glioma microenvironment, due to their role in causing hallmark glioma symptoms, such as cognitive deficits and seizures, as well as their potential ability to drive glioma progression. Separately, mTOR signaling has been shown to have pleiotropic effects in the brain tumor microenvironment, including regulation of neuronal hyperexcitability. However, the local cellular-level effects of mTOR inhibition on glioma-induced neuronal alterations are not well understood. Here we employed neuron-specific profiling of ribosome-bound mRNA via 'RiboTag,' morphometric analysis of dendritic spines, and in vivo calcium imaging, along with pharmacological mTOR inhibition to investigate the impact of glioma burden and mTOR inhibition on these neuronal alterations. The RiboTag analysis of tumor-associated excitatory neurons showed a downregulation of transcripts encoding excitatory and inhibitory postsynaptic proteins and dendritic spine development, and an upregulation of transcripts encoding cytoskeletal proteins involved in dendritic spine turnover. Light and electron microscopy of tumor-associated excitatory neurons demonstrated marked decreases in dendritic spine density. In vivo two-photon calcium imaging in tumor-associated excitatory neurons revealed progressive alterations in neuronal activity, both at the population and single-neuron level, throughout tumor growth. This in vivo calcium imaging also revealed altered stimulus-evoked somatic calcium events, with changes in event rate, size, and temporal alignment to stimulus, which was most pronounced in neurons with high-tumor burden. A single acute dose of AZD8055, a combined mTORC1/2 inhibitor, reversed the glioma-induced alterations on the excitatory neurons, including the alterations in ribosome-bound transcripts, dendritic spine density, and stimulus evoked responses seen by calcium imaging. These results point to mTOR-driven pathological plasticity in neurons at the infiltrative margin of glioma - manifested by alterations in ribosome-bound mRNA, dendritic spine density, and stimulus-evoked neuronal activity. Collectively, our work identifies the pathological changes that tumor-associated excitatory neurons experience as both hyperlocal and reversible under the influence of mTOR inhibition, providing a foundation for developing therapies targeting neuronal signaling in glioma.
Collapse
Affiliation(s)
- Alexander R. Goldberg
- Department of Pathology and Cell Biology, Irving Cancer Research Center, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Athanassios Dovas
- Department of Pathology and Cell Biology, Irving Cancer Research Center, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Daniela Torres
- Department of Pathology and Cell Biology, Irving Cancer Research Center, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Sohani Das Sharma
- Department of Systems Biology, Columbia University Irving Medical Center, New York, NY 10032
| | - Angeliki Mela
- Department of Pathology and Cell Biology, Irving Cancer Research Center, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Edward M. Merricks
- Department of Neurology, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Markel Olabarria
- Department of Pathology and Cell Biology, Irving Cancer Research Center, Columbia University Irving Medical Center, New York, NY 10032, USA
| | | | - Hanzhi T. Zhao
- Laboratory for Functional Optical Imaging, Zuckerman Mind Brain Behavior Institute, Departments of Biomedical Engineering and Radiology, Columbia University, New York, NY 10027, USA
| | - Corina Kotidis
- Department of Neurological Surgery, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Peter Calvaresi
- Department of Pathology and Cell Biology, Irving Cancer Research Center, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Ashwin Viswanathan
- Department of Pathology and Cell Biology, Irving Cancer Research Center, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Matei A. Banu
- Department of Neurological Surgery, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Aida Razavilar
- Department of Pathology and Cell Biology, Irving Cancer Research Center, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Tejaswi D. Sudhakar
- Department of Pathology and Cell Biology, Irving Cancer Research Center, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Ankita Saxena
- Department of Pathology and Cell Biology, Irving Cancer Research Center, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Cole Chokran
- Department of Pathology and Cell Biology, Irving Cancer Research Center, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Nelson Humala
- Department of Neurological Surgery, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Aayushi Mahajan
- Department of Neurological Surgery, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Weihao Xu
- Laboratory for Functional Optical Imaging, Zuckerman Mind Brain Behavior Institute, Departments of Biomedical Engineering and Radiology, Columbia University, New York, NY 10027, USA
| | - Jordan B. Metz
- Department of Systems Biology, Columbia University Irving Medical Center, New York, NY 10032
| | - Cady Chen
- Department of Pathology and Cell Biology, Irving Cancer Research Center, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Eric A. Bushong
- National Center for Microscopy and Imaging Research, University of California, San Diego, La Jolla, CA 92093, USA
| | - Daniela Boassa
- National Center for Microscopy and Imaging Research, University of California, San Diego, La Jolla, CA 92093, USA
| | - Mark H. Ellisman
- National Center for Microscopy and Imaging Research, University of California, San Diego, La Jolla, CA 92093, USA
| | - Elizabeth M.C. Hillman
- Laboratory for Functional Optical Imaging, Zuckerman Mind Brain Behavior Institute, Departments of Biomedical Engineering and Radiology, Columbia University, New York, NY 10027, USA
| | - Guy M. McKhann
- Department of Neurological Surgery, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Brian J. A. Gill
- Department of Neurological Surgery, Columbia University Irving Medical Center, New York, NY 10032, USA
| | | | - Catherine A. Schevon
- Department of Neurology, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Jeffrey N. Bruce
- Department of Neurological Surgery, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Peter A. Sims
- Department of Systems Biology, Columbia University Irving Medical Center, New York, NY 10032
- Sulzberger Columbia Genome Center, Columbia University Irving Medical Center, New York, NY, 10032
- Department of Biochemistry & Molecular Biophysics, Columbia University Irving Medical Center, New York, NY, 10032
| | - Darcy S. Peterka
- Irving Institute for Cancer Dynamics, Columbia University, New York, NY 10027, USA
- Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY 10027, USA
| | - Peter Canoll
- Department of Pathology and Cell Biology, Irving Cancer Research Center, Columbia University Irving Medical Center, New York, NY 10032, USA
- Department of Neurological Surgery, Columbia University Irving Medical Center, New York, NY 10032, USA
| |
Collapse
|
8
|
Freibauer A, Wohlleben M, Boelman C. STXBP1-Related Disorders: Clinical Presentation, Molecular Function, Treatment, and Future Directions. Genes (Basel) 2023; 14:2179. [PMID: 38137001 PMCID: PMC10742812 DOI: 10.3390/genes14122179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 11/27/2023] [Accepted: 12/01/2023] [Indexed: 12/24/2023] Open
Abstract
In recent years, the affordability and availability of genetic testing have led to its increased use in clinical care. The increased frequency of testing has led to STXBP1 variants being identified as one of the more common variants associated with neurological disorders. In this review, we aim to summarize the common clinical phenotypes associated with STXBP1 pathogenic variants, provide an overview of their known natural history, and discuss current research into the genotype to phenotype correlation. We will also provide an overview of the suspected normal function of the STXBP1-encoded Munc18-1 protein, animal models, and experimental techniques that have been developed to study its function and use this information to try to explain the diverse phenotypes associated with STXBP1-related disorders. Finally, we will explore current therapies for STXBP1 disorders, including an overview of treatment goals for STXBP1-related disorders, a discussion of the current evidence for therapies, and future directions of personalized medications for STXBP1-related disorders.
Collapse
Affiliation(s)
- Alexander Freibauer
- Division of Neurology, BC Children’s Hospital, Vancouver, BC V6H 3N1, Canada;
- Faculty of Medicine, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Mikayla Wohlleben
- Faculty of Medicine, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Cyrus Boelman
- Division of Neurology, BC Children’s Hospital, Vancouver, BC V6H 3N1, Canada;
- Faculty of Medicine, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| |
Collapse
|
9
|
Turrini L, Roschi L, de Vito G, Pavone FS, Vanzi F. Imaging Approaches to Investigate Pathophysiological Mechanisms of Brain Disease in Zebrafish. Int J Mol Sci 2023; 24:9833. [PMID: 37372981 DOI: 10.3390/ijms24129833] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 06/01/2023] [Accepted: 06/02/2023] [Indexed: 06/29/2023] Open
Abstract
Zebrafish has become an essential model organism in modern biomedical research. Owing to its distinctive features and high grade of genomic homology with humans, it is increasingly employed to model diverse neurological disorders, both through genetic and pharmacological intervention. The use of this vertebrate model has recently enhanced research efforts, both in the optical technology and in the bioengineering fields, aiming at developing novel tools for high spatiotemporal resolution imaging. Indeed, the ever-increasing use of imaging methods, often combined with fluorescent reporters or tags, enable a unique chance for translational neuroscience research at different levels, ranging from behavior (whole-organism) to functional aspects (whole-brain) and down to structural features (cellular and subcellular). In this work, we present a review of the imaging approaches employed to investigate pathophysiological mechanisms underlying functional, structural, and behavioral alterations of human neurological diseases modeled in zebrafish.
Collapse
Affiliation(s)
- Lapo Turrini
- European Laboratory for Non-Linear Spectroscopy, Via Nello Carrara 1, 50019 Sesto Fiorentino, Italy
| | - Lorenzo Roschi
- European Laboratory for Non-Linear Spectroscopy, Via Nello Carrara 1, 50019 Sesto Fiorentino, Italy
| | - Giuseppe de Vito
- European Laboratory for Non-Linear Spectroscopy, Via Nello Carrara 1, 50019 Sesto Fiorentino, Italy
- Department of Neuroscience, Psychology, Drug Research and Child Health, University of Florence, Viale Gaetano Pieraccini 6, 50139 Florence, Italy
- Interdepartmental Centre for the Study of Complex Dynamics, University of Florence, Via Giovanni Sansone 1, 50019 Sesto Fiorentino, Italy
| | - Francesco Saverio Pavone
- European Laboratory for Non-Linear Spectroscopy, Via Nello Carrara 1, 50019 Sesto Fiorentino, Italy
- Department of Physics and Astronomy, University of Florence, Via Giovanni Sansone 1, 50019 Sesto Fiorentino, Italy
- National Institute of Optics, National Research Council, Via Nello Carrara 1, 50019 Sesto Fiorentino, Italy
| | - Francesco Vanzi
- European Laboratory for Non-Linear Spectroscopy, Via Nello Carrara 1, 50019 Sesto Fiorentino, Italy
- Department of Biology, University of Florence, Via Madonna del Piano 6, 50019 Sesto Fiorentino, Italy
| |
Collapse
|
10
|
Ji P, Wang Y, Peron T, Li C, Nagler J, Du J. Structure and function in artificial, zebrafish and human neural networks. Phys Life Rev 2023; 45:74-111. [PMID: 37182376 DOI: 10.1016/j.plrev.2023.04.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 04/20/2023] [Indexed: 05/16/2023]
Abstract
Network science provides a set of tools for the characterization of the structure and functional behavior of complex systems. Yet a major problem is to quantify how the structural domain is related to the dynamical one. In other words, how the diversity of dynamical states of a system can be predicted from the static network structure? Or the reverse problem: starting from a set of signals derived from experimental recordings, how can one discover the network connections or the causal relations behind the observed dynamics? Despite the advances achieved over the last two decades, many challenges remain concerning the study of the structure-dynamics interplay of complex systems. In neuroscience, progress is typically constrained by the low spatio-temporal resolution of experiments and by the lack of a universal inferring framework for empirical systems. To address these issues, applications of network science and artificial intelligence to neural data have been rapidly growing. In this article, we review important recent applications of methods from those fields to the study of the interplay between structure and functional dynamics of human and zebrafish brain. We cover the selection of topological features for the characterization of brain networks, inference of functional connections, dynamical modeling, and close with applications to both the human and zebrafish brain. This review is intended to neuroscientists who want to become acquainted with techniques from network science, as well as to researchers from the latter field who are interested in exploring novel application scenarios in neuroscience.
Collapse
Affiliation(s)
- Peng Ji
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai 200433, China; Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence, Ministry of Education, Shanghai 200433, China; MOE Frontiers Center for Brain Science, Fudan University, Shanghai 200433, China
| | - Yufan Wang
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, 320 Yue-Yang Road, Shanghai 200031, China
| | - Thomas Peron
- Institute of Mathematics and Computer Science, University of São Paulo, São Carlos 13566-590, São Paulo, Brazil.
| | - Chunhe Li
- Shanghai Center for Mathematical Sciences and School of Mathematical Sciences, Fudan University, Shanghai 200433, China; Institute of Science and Technology for Brain-Inspired Intelligence and MOE Frontiers Center for Brain Science, Fudan University, Shanghai 200433, China.
| | - Jan Nagler
- Deep Dynamics, Frankfurt School of Finance & Management, Frankfurt, Germany; Centre for Human and Machine Intelligence, Frankfurt School of Finance & Management, Frankfurt, Germany
| | - Jiulin Du
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, 320 Yue-Yang Road, Shanghai 200031, China.
| |
Collapse
|
11
|
Liu Y, Liu B, Green J, Duffy C, Song M, Lauderdale JD, Kner P. Volumetric light sheet imaging with adaptive optics correction. BIOMEDICAL OPTICS EXPRESS 2023; 14:1757-1771. [PMID: 37078033 PMCID: PMC10110302 DOI: 10.1364/boe.473237] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 03/09/2023] [Accepted: 03/10/2023] [Indexed: 05/02/2023]
Abstract
Light sheet microscopy has developed quickly over the past decades and become a popular method for imaging live model organisms and other thick biological tissues. For rapid volumetric imaging, an electrically tunable lens can be used to rapidly change the imaging plane in the sample. For larger fields of view and higher NA objectives, the electrically tunable lens introduces aberrations in the system, particularly away from the nominal focus and off-axis. Here, we describe a system that employs an electrically tunable lens and adaptive optics to image over a volume of 499 × 499 × 192 μm3 with close to diffraction-limited resolution. Compared to the system without adaptive optics, the performance shows an increase in signal to background ratio by a factor of 3.5. While the system currently requires 7s/volume, it should be straightforward to increase the imaging speed to under 1s per volume.
Collapse
Affiliation(s)
- Yang Liu
- School of Electrical and Computer Engineering, University of Georgia, Athens, GA 30602, USA
| | - Bingxi Liu
- School of Electrical and Computer Engineering, University of Georgia, Athens, GA 30602, USA
| | - John Green
- School of Electrical and Computer Engineering, University of Georgia, Athens, GA 30602, USA
| | - Carly Duffy
- Dept. of Cellular Biology, University of Georgia, Athens, GA 30602, USA
| | - Ming Song
- School of Electrical and Computer Engineering, University of Georgia, Athens, GA 30602, USA
| | - James D. Lauderdale
- Dept. of Cellular Biology, University of Georgia, Athens, GA 30602, USA
- Neuroscience Division of the Biomedical Health Sciences Institute, University of Georgia, Athens, GA 30602, USA
| | - Peter Kner
- School of Electrical and Computer Engineering, University of Georgia, Athens, GA 30602, USA
| |
Collapse
|
12
|
Zhang JG, Ma DD, Li SY, Long XB, Liu F, Lu ZJ, Shi WJ. A Time-course Transcriptional Kinetics of Genes in Behavior, Cortisol Synthesis and Neurodevelopment in Zebrafish Larvae Exposed to Imidacloprid and Thiamethoxam. BULLETIN OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2022; 110:5. [PMID: 36507940 DOI: 10.1007/s00128-022-03645-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Accepted: 10/18/2022] [Indexed: 06/17/2023]
Abstract
Agricultural use of neonicotinoid insecticides, neuroactive nitroguanidine compounds, has been detected everywhere in the global, posing significant hazard to nontarget organisms. This work studied the developmental neurotoxicity of zebrafish larvae exposed to imidacloprid (IMI) and thiamethoxam (THM), ranging from 0.05 µg L- 1 to 50 µg L- 1 for 35 days. Transcriptions of genes belonging to the behavior, neurodevelopment and cortisol synthesis in zebrafish larvae were monitored. The qPCR data demonstrated that with exposure time increased, the transcription of behavior related genes was down-regulated in both IMI and THM groups, such as macf1, cdh6 and syt10. Additionally, IMI and THM significantly up-regulated the transcriptions of actha, and down-regulated il1rapl1b and pi4k2a at 35 dpf. Importantly, IMI markedly enhanced the transcripiton of gfap, shha, nkx2.2a and nestin in a time dependent manner. This work provided the foundation for understanding zebrafish larvae's neurotoxicity induced by IMI and THM.
Collapse
Affiliation(s)
- Jin-Ge Zhang
- Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, SCNU Environmental Research Institute, South China Normal University, 510006, Guangzhou, China
- School of Environment, South China Normal University, University Town, 510006, Guangzhou, China
| | - Dong-Dong Ma
- Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, SCNU Environmental Research Institute, South China Normal University, 510006, Guangzhou, China
- School of Environment, South China Normal University, University Town, 510006, Guangzhou, China
| | - Si-Ying Li
- Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, SCNU Environmental Research Institute, South China Normal University, 510006, Guangzhou, China
- School of Environment, South China Normal University, University Town, 510006, Guangzhou, China
| | - Xiao-Bing Long
- Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, SCNU Environmental Research Institute, South China Normal University, 510006, Guangzhou, China
- School of Environment, South China Normal University, University Town, 510006, Guangzhou, China
| | - Fang Liu
- School of Geography, South China Normal University, 510631, Guangzhou, China.
| | - Zhi-Jie Lu
- Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, SCNU Environmental Research Institute, South China Normal University, 510006, Guangzhou, China
- School of Environment, South China Normal University, University Town, 510006, Guangzhou, China
| | - Wen-Jun Shi
- Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, SCNU Environmental Research Institute, South China Normal University, 510006, Guangzhou, China.
- School of Environment, South China Normal University, University Town, 510006, Guangzhou, China.
| |
Collapse
|
13
|
Whyte-Fagundes P, Taskina D, Safarian N, Zoidl C, Carlen PL, Donaldson LW, Zoidl GR. Panx1 channels promote both anti- and pro-seizure-like activities in the zebrafish via p2rx7 receptors and ATP signaling. Commun Biol 2022; 5:472. [PMID: 35585187 PMCID: PMC9117279 DOI: 10.1038/s42003-022-03356-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 04/12/2022] [Indexed: 11/08/2022] Open
Abstract
The molecular mechanisms of excitation/inhibition imbalances promoting seizure generation in epilepsy patients are not fully understood. Evidence suggests that Pannexin1 (Panx1), an ATP release channel, modulates the excitability of the brain. In this report, we performed electrophysiological, behavioral, and molecular phenotyping experiments on zebrafish larvae bearing genetic or pharmacological knockouts of Panx1a and Panx1b channels, each homologous to human PANX1. When Panx1a function is lost, or both channels are under pharmacological blockade, seizures with ictal-like events and seizure-like locomotion are reduced in the presence of pentylenetetrazol. Transcriptome profiling by RNA-seq demonstrates a spectrum of distinct metabolic and cell signaling states which correlate with the loss of Panx1a. Furthermore, the pro- and anticonvulsant activities of both Panx1 channels affect ATP release and involve the purinergic receptor P2rx7. Our findings suggest a subfunctionalization of Panx1 enabling dual roles in seizures, providing a unique and comprehensive perspective to understanding seizure mechanisms in the context of this channel.
Collapse
Affiliation(s)
- Paige Whyte-Fagundes
- Department of Biology, York University, Toronto, ON, M3J1P3, Canada.
- Center of Vision Research (CVR), York University, Toronto, ON, M3J1P3, Canada.
- Krembil Research Institute, University Health Network, 60 Leonard Ave, Toronto, ON, M5T 1M8, Canada.
| | - Daria Taskina
- Department of Biology, York University, Toronto, ON, M3J1P3, Canada
- Center of Vision Research (CVR), York University, Toronto, ON, M3J1P3, Canada
| | - Nickie Safarian
- Department of Biology, York University, Toronto, ON, M3J1P3, Canada
- Center of Vision Research (CVR), York University, Toronto, ON, M3J1P3, Canada
| | - Christiane Zoidl
- Department of Biology, York University, Toronto, ON, M3J1P3, Canada
- Center of Vision Research (CVR), York University, Toronto, ON, M3J1P3, Canada
| | - Peter L Carlen
- Krembil Research Institute, University Health Network, 60 Leonard Ave, Toronto, ON, M5T 1M8, Canada
- Department of Medicine, Physiology and BME, University of Toronto, 399 Bathurst St., 5w442, Toronto, ON, M5T 2S8, Canada
| | | | - Georg R Zoidl
- Department of Biology, York University, Toronto, ON, M3J1P3, Canada.
- Center of Vision Research (CVR), York University, Toronto, ON, M3J1P3, Canada.
- Krembil Research Institute, University Health Network, 60 Leonard Ave, Toronto, ON, M5T 1M8, Canada.
| |
Collapse
|
14
|
Moog M, Baraban SC. Clemizole and Trazodone are Effective Antiseizure Treatments in a Zebrafish Model of STXBP1 Disorder. Epilepsia Open 2022; 7:504-511. [PMID: 35451230 PMCID: PMC9436285 DOI: 10.1002/epi4.12604] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 04/19/2022] [Indexed: 11/07/2022] Open
Abstract
CRISPR-Cas9-generated zebrafish carrying a 12 base-pair deletion in stxbpb1b, a paralog sharing 79% amino acid sequence identity with human, exhibit spontaneous electrographic seizures during larval stages of development. Zebrafish stxbp1b mutants provide an efficient preclinical platform to test antiseizure therapeutics. The present study was designed to test antiseizure medications approved for clinical use and two recently identified repurposed drugs with antiseizure activity. Larval homozygous stxbp1b zebrafish (4 days post-fertilization) were agarose-embedded and monitored for electrographic seizure activity using a local field recording electrode placed in midbrain. Frequency of ictal-like events was evaluated at baseline and following 45 min of continuous drug exposure (1 mM, bath application). Analysis was performed on coded files by an experimenter blinded to drug treatment and genotype. Phenytoin, valproate, ethosuximide, levetiracetam, and diazepam had no effect on ictal-like event frequency in stxbp1b mutant zebrafish. Clemizole and trazodone decreased ictal-like event frequency in stxbp1b mutant zebrafish by 80% and 83%, respectively. These results suggest that repurposed drugs with serotonin receptor binding affinities could be effective antiseizure treatments. Clemizole and trazodone were previously identified in a larval zebrafish model for Dravet syndrome. Based primarily on these preclinical zebrafish studies, compassionate-use and double-blind clinical trials with both drugs have progressed. The present study extends this approach to a preclinical zebrafish model representing STXBP1-related disorders, and suggests that future clinical studies may be warranted.
Collapse
Affiliation(s)
- Maia Moog
- Department of Neurological Surgery & Weill Institute for NeuroscienceUniversity of CaliforniaSan FranciscoCaliforniaUSA
| | - Scott C. Baraban
- Department of Neurological Surgery & Weill Institute for NeuroscienceUniversity of CaliforniaSan FranciscoCaliforniaUSA
- Helen Wills Neuroscience InstituteUniversity of CaliforniaBerkeleyCaliforniaUSA
| |
Collapse
|
15
|
Pereida-Jaramillo E, Gómez-González GB, Espino-Saldaña AE, Martínez-Torres A. Calcium Signaling in the Cerebellar Radial Glia and Its Association with Morphological Changes during Zebrafish Development. Int J Mol Sci 2021; 22:ijms222413509. [PMID: 34948305 PMCID: PMC8706707 DOI: 10.3390/ijms222413509] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 12/08/2021] [Accepted: 12/12/2021] [Indexed: 01/02/2023] Open
Abstract
Radial glial cells are a distinct non-neuronal cell type that, during development, span the entire width of the brain walls of the ventricular system. They play a central role in the origin and placement of neurons, since their processes form structural scaffolds that guide and facilitate neuronal migration. Furthermore, glutamatergic signaling in the radial glia of the adult cerebellum (i.e., Bergmann glia), is crucial for precise motor coordination. Radial glial cells exhibit spontaneous calcium activity and functional coupling spread calcium waves. However, the origin of calcium activity in relation to the ontogeny of cerebellar radial glia has not been widely explored, and many questions remain unanswered regarding the role of radial glia in brain development in health and disease. In this study we used a combination of whole mount immunofluorescence and calcium imaging in transgenic (gfap-GCaMP6s) zebrafish to determine how development of calcium activity is related to morphological changes of the cerebellum. We found that the morphological changes in cerebellar radial glia are quite dynamic; the cells are remarkably larger and more elaborate in their soma size, process length and numbers after 7 days post fertilization. Spontaneous calcium events were scarce during the first 3 days of development and calcium waves appeared on day 5, which is associated with the onset of more complex morphologies of radial glia. Blockage of gap junction coupling inhibited the propagation of calcium waves, but not basal local calcium activity. This work establishes crucial clues in radial glia organization, morphology and calcium signaling during development and provides insight into its role in complex behavioral paradigms.
Collapse
|
16
|
Hadjiabadi D, Lovett-Barron M, Raikov IG, Sparks FT, Liao Z, Baraban SC, Leskovec J, Losonczy A, Deisseroth K, Soltesz I. Maximally selective single-cell target for circuit control in epilepsy models. Neuron 2021; 109:2556-2572.e6. [PMID: 34197732 PMCID: PMC8448204 DOI: 10.1016/j.neuron.2021.06.007] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 04/19/2021] [Accepted: 06/04/2021] [Indexed: 12/21/2022]
Abstract
Neurological and psychiatric disorders are associated with pathological neural dynamics. The fundamental connectivity patterns of cell-cell communication networks that enable pathological dynamics to emerge remain unknown. Here, we studied epileptic circuits using a newly developed computational pipeline that leveraged single-cell calcium imaging of larval zebrafish and chronically epileptic mice, biologically constrained effective connectivity modeling, and higher-order motif-focused network analysis. We uncovered a novel functional cell type that preferentially emerged in the preseizure state, the superhub, that was unusually richly connected to the rest of the network through feedforward motifs, critically enhancing downstream excitation. Perturbation simulations indicated that disconnecting superhubs was significantly more effective in stabilizing epileptic circuits than disconnecting hub cells that were defined traditionally by connection count. In the dentate gyrus of chronically epileptic mice, superhubs were predominately modeled adult-born granule cells. Collectively, these results predict a new maximally selective and minimally invasive cellular target for seizure control.
Collapse
Affiliation(s)
- Darian Hadjiabadi
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA; Department of Neurosurgery, Stanford University, Stanford, CA 94305, USA.
| | - Matthew Lovett-Barron
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA; Neurobiology Section, Division of Biological Sciences, University of California, San Diego, La Jolla, CA 92093, USA
| | | | - Fraser T Sparks
- Department of Neuroscience, Columbia University, New York, NY 10027, USA; Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY 10027, USA; The Kavli Institute for Brain Science, Columbia University, New York, NY 10027, USA
| | - Zhenrui Liao
- Department of Neuroscience, Columbia University, New York, NY 10027, USA; Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY 10027, USA; The Kavli Institute for Brain Science, Columbia University, New York, NY 10027, USA
| | - Scott C Baraban
- Department of Neurological Surgery and Weill Institute for Neuroscience, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Jure Leskovec
- Department of Computer Science, Stanford University, Stanford, CA 94305, USA; Chan Zuckerberg Biohub, San Francisco, CA 94158, USA
| | - Attila Losonczy
- Department of Neuroscience, Columbia University, New York, NY 10027, USA; Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY 10027, USA; The Kavli Institute for Brain Science, Columbia University, New York, NY 10027, USA
| | - Karl Deisseroth
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA; Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA
| | - Ivan Soltesz
- Department of Neurosurgery, Stanford University, Stanford, CA 94305, USA
| |
Collapse
|
17
|
Abstract
Danio rerio (zebrafish) are a powerful experimental model for genetic and developmental studies. Adaptation of zebrafish to study seizures was initially established using the common convulsant agent pentylenetetrazole (PTZ). Larval PTZ-exposed zebrafish exhibit clear behavioral convulsions and abnormal electrographic activity, reminiscent of interictal and ictal epileptiform discharge. By using this model, our laboratory developed simple locomotion-based and electrophysiological assays to monitor and quantify seizures in larval zebrafish. Zebrafish also offer multiple advantages for rapid genetic manipulation and high-throughput phenotype-based drug screening. Combining these seizure assays with genetically modified zebrafish that represent Dravet syndrome, a rare genetic epilepsy, ultimately contributed to a phenotype-based screen of over 3500 drugs. Several drugs identified in these zebrafish screens are currently in clinical or compassionate-use trials. The emergence of this 'aquarium-to-bedside' approach suggests that broader efforts to adapt and improve upon this zebrafish-centric strategy can drive a variety of exciting new discoveries.
Collapse
Affiliation(s)
- Scott C Baraban
- Department of Neurological Surgery and Weill Institute for Neuroscience, University of California, San Francisco,CA 94143-0350, USA
| |
Collapse
|